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Abstract. There are very few software frameworks for steering behav-
iors that are publicly available for developing, evaluating, and sharing
steering algorithms. Furthermore, there is no widely accepted methodol-
ogy for how to evaluate results of agent steering simulations. This situa-
tion makes it difficult to identify the real underlying challenges in agent
simulations and future research directions to advance the state of the
art. With the hope of encouraging community participation to address
these issues, we have released SteerSuite, a flexible but easy-to-use set
of tools, libraries, and test cases for steering behaviors. The software
includes enhanced test cases, an improved version of SteerBench, a mod-
ular simulation engine, a novel steering algorithm, and more. Care has
been taken to make SteerSuite practical and easy-to-use, yet flexible and
forward-looking, to challenge researchers and developers to advance the
state of the art in steering.

1 Introduction

Steering is an important aspect of behavioral animation that allows autonomous
agents to navigate through an environment, and this topic has generated a large
amount of research in the fields of robotics, graphics, artificial intelligence, and
even sociology and psychology. One of the most time-consuming tasks required
for anyone who wants to experiment with steering behaviors is developing the in-
frastructure surrounding the actual steering algorithm. This includes developing
a simulation framework, designing scenarios to test the steering algorithm, de-
ciding the method of evaluating the results, and devising a way to present results

Fig. 1. Agents using the PPR algorithm to steer through the bottleneck-evacuation test
case, shown here using SteerSim without the user-interface.



to others. Even in our own lines of steering research, we have come across signif-
icant practical hurdles, such as how to run tens of hundreds of simulations in a
batch script, how to post-analyze them automatically, how to evaluate whether
a steering algorithm is versatile and robust, and other related challenges. These
tasks take weeks, even months of effort to do properly.

Over the past year, our research has accumulated into one such infrastruc-
ture. We proposed SteerBench [1], which explored the possibility of scoring the
agents steering through a variety of challenging test cases. Recognizing that
benchmark scores and detailed numerical metrics are not always enough, we
also recently developed SteerBug [2], which uses pattern recognition techniques
for recognizing user-specified behaviors of interest. Additionally, we have exper-
imented with our own novel steering techniques: egocentric affordance fields [3]
and the PPR algorithm (presented in this paper), and during the research pro-
cess we developed a flexible simulation tool that provides common functionality
to both algorithms.

We call the resulting framework SteerSuite. The source code and content are
publicly available for download [4]. SteerSuite includes:

– Many diverse and challenging test cases with an open specification for cre-
ating more test cases,

– SteerBench, including several improvements,
– SteerSim, a simulation engine,
– The PPR steering algorithm,
– SteerLib, which includes functionality to make it easy to read the test case

files, to record/replay agent simulations, and much more.

We chose to release this software for the following reasons:

– To make the implementation of our research works available for scrutiny and
for use by others

– To propose a set of test cases as a starting point for the community to
eventually create a standard suite of tests for steering algorithms

– To make it easy for users to start developing and testing their own steering
experiments

– To make it easy to share results, in the form of benchmark/metrics reports
and also in the form of recordings of the simulations.

To our knowledge, the only other openly available steering framework is
OpenSteer [5] by Craig Reynolds. Our simulation engine, SteerSim, is inspired
by the OpenSteerDemo component of Reynolds’ software, however, beyond this
similarity, both softwares are complementary to each other. OpenSteer provides a
library of functions used for steering decisions of agents, including path following,
seek, flee, and boids behaviors, and helper functions to determine the agent’s
state, while SteerSuite provides functionality related to the testing, evaluating,
recording, and infrastructure surrounding a steering algorithm.

This paper discusses the novel aspects of SteerSuite. We first discuss the
improvements made since the original SteerBench: improvements to the set of



Fig. 2. Screenshots of the SteerSim user interface, benchmarking a simple steering
algorithm on the forest test case.

test cases are discussed in Section 2, and the generalizations made to bench-
marking are discussed in Section 3. Then, Section 4 describes the example steer-
ing algorithm provided with SteerSuite, called PPR (Plan, Predict, and React).
The development and testing of this algorithm illustrates the various features
of SteerSuite. We discuss debugging and evaluation in Section 5, and Section 6
concludes.

2 Improvements to Test Case Specifications

In the context of SteerSuite and SteerBench, a test case is a description of the
initial conditions of agents and objects in an environment. The original set of test
cases is described in [1], which focuses on testing normal everyday pedestrian
behaviors. We hope to encourage the community to contribute more test cases for
different application domains, which can eventually evolve into a widely accepted
set of tests that steering algorithms are expected to use.

To this end, the test case format is designed to be flexible but easy to use.
For portability, we migrated the test case format into XML. SteerSuite provides
an XML Schema that describes the specifics of the format, so that users can
easily create and validate their own test cases. We added the ability for test
cases to specify “regions of agents” and “regions of obstacles,” where the agents
or obstacles are randomly placed; this feature was previously hard-coded into
only a few test cases. SteerSuite also provides a library that can read these test
cases and automatically set up all initial conditions, deterministically resolving
all random regions and random targets before giving the initial conditions to the
user.

We also added more elaborate goal specifications in the test cases. An agent’s
goal can be one or a combination of the following types:

– Seek static location: the agent should navigate towards a fixed location
in space.



– Flee static location: the agent should move away from a fixed location in
space. For example, agents should flee from a stationary vehicle that is on
fire.

– Seek dynamic target: the agent should steer towards a moving target.
The two common examples of this are (1) pursuit, where one agent chases
another agent, and (2) meeting, where two friends want to steer towards
each other.

– Flee dynamic target: the agent should flee a moving target, for example,
when being chased.

– Flow in a fixed direction: the agent should progress in a particular di-
rection, for example, when going down a hallway with no need to follow an
exact planned path.

– Flow in a dynamic direction: the agent should follow a dynamically
changing direction, which can be used for agents to advect along a potential
field or velocity field, or to wander with a randomly changing direction.

Each type of goal takes additional data, such as the point location, named target,
or direction vector. This additional data can optionally be declared as “random”.
In future work we may add support for more controlled randomness, allowing
the user to specify sampling distributions and regions.

This goal specification deserves mention because it addresses an important
practical consideration: a steering algorithm is only one of many components of
an autonomous virtual character, and eventually it will be necessary to interface
the steering algorithm with a high-level intelligent controller (i.e. the artificial
intelligence of the agent). The described goal specification is our first attempt
to characterize all possible ways that artificial intelligence may want to interface
with steering. If the goal specification receives positive feedback, we will develop
more test cases that use these new goal types, with an emphasis on normal
everyday steering tasks where real human pedestrians may think in terms of
these goal types instead of steering to a static target.

3 Improvements to Benchmarking

The original SteerBench benchmark process was a monolithic process that col-
lected numerous metrics of an agent simulation and then computed a weighted
sum of three primary metrics for the final benchmark score. For more informa-
tion about these metrics, refer to the original SteerBench work [1]. In SteerSuite,
we have generalized this process by separating the concepts of metrics collection
and benchmark techniques. This separation allows users complete flexibility;
users can easily experiment with their own benchmark techniques regardless of
what metrics are used, or they can focus on using metrics to debug or analyze a
simulation.

The metrics are updated once per frame, and can be accessed and examined
by the user for any agent at any frame of the simulation. The desired benchmark
technique is also updated once per frame, given access to the metrics of all agents
and of the environment. The benchmark technique then provides functionality



to (1) get a simple score or (2) to output details of how the score was computed,
(a) for all agents in a test case or (b) for an individual agent. Benchmarking can
be done on-line while running the steering algorithm, on-line with a recording
of the simulation being replayed, or off-line with a command-line tool.

SteerSuite provides several basic benchmark techniques. The original Steer-
Bench work, which used a weighted sum of three primary metrics, is called the
composite01 benchmark technique. We also developed a composite02 technique
which uses four primary metrics: the first three metrics are the original three
metrics from composite01: (1) number of collisions, (2) time efficiency measured
as seconds to reach goal, and (3) sum total of kinetic energy samples along the
path (which was called effort efficiency). For composite02, we add (4) a sum
total of acceleration samples along the path, another measure of effort efficiency.

4 PPR: The SteerSuite Steering Algorithm

In this section we describe the PPR (Plan, Predict, and React) algorithm, which
is currently the main example algorithm provided with SteerSuite. As the algo-
rithm is described, it illustrates how various features of SteerSuite can be used.

The algorithm is implemented as a plugin to SteerSim, the simulation engine
that is part of SteerSuite. SteerSim has a modular architecture, so that almost
all useful functionality is provided in modules. Modules have access to most
of the simulation engine’s data, including a spatial database, clock, camera,
access to other modules. Modules can even add components to the graphical
user interface. When a simulation is started, the engine uses the PPR module
to create and initialize each agent, providing each agent its initial conditions
(including a sequence of goals) that came from a test case. As the simulation runs,
the engine automatically updates every agent. Modules have the opportunity to
perform preprocessing and postprocessing at every frame, which is useful for
metrics collection or for a steering algorithm that requires a global processing
stage, but the PPR steering algorithm does not use this feature.

The PPR algorithm is a novel rule-based pedestrian steering algorithm that
combines three (potentially conflicting) aspects of human steering into a single
steering decision. The three aspects are:

– Plan: The agent selects a local target that is used to smoothly steer along
the planned path.

– Predict: The agent makes predictions about other agents and determines
how to steer to avoid the most imminent predicted collision.

– React: The agent steers to avoid problems interacting with other agents in
its immediate surroundings.

All three aspects produce a steering decision, and the challenge of this approach
is how to combine these steering decisions, or at least how to choose which steer-
ing decision to use at any given time. We address this by using a state machine
and a set of rules. The implementation is divided into six main phases, described
below. (There are actually more phases and states of the agent that are part of



Fig. 3. Short-term planning. The local target (white star) is chosen as the furthest
point such that all path nodes between the agent’s closest path node (blue star) and
the local target have line-of-sight to the agent.

future research.)

Long-term planning phase. Given a goal target, the agent plans a path to its
goal using the standard A-star algorithm [6], only planning around static obsta-
cles in the scenario. The graph used by A-star is a rectangular grid where each
node is connected to its eight neighbors. This type of graph is chosen because the
spatial database provided by SteerSuite is a grid, and it allows traversal costs to
be associated with each grid cell. A grid-based graph can result in costly A-star
searches, but this choice avoids the need for users to manually create A-star
graphs, and the amortized cost of path planning remains very low.

Short-term planning phase. Given the planned path, the agent chooses a
local target along the path to steer towards. This local target is chosen as the
furthest point along the path such that all path nodes between the agent and the
local target are visible to the agent (Figure 3). This criterion smooths the agent’s
path while enforcing the agent to follow the path correctly around obstacles.
This, combined with path planning described above, is all the agent needs to
steer correctly around fixed obstacles.

To implement the short-term plan requires visibility testing, which can be
done with ray tracing. The spatial database in SteerSuite provides fast ray trac-
ing support for this purpose; the grid data structure allows us to greatly reduce
the number of objects that need to be tested for ray-intersection. Users can add
support for arbitrary objects in the spatial database by implementing a few ge-
ometric helper functions, including a ray-intersection routine.

Perception phase. To perform natural predictions and reactions, it is impor-
tant to model what the agent actually sees. We model an agent’s visual field
as a 10 meter hemisphere centered around the agent’s forward facing direction.
The SteerSuite spatial database makes it possible to perform range queries in
the spatial database to collect a list of these objects. Furthermore, objects that



Fig. 4. Space-time prediction. Left: agents predict a collision, knowing their trajectories
will overlap at the same time, t3. Right: agents steer to avoid the collision. Note that
space-time prediction correctly avoids a false prediction between the blue agent at t4

and the red agent at t3, because they reach that point at different times.

do not have line-of-sight are not added to the list of objects the agent sees.

Prediction phase. The agent predicts possible collisions, only with agents in
its visual field, using a linear space-time predictor based on [7]. Given an agent’s
position, P , velocity V , and radius r, our linear predictor estimates the agent’s
position at time t as

Agent’s future position = P + t · V. (1)

A collision between agent a and agent b would occur at time t if the distance
between their predicted positions becomes less than the sum of their radii:

‖(Pa + t · Va) − (Pb + t · Vb)‖ < ra + rb. (2)

Solving this expression for time t results in a quadratic equation. The agents
collide only if there are two real roots, and these two roots represent the exact
time interval of the expected collision.

If collisions are predicted, they are handled similar to [8]. Each predicted
threat is classified as one of three possible types: oncoming, crossing, or similar
direction collisions. For oncoming threats, agents will both choose to steer to
the right, or to the left, depending on which side is closer. For crossing threats,
the agents first determine who would reach the intersection first. The agent that
will reach the collision first will decide to speed up and turn slightly outward,
and the agent that will reach the collision later will slow down and turn slightly
inward (Figure 4). This behavior is very subtle, but the difference between using
these predictions or disabling the predictions is very clear.

The prediction phase also updates a state machine that decides how to steer.
SteerSuite provides a useful state machine helper object for this purpose. The
possible states and corresponding steering actions are described in Figure 5. In
most cases, if an agent needs to react to something more immediate, it will over-
ride the predictive steering decision.



Fig. 5. State machine used to integrate plan, prediction, and reaction behaviors. The
prediction updates the state machine, and the reaction phase uses the current state to
help choose the final steering decision. The agent steers normally in state N, proactively
avoids threats in state P, waits for avoided threats to pass in state W, and re-orients
itself towards the short-term-planned target in state T. These behaviors may be over-
ridden by reactions.

Reaction phase. The reaction phase implements both reactive steering and the
rules to decide which steering decision to use, and outputs a steering command
to the locomotion phase. The agent traces three forward-facing rays, 1 meter
to the front of the agent, and 0.1 meters to the side. If these rays intersect
anything, the agent may need to react, possibly overriding steering decisions
made by prediction. When reacting, the agent takes into account the relative
location and orientation of the new obstructions. This results in a very long list
of rules that account for all possible configurations: there can be up to three
perceived obstructions (one per forward-facing ray), each obstruction may be an
agent or an obstacle, and any obstructing agents can be classified as oncoming,
crossing, or facing the same direction. For efficiency, the rules are implemented
using a hierarchy of conditions instead of checking each rule one after the next.
This way, identifying any rule requires only a (informally) logarithmic number
of conditional branches instead of linear. The top level of the decision hierar-
chy is illustrated in Figure 6. Once the exact rule has been identified, the agent
outputs a “steering command” to the locomotion phase. As with the previous
phases, this phase benefits from SteerSuite’s ray tracing and geometry helper
functionality.

Locomotion phase. The locomotion phase receives an abstract steering com-
mand that tells an agent to turn, accelerate, aim for target speed, and/or scoot
left or right. This command is converted into a force and angular velocity that
moves the agent’s position and orientation using simple forward Euler integra-
tion. Note that, even though we use dynamics to move the agent, the locomotion
phase constrains the output to model what pedestrians could realistically do.
Most likely, in a future version of SteerSuite, we will generalize the locomotion
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Fig. 6. Main cases of the reaction phase, determined by three short forward-facing
rays traced for each agent: (1) one agent, (2) two agents, (3) three agents, (4) obstacles
only, (5) one agent and obstacles, (6) two agents and an obstacle. Each case has many
sub-cases depending on the position, orientation, and state of the other agents and
obstacles.

phase into a few SteerSuite helper functions that will be available to any steering
algorithm.

5 Debugging and Evaluating an Algorithm

The process of debugging and evaluating an algorithm is where SteerSuite fea-
tures really become useful. Like OpenSteer, the simulation engine allows the user
to visualize the simulation, draw annotations, and step through the simulation
manually. This is already very useful, allowing users to annotate what the agents
are thinking. Here we describe additional debugging and evaluation features of
SteerSuite.

Test cases. The test cases have proven to be the most important aspect of
debugging and evaluating, for us as well as other users of SteerSuite. With these
test cases, it is possible to test the full spectrum of expected steering behaviors
for a given application. The test cases are also crucial for presenting results;
when it is impractical to demonstrate the wide range of results in a presentation
or paper, instead it is possible to summarize the results of an algorithm based
on existing test cases.

Simulation recordings. SteerSuite further provides the ability to record sim-
ulations, using SteerLib in the user’s code or using SteerSim directly. We have
found this feature to be invaluable. It is often easier to visualize recordings of
large simulations in real-time, instead of watching a slow simulation while it is
running. At the same time, recordings retain more flexibility than a pre-recorded



movie, allowing the user to move and zoom the camera while interactively visu-
alizing the replay. In combination with command-line tools to perform batches of
simulations and batches of benchmark analysis, we sometimes record hundreds
of simulation experiments in mere minutes, examine the data, and then narrow
down which simulations to inspect visually and to re-simulate. SteerSim can also
run on an architecture simulator, which has only a command-line interface, and
recordings allows us to later verify that the command-line simulation worked
properly. Eventually we hope that these recordings can become a common way
to report results, with two main benefits: (1) users easily can provide a large
amount of results for others to see, and (2) users can benchmark other people’s
simulations with their own downloaded version of SteerSuite, so they can trust
that the metrics and scores were not altered.

Benchmark scores. The ability to simplify an algorithm’s performance into
a single number has been useful when we try to compare a large number of
simulations. While there is very little information in the single number, it still
helps narrow down which simulations should receive closer attention – for ex-
ample, while debugging PPR, we searched for the simulation with the “worst”
benchmark score and then examined that simulation. One limitation is that
some benchmark techniques cannot be used to compare scores across test cases.
After becoming familiar with the typical range of scores for each test case, this
limitation is not very significant, and other benchmark techniques do not have
this limitation in the first place.

Detailed metrics. There are several positive experiences we had with detailed
metrics (refer to the original SteerBench paper [1] to see a list of these met-
rics) while developing the PPR and egocentric affordance fields algorithms. For
example:

– On several occasions during development, we caught instances where agents
were oscillating unexpectedly, according to the ”number of times the angular
velocity changed sign” and ”number of times acceleration flipped direction”
metrics, but the oscillations were barely visible in the simulation. It turned
out these oscillations were a result of the agent repeatedly switching between
two steering decisions, and without the metrics we would not have caught
these errors.

– At one point, in some scenarios such as bottleneck-squeeze, we saw a sur-
prising number of collisions, which did not seem true from the visualization.
Upon closer examination, it turned out that the agents were ”scooting” (side-
to-side motion) into the wall as they were walking along the wall. This was
technically not an oscillation of turning or of velocity, so it was useful that
we verified some obvious metrics to find this error.

Finally, we encourage interested readers to download the SteerSuite software
and explore the benefits and limitations of the PPR algorithm by seeing how
it performs on the test cases. The PPR algorithm is not intended to robustly
solve all test cases, but rather to be a starting point for users to start using



SteerSuite. There is also a large and growing number of crowd simulation and
agent steering approaches in existing literature (e.g [7–23] are just a few); we
encourage developers to port or implement any existing steering techniques that
they find interesting, reporting their experiences with these algorithms in the
form of recordings and benchmark results of our test cases.

6 Conclusion and Future Work

In this paper we described the novel aspects of SteerSuite, a publicly available
software framework for developing, testing, and sharing steering algorithms. The
ideas in SteerSuite are just one proposed way to answer many interesting ques-
tions: how can we evaluate steering behaviors? What types of tests should we
require every steering algorithm to pass? How should a steering algorithm be
interfaced with higher-level artificial intelligence in a practical application? We
hope that SteerSuite will generate interest in these questions within the commu-
nity.

A major goal of SteerSuite is to make infrastructure tasks very easy for users.
If such tools become widely accepted, whether it is SteerSuite or some other fu-
ture software, the research community will be able to communicate and share
results more easily, thus promoting more rigorous evaluation of steering algo-
rithms, and ultimately helping to push forward the state of the art in steering.

We also discussed the PPR steering algorithm, which demonstrates a ver-
satile set of behaviors, and along the way it also showcases how various parts
of SteerSuite can be used. In the future we plan to integrate the egocentric af-
fordance fields algorithm into SteerSuite as another example steering algorithm,
and we plan to migrate the SteerBug framework [2] into SteerSuite as well.
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