The table of contents leads us to POLFIT to fit a function linear in its parameters. The routine PCOEF allows us to express the fit obtained via POLFIT.

Note that for non-linear fitting, the routine SNLS1 should be used.

As an example, let us fit an experimental observation to theory: The experiment measures the number of pi mesons that decay in intervals of 10 ns. Theory predicts that if \(N(t) \) is the number of pions at time \(t \), then
\[
\frac{dN}{dt} = -\left(\frac{N_0}{\alpha} \right) e^{-t/\alpha}
\]

```fortran
program piDecay
Implicit none
real*8 x(12), w(12)
real*8 y(12) /32, 17, 21, 7, 8, 6, 5, 2, 2, 0.1, 4, 1/
real*8 A(100), R(12), eps, TC(12), yy
integer*4 i, maxDeg, nDeg, j, n, status
maxDeg = 1
n = 12
eps = 0.
do i=1, n
   x(i) = i* 10 - 5
   y(i) = log(y(i))
end do
w(1) = -1
call dpolft(n, x, y, w, maxDeg, nDeg, eps, R, status, A)
print*, "Status = ", status
print*, "nDegree = ", nDeg
print*, "EPS = ", eps
call dpcoef(nDeg, 0., TC, A)
print*, "Intercept / Slope: ", TC(1), TC(2)
print*, "pi meson lifetime (26 ns) = ", -1./TC(2)
end
```
Running the above program yields:

Status = 1
nDegree = 1
EPS = 0.886860617
Intercept / Slope: 3.51737089 -0.0346783699
pi meson lifetime (26 ns) = 28.8364189