
Footstep Navigation for Dynamic Crowds

Shawn Singh Mubbasir Kapadia Glenn Reinman
Petros Faloutsos

University of California, Los Angeles

Abstract

The majority of steering algorithms output
only a force or velocity vector to an animation
system, without modeling the constraints and
capabilities of human-like movement. This sim-
plistic approach lacks control over how a char-
acter should navigate. This paper proposes a
steering method that usesfootsteps to navigate
characters in dynamic crowds. Instead of an ori-
ented particle with a single collision radius, we
model a character’s center of mass and footsteps
using a 2D approximation of an inverted spheri-
cal pendulum model of bipedal locomotion. We
use this model to generate a timed sequence
of footsteps that existing animation techniques
can follow exactly. Our approach not only con-
strains characters to navigate with realistic steps
but also enables characters to intelligently con-
trol subtlenavigation behaviors that are possi-
ble with exact footsteps, such as side-stepping.
Our approach can navigate crowds of hundreds
of individual characters with collision-free, nat-
ural steering decisions in real-time.

1 Introduction

The majority of previous steering algorithms
represent a character as an oriented particle that
moves by choosing a force or velocity vector.
Often, orientation is heuristically chosen to be
the particle’s velocity. This approach has the
two key disadvantages:

Limited locomotion constraints: Most steer-
ing algorithms do not account for constraints of
real human movement. Trajectories may have
discontinuous velocities, oscillations, awkward

orientations, or may try to move a character un-
naturally, and these side-effects make it harder
to animate the character intelligently.

Limited navigation control: It is common to
assume that an animation system will know how
to interpret a vector-based steering decision. In
practice, a vector does not have enough informa-
tion to indicate appropriate maneuvers, such as
side-stepping versus reorienting the torso, step-
ping backwards versus turning around, planting
a foot to change momentum quickly, or carefully
placing steps in exact locations.

We propose to generate sequences of foot-
steps as the output of navigation. Since there are
already several animation techniques that can
animate a character to follow timed footsteps
exactly, e.g. [1, 2, 3, 4, 5, 6], the main chal-
lenge and focus of our work is how togenerate
footsteps as the output of navigation. Footsteps
are an intuitive abstraction for most locomotion
tasks, and they provide precise, unambiguous
spatial and timing information to animation.

In our system, each step is defined by a 2D
parabolic trajectory that approximates the mo-
tion of a 3D inverted pendulum. The loca-
tion, orientation, and timing of footsteps are de-
rived from the these trajectories. We use a best-
first search to plan a sequence of space-time
parabolic trajectories and the associated foot-
steps that avoids time-varying collisions, sat-
isfies footstep constraints for natural locomo-
tion, and minimizes the effort to reach a lo-
cal goal. Characters successfully avoid colli-
sions with each other and choose steps that cor-
respond to natural and fluid motion, including
precise timing. Because the most significant
biomechanics constraints are already taken into



account in our model, integrating our results
with an existing animation algorithm that fol-
lows footsteps is straightforward and results in
navigation that is often richer and less awkward
than vector-based navigation.
Contributions. This paper presents a new
approach to steering in dynamic crowds that
uses a simple biomechanically-based footstep
model combined with space-time planning. Our
work demonstrates that a steering algorithm can
have better navigation features than a vector in-
terface, while still retaining fast performance.
These features include: short-term space-time
planning, dynamic collision bounds, appropriate
movement constraints, and more precise naviga-
tion control. Because substantial work already
exists to animate characters to follow exact foot-
steps including timing information, we focus on
the navigation: how to generate biomechani-
cally plausible footsteps for dynamic crowds.

2 Related Work

Two widely accepted strategies are (1) the social
forces model [7], which associates a small force
field around agents and obstacles, and (2) the
steering behaviors model [8], where forces are
procedurally computed to perform desired func-
tions such as seek, flee, pursuit, evasion, and
collision avoidance. Many works are exten-
sions or elaborations of these two ideas, e.g.,
[9, 10, 11, 12, 13, 14, 15]. A more complete
survey of collision avoidance, navigation, and
crowd simulation work can be found in [16].
The common theme in these works is the use of
force or velocity vectors as navigation decisions,
which has the limitations described above.

Only a few steering techniques take into ac-
count locomotion constraints that an animation
system will have. Paris and Donikian [17]
demonstrate a framework where the animation
module can potentially tell steering that an ac-
tion is not plausible. Musse and Thalmann [18]
and Shao and Terzopoulos [19] both address
higher-level aspects of pedestrians, and their
navigation modules output a choice from a set
of navigation behaviors that correspond directly
to animations the character can produce. Van
Basten and Egges [20] discuss problems of in-
terfacing navigation with animation, proposing

abstractions that reduce such discrepancies.
Another approach to navigation is to plan se-

quences of motion clips,e.g., [21] demonstrated
this is possible in real-time for crowds, by pre-
computing a tree of all possible sequences of
motion clips. However, a large number of mo-
tion clips would be needed to emulate the ver-
satility of far fewer stepping options. The tech-
nique of precomputing a search tree can also be
applied to our footstep planner, but our approach
is scalable even without this extension.
Footsteps. Several animation techniques, aca-
demic and commercial, canfollow a given se-
quence of footsteps [1, 2, 3, 4, 5, 6], and more.
Animation methods in these works include for-
ward and inverse kinematics, physically based
control, and motion capture.

The challenge ofgenerating footsteps has so
far only been explored for single characters in
static environments. Research in robotics [22,
23, 24, 25, 26] explores autonomous foot-
placement to avoid obstacles while navigating
towards a goal. Their focus is practical robot
control, and so they do not consider issues of
real human locomotion. Torkos and Van de
Panne [1] generate footsteps to randomly wan-
der, changing direction if nearby objects are too
close, used to demonstrate their animation sys-
tem. Chung and Hahn [2] input a trajectory,
and generate footsteps by aligning eacj step to
the orientation of the trajectory, with smaller
footsteps around curves. Choi et al. [27] use
roadmaps to plan sequences of steps, choos-
ing from steps that are possible with the given
motion clips and requiring costly roadmap con-
struction and footstep verification. [28] propose
a hierarchical planning approach that computes
full-body motion including footsteps for tasks in
highly constrained environments. Recently sev-
eral papers have considered footsteps as a way
of guiding controllers for physically-based char-
acter animations [3, 29].

3 Footstep Model

The primary data structure in our model is a
footstep, which includes: (1) the position, veloc-
ity, and timing of the character’s center of mass
trajectory, (2) the location and orientation of the
foot, and (3) the cost of taking the step. In this



(a) (b) (c)

Figure 1:Our footstep model.(a) Depiction of state and action parameters.(b) A sagittal view of the pendulum model
used to estimate energy costs.(c) The collision model uses 5 circles that track the torso and feet over time,
allowing tighter configurations than a single coarse radius.

section, we describe these aspects of a footstep,
as well as the constraints for choosing footsteps.
Center of mass trajectory. The analogy be-
tween human locomotion and the inverted pen-
dulum is well known [30]; the pendulum pivot
represents a point on or near a footstep, while
the pendulum mass represents a character’s cen-
ter of mass. We define a 2D analytical approxi-
mation to the dynamics of an inverted spherical
pendulum using parabolas. Piecewise parabolic
curves are enough to capture the variety of tra-
jectories that a human’s center of mass will
have: varying curvature, speed, and step sizes.
Each step is a parabola defined with the follow-
ing parameters in local space:

(x(t), y(t), ẋ(t), ẏ(t)) =
(

vx0
t, αt2, vx0

, 2αt
)

,

(1)
such that bothvx0

andα are positive.
Equation 1 allows us toanalytically evaluate

the position and velocity of a character’s center
of mass at any timet. This makes it practical
to search through many possible trajectories for
many characters in real-time.

3.1 Footstep actions

The state of the characters ∈ S is defined as
follows (Figure 1a):

s = {(x, y), (ẋ, ẏ), (fx, fy), fφ, I ∈ {L,R}},

where(x, y) and(ẋ, ẏ) are the position and ve-
locity of the center of mass of the character at the
end of the step,(fx, fy) andfφ are the location
and orientation of the foot, andI is an indicator
of which foot (left or right) is taking the step.

The state spaceS is the set of valid states that
satisfy the constraints described below.

A footstep action determines the next
parabolic trajectory, defined asa ∈ A:

a = {φ, vdesired, T},

where φ is the desired orientation of the
parabola,vdesired is the desired initial speed of
the center of mass, andT is the desired time
duration of the step. The action spaceA is
the set of valid footstep actions, where the in-
put and output states are both valid. Note that
when the character’s previous step is fixed, vary-
ing φ directly affects the width of the parabolic
trajectory, thus allowing a large variety of step
choices.

A key aspect of the model is the transition
function, s′= createFootstep(s, a). This func-
tion receives a desired footstep actiona and a
states and returns a new states′ if the action
is valid. It is implemented as follows. First,φ,
which indicates the orientation of the parabola,
is used to compute a transform from world space
to local parabola space. Then, the direction of
velocity (ẋ, ẏ) from the end of the previous step
is transformed into local space, normalized, and
re-scaled by the desired speedvdesired. With this
local desired velocity, there is enough informa-
tion to solve forα, and then Equation 1 is used
to compute(x, y) and (ẋ, ẏ) at the end of the
next step. In local space, the foot location is
always located at(fx, fy) = (0,−d), whered

is describes the distance between a character’s
foot and center at rest. Finally, all state informa-
tion is transformed back into world space, which
serves as the input to create the next footstep.



Figure 2:An interval of valid foot orientations (the blue
and green feet) is maintained for each step,
constrained by the previous step (red foot) and
the chosen trajectory (red line).

3.2 Locomotion constraints

Biomechanical properties. Several proper-
ties of human locomotion are automatically en-
forced by the definition of our model. The piece-
wise parabola will be G-1 continuous, and the
center of mass will remain between the two feet
by enforcing the local-space parabola remains
positive. Our footstep model offers a number
of intuitive parameters with meaningful defaults
and well-defined physical meaning. These pa-
rameters include the height of the character’s
center of mass, the min, max, and preferred step
timing and stride length, the preferred and max
velocities of the character’s walk, the interval of
valid foot orientations, et al. If these constraints
are violated, the footstep is considered invalid.
A user can modify these parameters to create
new locomotion styles. For example, restricting
the valid range of step timing and output veloc-
ity for one foot results in asymmetric limping,
like an injured character.

Footstep orientation. Intuitively, it may seem
that footstep orientations must be an additional
control parameter when creating a footstep.
However, the choice of footstep orientation has
no direct effect on the dynamics of the cen-
ter of mass trajectory; the foot orientation only
constrains the options for current trajectory and
future footsteps. This is a key aspect to our
model’s efficiency – instead of increasing the di-
mensionality of our search space to include foot
orientation, we use orientation to constrain the
search space of a lower dimensional system.

To implement this constraint, we compute an
interval [fφinner, fφouter] of valid foot orientations.
This interval is constrained by the same interval
from the previous step, and further constrained
by the parabola orientationφ used to create the

next footstep (Figure 2):

[fφnext inner, fφnext outer] = [fφprev outer, fφprev inner+
π

2
]∩[φ, atan2(ẏ, ẋ)].

If this intersection becomes an empty set, that
implies that no foot orientation can satisfy the
step constraints, so the step is invalid. Note the
ordering of bounds in these intervals; the next
foot’s outer bound is constrained by the previ-
ous foot’s inner bound. In words, the interval
[φ, atan2(ẏ, ẋ)] describes two constraints: (1)
the character would not choose a foot orienta-
tion that puts his center of mass on the outer
side of the foot, (2) a human would rarely orient
the next step more outwards than the direction of
momentum; violating this constraint would put
the character’s center of mass on the wrong side
of the foot. The exact orientation is chosen as a
fast postprocess, described below.
Space-time collision model. For any given
footstep, our model computes thetime-varying
collision bounds of the character at any exact
time. To determine if a footstep causes a col-
lision, we iterate over several time-steps within
the footstep and query the collision bounds of
nearby characters for that time. The collision
bounds are five circles, depicted in Figure 1c.
Each circle associated with a foot exists while
the foot is planted on the ground. The three cir-
cles associated with the torso are placed on the
center of mass, which moves along the parabola
over several time-steps. If any of these circles
collide with an obstacle or another character’s
circles, the footstep is considered invalid.

3.3 Cost function

We define the cost of a given step as the en-
ergy spent to execute the footstep action. We
model three forms of energy expenditure for a
step: (1)∆E1, a fixed rate of energy the charac-
ter spends per unit time, (2)∆E2, the work spent
due to ground reaction forces to achieve the de-
sired speed, and (3)∆E3, the work spent due
to ground reaction forces accelerating the center
of mass along the trajectory. The total cost of a
footstep action transitioning a character froms
to s′ is given by:

c(s, s′) = ∆E1 + ∆E2 + ∆E3. (2)

Fixed energy rate.The user defines a fixed rate
of energy spent per second, denoted asR. For



each step, this energy rate is multiplied by the
time duration of the stepT to compute the cost:

∆E1 = R · T. (3)

This cost is proportional to the the amount of
time it takes to reach the goal, and thus mini-
mizing this cost corresponds to the character try-
ing to minimize the time it spends walking to
his goal. We found that good values forR are
roughly proportional to the character’s mass.
Ground reaction forces.As a character pushes
against the ground, the ground exerts equal and
opposite forces on the character. We model three
aspects of ground reaction forces that are ex-
erted on the character’s center of mass, from
the study of biomechanics. The geometry and
notation of the cost model is shown in Fig-
ure 1b. First, at the beginning of a new step
(heel-strike), some of the character’s momentum
dissipates into the ground. We estimate this as
an instantaneous loss of momentum along the
pendulum shaft, reducing the character’s speed
from v0 to v0 cos(2θ). In order to resume a de-
sired speed, the character actively exerts addi-
tional work on his center of mass, computed as:

∆E2 =
m

2

∣

∣

∣(vdesired)
2 − (v0 cos(2θ))2

∣

∣

∣ . (4)

This cost measures the effort required to choose
a certain speed. At every step, some energy is
dissipated into the ground, and if a character
wants to maintain a certain speed, it must ac-
tively add the same amount of energy back into
the system. On the other hand, not all energy
dissipates from the system after a step, so if the
character wants to come to an immediate stop,
the character also requires work to remove en-
ergy from the system. Minimizing this cost cor-
responds to finding footsteps that require less ef-
fort, and thus tend to look more natural. Fur-
thermore, when walking with excessively large
steps,cos(2θ) becomes smaller, implying that
more energy is lost per step.

It should be noted that there is much more
complexity to real bipedal locomotion than this
cost model. For example, the appropriate bend-
ing of knees and ankles and the elasticity of hu-
man joints can significantly reduce the energy
lost per step, reducing the required work for a
real human. While the model is not an accurate

measurement of energy spent, it is sufficient for
comparing the effort of different steps.

∆E2 captures only the cost of changing a
character’s momentum at the beginning of each
step. The character’s momentum may also
change during the trajectory. For relatively
straight trajectories, this change in momentum
is mostly due to the passive inverted pendulum
dynamics that requires no active work. How-
ever, for trajectories of high curvature, a charac-
ter spends additional energy to change his mo-
mentum. We model this cost as the work re-
quired to change momentum (denoted as P) over
the length of the step, weighted by constantw:

∆E3 = w ·
dP
dt

· length= w ·mα · length, (5)

Note thatα is the same coefficient in Equation 1,
the acceleration of the trajectory.α increases if
the curvature of the parabola is larger, and also
if the speed of the character along the trajectory
is larger. Minimizing this cost corresponds to
preferring straight steps when possible, and pre-
ferring to go slower (and consequently, taking
smaller steps) when changing the direction of
momentum significantly. The weightw can be
adjusted to change whether it costs more energy
to walk around an obstacle or to stop and wait
for the obstacle to pass. We found good values
of w to be between0.2 and0.5, meaning that
twenty to fifty percent of the curvature is due to
the character’s active effort, and the rest due to
the passive inverted pendulum dynamics.

4 Generating Sequences of Steps

Discretizing action space. The choices
for a character’s next step are generated by
discretizing the action spaceA described
above, in all three dimensions and using the
createFootstep(s, a) function to compute the
new state and cost of each action. We have
found thatvdesiredandT can be discretized ex-
tremely coarsely, as long as there are at least a
few different speeds and timings. Further op-
timizations are made by observing that speed
vdesired and step timingT have a slight in-
verse correlation, and so not all combinations of
vdesiredandT need to be generated. Most of the
complexity of the action space lies in the choices



for the parabola orientation,φ. The choices for
φ are defined relative to the orientation of the
velocity vector(ẋ, ẏ) from the end of the previ-
ous footstep, and the discretization ofφ ranges
from almost straight to almost U-turns. We note
that the first choice that real humans would con-
sider when navigating is to step directly towards
the local goal. To address this, we create a spe-
cial option forφ that would orient the character
directly towards its goal. With this specialized
goal-dependent option, we found it was possi-
ble to give fewer fixed options forφ, focusing
on larger turns. Without this option, even with a
large variety of choices forφ, the character ap-
pears to steer towards an offset of the actual goal
and then takes an unnatural corrective step.
Short-horizon best-first search.We use a best-
first search planner for a sequence of footsteps
that minimizes energy cost. The implementa-
tion of our planner is the same as an A⋆ search,
except for thehorizon, described below.

The cost of taking a step is computed using
Equations 2-5. The heuristic function used by
the best-first search,h(s), estimates the energy
cost from the current state to a local goal:

h(s) = cexpected × n, (6)

wherecexpected is the energy spent in taking one
normal footstep action based on the character’s
user-defined parameters, andn is the number of
steps it would take to travel directly to the goal.

The horizon of our planner is the maximum
number of nodes to be expanded for a single
search. In most cases, a path is found before
this threshold. We limit the horizon so that diffi-
cult or unsolvable situations will not cause a sig-
nificant delay. If the planner searches too many
nodes without reaching the goal, we instead con-
struct a path to a node from the closed list that
had the best heuristic value (the same closed
list used in A⋆). Intuitively, this means that if
no path is found to the goal within the search
horizon, the planner returns a path to the reach-
able state that had the most promise of reaching
the goal. The short-horizon approach guaran-
tees that we will have at least some path for the
character to use, even in difficult or unsolvable
planning problems. In worst case, if no good
solution is found, the path will simply be a se-
quence of “stop” actions. For example, this can

occur when a character is stuck dense environ-
ment. Eventually when the density clears, the
character will continue.
Local goals and collision avoidance.To nav-
igate through large environments, we first plan
a path using A⋆ (a traditional spatial path, not
footsteps). Whenever a character needs to plan
more footsteps, a local footstep goal is cho-
sen, placed approximately 10 meters ahead on
the spatial path. This 10-meter requirement is
not strict; we experimented with other methods
of choosing a local footstep goal, and they all
worked decently well. Characters that are visi-
ble to each other can read each other’s plans in
order to predict their dynamic collision bounds
at any given time. Visibility is determined by
(1) having line-of-sight between the two char-
acters, and (2) being within the character’s vi-
sual field, modeled as a hemisphere centered
around the character’s forward-facing direction.
This knowledge is analogous to the unspoken
communication that occurs between real human
pedestrians that makes human steering very ro-
bust. When a character re-plans, it does not
try to avoid characters that it does not see, and
therefore other characters, who are still execut-
ing old plans, may collide. The number of colli-
sions can be drastically reduced by re-planning
n steps in advance, before the previous plan
is fully completed. This way there is always
a “buffer” of 2 or 3 steps that are guaranteed
to be correct when a character predicts how to
steer around another character. While deadlocks
and collisions are still possible with this scheme,
collisions are very rare, and we have not yet en-
countered a deadlock in our experiments.
Choosing exact footstep orientation. As de-
scribed above, the planner maintains an inter-
val of valid foot orientations for every step, con-
strained by the previous step’s interval, as well
as the trajectory of the current step. Once a se-
quence of footsteps has been planned, it is pos-
sible to choose exact footstep orientations. We
constrain the interval of valid orientations once
more using thenext step’s trajectory, now that
this information is available. This computation
relies on the same interval arithmetic described
in Section 3. It is easy to see by contradiction
that this process will not cause an invalid inter-
val of orientations: if the interval becomes in-
valid during this postprocess, that would imply



that no orientation of the current step could have
produced a valid interval of the next step – but if
this is true, that option would have already been
pruned during planning and would not be en-
countered here. The exact orientation can be any
value within this final interval; we found a good
heuristic is to orient the foot as closely as pos-
sible to the orientation of the step’s trajectory,
with a special case for large turns.

5 Results

For most results, characters are modeled with a
center of mass 1 meter above the ground, with a
step length between 0.1 meters and 1.0 meters,
step timing between 0.2 seconds and 0.8 sec-
onds, and torso width of 60 cm.

Our short-horizon planner can solve challeng-
ing situations such as potential deadlocks in nar-
row spaces. Figure 3 depicts a challenging door-
way situation. In many previous algorithms,
characters would “fight” at the doorway and
may reach deadlock. In our method, the char-
acters exhibit predictive cooperation, where one
character steps aside. The doorway, 70 cm wide,
is barely wide enough to fit a single pedestrian.
In this tight situation, vector-based techniques
would rely on collision prevention at the walls
until the character eventually finds the door.

Our collision model allows tighter spacing in
crowded conditions. An example is shown in
Figure 3, where a group of characters squeeze
through a glass door. With a single coarse colli-
sion radius, there would be many false-positive
collisions. Instead, like real humans, these char-
acters are comfortable placing their feet and
shoulders close to others in the dense crowd.

Our planner works online, in real-time. Per-
formance is shown in Table 1, measured on a
Core 2 processor, using a single thread. Plan-
ning is fast is because of the scope of footsteps:
a short horizon plan of 5-10 footsteps takes sec-
onds to execute but only a few milliseconds to
compute. The amortized cost of updating a char-
acter at 20 Hz is also shown in Table 1.

6 Discussion and Future Work

Footsteps are an appropriate form of control
since they are the major contact point between

Egress 2-way hall 700 boxes
50 agents 200 agents 500 agents

Avg. # nodes 137 234 261
generated

Avg. # nodes 82 190 192
expanded
Planner 1.6 ms 4.4 ms 3 ms

performance
Amortized 0.037 ms 0.1 ms 0.11 ms
cost 20Hz

Table 1:Performance of our footstep planner for a char-
acter. The typical worst case plan generated up
to 5000 nodes and expanded about 3000 nodes.

a bipedal system and the external environment.
By generating space-time sequences of foot-
steps, and by considering tighter dynamic col-
lision bounds, our approach is able to control
characters more precisely than existing crowd
navigation techniques.

A “stop” step is a specialized action in our
planner. Being based on general planning, our
technique can extend to use other specialized
actions, such as running, jumping, even motion
capture clips, as long as the action has well de-
fined transitions, costs, and constraints. Existing
steering techniques can also be emulated, for ex-
ample, social forces models can be mapped to
cost functions used by our planner.

There are some prominent aspects of bipedal
locomotion which should be addressed in future
work. Knee joints, ankle joints, muscles, angu-
lar momentum, and the center of pressure (pen-
dulum pivot) shifting from heel-to-toe during a
step – all of these affect the energy cost of real
footsteps. We would also like to explore social
and cognitive costs, where a character’s objec-
tive may not necessarily be to minimize effort.

Acknowledgements

We would like to thank Intel Corp. for their gen-
erous support through equipment and grants.

References

[1] Michiel Van de Panne. From footprints to animation.
Computer Graphics Forum, 16(4):211–223, 1997.

[2] Shih-Kai Chung and J.K. Hahn. Animation of hu-
man walking in virtual environments. InComputer
Animation, pages 4–15, 1999.



Figure 3:(Left) A character side-steps and yields to the other pedestrian, then precisely navigates through the narrow
doorway. (Right) An egress simulation. Characters do not get stuck around the corners of the glass door.

[3] Stelian Coros, Philippe Beaudoin, Kang Kang Yin,
and Michiel van de Panne. Synthesis of constrained
walking skills.ACM Trans. Graph., 27(5):1–9, 2008.

[4] Chun-Chih Wu, Jose Medina, and Victor B. Zordan.
Simple steps for simply stepping. InISVC (1), pages
97–106, 2008.

[5] Ben van Basten and Arjan Egges. The stepspace:
Example-based footprint-driven motion synthesis.
Wiley, 2010.

[6] Autodesk. 3ds max, 2010.

[7] Dirk Helbing and Ṕeter Molńar. Social force model
for pedestrian dynamics.Phys. Rev. E, 51(5):4282–
4286, May 1995.

[8] Craig Reynolds. Steering behaviors for autonomous
characters, 1999.

[9] N. Pelechano, J. M. Allbeck, and N. I. Badler. Con-
trolling individual agents in high-density crowd sim-
ulation. InSCA, pages 99–108. Eurographics Asso-
ciation, 2007.

[10] Russell Gayle, Avneesh Sud, Erik Andersen,
Stephen J. Guy, Ming C. Lin, and Dinesh Manocha.
Interactive navigation of heterogeneous agents us-
ing adaptive roadmaps.IEEE Trans. Vis. Comput.
Graph., 15(1):34–48, 2009.

[11] Ronan Boulic. Relaxed steering towards oriented re-
gion goals. InMIG’08, pages 176–187, 2008.

[12] Jur P. van den Berg, Ming C. Lin, and Dinesh
Manocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. InICRA, pages 1928–1935,
2008.

[13] Fabrice Lamarche and Stéphane Donikian. Crowd of
virtual humans: a new approach for real time naviga-
tion in complex and structured environments.Com-
put. Graph. Forum, 23(3):509–518, 2004.

[14] Sébastien Paris, Julien Pettré, and St́ephane
Donikian. Pedestrian reactive navigation for crowd
simulation: a predictive approach. InEURO-
GRAPHICS 2007, volume 26, pages 665–674,
2007.

[15] F. Feurtey. Simulating the collision avoidance behav-
ior of pedestrians. Master’s thesis, The University of
Tokyo, School of Engineering, 2000.

[16] Norman Badler.Virtual Crowds: Methods, Simula-
tion, and Control. Morgan and Claypool Publishers,
2008.

[17] Sébastien Paris and Stéphane Donikian. Activity-
driven populace: A cognitive approach to crowd sim-
ulation. IEEE Computer Graphics and Applications,
29(4):34–43, 2009.

[18] S.R. Musse and D Thalmann. A Model of Human
Crowd Behavior. InProc. CAS’97, Springer Verlag,
Wien, pages 39–51, 1997.

[19] Wei Shao and Demetri Terzopoulos. Autonomous
pedestrians. InSCA, pages 19–28, 2005.

[20] Ben J. H. van Basten and Arjan Egges. Path ab-
straction for combined navigation and animation.
MIG’09, 5884/2009:182–193, 2009.

[21] Manfred Lau and James J. Kuffner. Precomputed
search trees: Planning for interactive goal-driven an-
imation. InSCA, pages 299–308, September 2006.

[22] Jr. Kuffner, J.J., K. Nishiwaki, S. Kagami, M. Inaba,
and H. Inoue. Footstep planning among obstacles for
biped robots. InIEEE Intelligent Robots and Systems
(IEEE/RSJ), volume 1, pages 500–505, 2001.

[23] K.h. Nishiwaki, T. Sugihara, S. Kagami, M.y. Inaba,
and H. Inoue. Online mixture and connection of ba-
sic motions for humanoid walking control by foot-
print specification. InICRA, volume 4, pages 4110–
4115, 2001.

[24] James Kuffner, K. Nishiwaki, Satoshi Kagami,
Y. Kuniyoshi, M. Inaba, and H. Inoue. Online foot-
step planning for humanoid robots. InICRA. IEEE,
September 2003.

[25] Tsai-Yen Li, Pei-Feng Chen, and Pei-Zhi Huang.
Motion planning for humanoid walking in a layered
environment. InICRA, volume 3, pages 3421–3427,
2003.

[26] Joel Chestnutt, Manfred Lau, Kong Man Che-
ung, James Kuffner, Jessica K Hodgins, and Takeo
Kanade. Footstep planning for the honda asimo hu-
manoid. InICRA, April 2005.

[27] Min Gyu Choi, Jehee Lee, and Sung Yong Shin.
Planning biped locomotion using motion capture
data and probabilistic roadmaps. ACM Trans.
Graph., 22(2):182–203, 2003.

[28] Liangjun Zhang, Jia Pan, and Dinesh Manocha.
Motion planning and synthesis of human-like char-
acters in constrained environments. MIG’09,
5884/2009:138–145, 2009.

[29] Jia-chi Wu and Zoran Popović. Terrain-adaptive
bipedal locomotion control.ACM Transactions on
Graphics, 29(4):72:1–72:10, Jul. 2010.

[30] Arthur D. Kuo. The six determinants of gait and
the inverted pendulum analogy: A dynamic walking
perspective.Human Movement Science, 26(4):617 –
656, 2007.


