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1. INTRODUCTION

Physics-Based Animation (PBA) is becoming one of the most im-
portant elements of interactive entertainment applications, such as
computer games, largely because of the automation and realism that
it offers. However, the benefits of PBA come at a considerable com-
putational cost. Furthermore, this cost grows prohibitively with the
number and complexity of objects and interactions in the virtual
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world. It becomes extremely challenging to satisfy such complex
worlds in real time.

Fortunately, there is a tremendous amount of parallelism in the
physical simulation of complex scenes. Exploiting this parallelism
for performance is an active area of research both in terms of
software techniques and hardware accelerators. Prior work such
as PhysX [AGEIA], GPUs [Havok], the Cell [Hofstee 2005], and
ParallAX [Yeh et al. 2007] have just started to address this problem.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 5, Publication date: December 2009.



5:2 • T. Y. Yeh et al.

Fig. 1. Snapshots of two simulation runs with the same initial conditions. The top row is the baseline, and the bottom row is the simulation with 7-bit mantissa
floating-point computation in Narrowphase and LCP. The results are different but both are visually correct.

While parallelism can help PBA achieve a real-time frame rate,
perceptual error tolerance is another avenue to help improve PBA
performance. There is a fundamental difference between accuracy
and believability in interactive entertainment; the results of PBA
do not need to be absolutely accurate, but do need to appear cor-
rect (i.e., believable) to human users. The perceptual acuity of hu-
man viewers has been studied extensively in graphics and psychol-
ogy [O’Sullivan et al. 2004; O’Sullivan and Dingliana 2001]. It has
been demonstrated that there is a surprisingly large degree of error
tolerance in our perceptual ability.1

This perceptual error tolerance can be exploited by a wide
spectrum of techniques ranging from high-level software tech-
niques down to low-level hardware optimizations. At the applica-
tion level, Level of Detail (LOD) simulation [Carlson and Hodgins
1997; McDonnell et al. 2006] can be used to handle distant ob-
jects with simpler models. At the physics engine library level,
one option is to use approximate algorithms optimized for speed
rather than accuracy [Seugling and Rolin 2006]. At the compiler
level, dependencies among parallel tasks could be broken to reduce
synchronization overhead. At the hardware design level, floating-
point precision reduction can be leveraged to reduce area, reduce
energy, or improve performance for physics accelerators.

In this article, we address the challenging problem of leveraging
perceptual error tolerances to improve the performance of real-time
PBA in interactive entertainment. The main challenge is to establish
a methodology which uses a set of error metrics to measure the vi-
sual performance of a complex simulation. Prior perceptual thresh-
olds do not scale to complex scenes. In our work we address this
challenge and investigate both hardware and software applications.

Our contributions are threefold.

—We propose a methodology to evaluate physical simulation errors
in complex dynamic scenes.

—We identify the maximum error that can be injected into each
phase of the low-level numerical PBA computation.

1This is independent of a viewer’s understanding of physics [Proffit].

Fig. 2. Physics engine flow. All phases are serialized with respect to each
other, but unshaded stages can exploit parallelism within the stage.

—We explore software timestep tuning, iteration-count tuning, fast
estimation with error control, and hardware precision reduction
to exploit error tolerance for performance.

2. BACKGROUND

In this section, we present a brief overview of Physics-Based ani-
mation (PBA), identify its main computational phases, and catego-
rize possible errors. We then review the latest results in perceptual
error metrics and their relation to PBA.

2.1 Computational Phases of a Typical
Physics Engine

PBA requires the numerical solution of the differential equations
of motion of all objects in a scene. Articulations between objects
and contact configurations are most often solved with constraint-
based approaches such as Baraff [1997], Muller et al. [2006], and
Havok []. Time is simulated in intervals of fixed or adaptive
timestep. The timestep is one of the most important simulation pa-
rameters, and it largely defines the accuracy of the simulation. For
interactive applications the timestep needs to be in the range of
0.01 to 0.03 simulated seconds or smaller, so that the simulation
can keep up with display rates.

PBA can be described by the data-flow of computational phases
shown in Figure 2. Cloth and fluid simulation are special cases of
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Fig. 3. Snapshots of two simulation runs with the same initial conditions but different constraint ordering. The results are different but both are visually
correct.

this pipeline. Next we describe the four computational phases in
more detail.

Broad-phase. This is the first step of Collision Detection (CD).
Using approximate bounding volumes, it efficiently culls away
pairs of objects that cannot possibly collide. While Broad-phase
does not have to be serialized, the most useful algorithms are
those that update a spatial representation of the dynamic objects
in a scene. And updating these spatial structures (hash tables,
kd-trees, sweep-and-prune axes) is not easily mapped to parallel
architectures.

Narrow-phase. This is the second step of CD that determines
the contact points between each pair of colliding objects. Each
pair’s computational load depends on the geometric properties of
the objects involved. The overall performance is affected by broad-
phase’s ability to minimize the number of pairs considered in this
phase. This phase exhibits massive Fine-Grain (FG) parallelism
since object-pairs are independent of each other.

Island creation. After generating the contact joints linking in-
teracting objects together, the engine serially steps through the list
of all objects to create islands (connected components) of interact-
ing objects. This phase is serializing in the sense that it must be
completed before the next phase can begin. The full topology of
the contacts isn’t known until the last pair is examined by the algo-
rithm, and only then can the constraint solvers begin.

Simulation step. For each island, given the applied forces and
torques, the engine computes the resulting accelerations and inte-
grates them to compute each object’s new position and velocity.
This phase exhibits both Coarse-Grain (CG) and Fine-Grain (FG)
parallelism. Each island is independent, and the constraint solver
for each island contains independent iterations of work. We further
split this component into two phases.

—Island processing. which includes constraint setup and integra-
tion (CG).

—LCP which includes the solving of constraint equations (FG).

2.2 Simulation Accuracy and Stability

The discrete approximation of the equations of motion introduce
errors in the results of any nontrivial physics-based simulation. For
the purposes of entertainment applications, we can distinguish be-
tween three kinds of errors in order of increasing importance.

—Imperceptible. These are errors that cannot be perceived by an
average human observer.

—Visible but bounded. There are errors that are visible but remain
bounded.

—Catastrophic. These errors make the simulation unstable which
results in numerical explosion. In this case, the simulation often
reaches a state from which it cannot recover gracefully.

To differentiate between categories of errors, we employ the con-
servative thresholds presented in prior work [O’Sullivan et al. 2003;
Harrison et al. 2004] for simple scenarios. All errors with magni-
tude smaller than these thresholds are considered imperceptible. All
errors exceeding these thresholds without simulation blow-up are
considered visible but bounded. All errors that lead to simulation
blow-up are considered catastrophic.

An interesting example that demonstrates visible but bounded
simulation errors is shown in Figure 3. In this example, four spheres
and a chain of square objects are initially suspended in the air. The
two spheres at the sides have horizontal velocities towards the ob-
ject next to them. With the same initial conditions, two different
simulation runs shown in the figure result in visibly different final
configurations. However, both runs appear physically correct.This
behavior is due to the constraint reordering that the iterative con-
straint solver employs to reduce bias [Smith]. Constraint reordering
is a well-studied technique that improves the stability of the numer-
ical constraint solver, and it is employed by commercial products
such as AGEIA []. For our purposes, it provides an objective way
to establish which physical errors are acceptable when we develop
the error metrics in Section 4.

The first two categories are the basis for perceptually-based ap-
proaches such as ours. Specifically, we investigate how we can
leverage the perceptual error tolerance of human observers with-
out introducing catastrophic errors in the simulation.

The next section reviews the relevant literature in the area of per-
ceptual error tolerance.

2.3 Perceptual Believability

O’Sullivan et al. [2004] is a state-of-the-art survey report on the
field of perceptual adaptive techniques proposed in the graphics
community. There are six main categories of such techniques: in-
teractive graphics, image fidelity, animation, virtual environments,
and visualization and nonphotorealistic rendering. Our article fo-
cuses on the animation category. Given the comprehensive cover-
age of this prior survey paper, we only present prior work most
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related to our article and point the reader to O’Sullivan et al. [2004]
for additional information.

Barzel et al. [1996] is credited with the introduction of the plau-
sible simulation concept, and Chenney and Forsyth [2000] built
upon this idea to develop a scheme for sampling plausible solu-
tions. O’Sullivan et al. [2003] is a recent paper upon which we
base most of our perceptual metrics, but the thresholds presented
for these metrics are not useful for evaluating complex situations
as shown later. For the metrics examined in this article, the authors
experimentally arrive at thresholds for high probability of user be-
lievability. Then, a probability function is developed to capture the
effects of different metrics. The study in this prior work uses only
simple scenarios with 2 colliding objects.

Harrison et al. [2004] is a study on the visual tolerance of length-
ening or shortening of human limbs due to constraint errors pro-
duced by PBA. We derive the threshold for constraint error in
Table II from this paper.

Reitsma and Pollard [2003] is a study on the visual tolerance of
ballistic motion for character animation. Errors in horizontal veloc-
ity were found to be more detectable than vertical velocity. Also,
added accelerations were easier to detect than added deceleration.

We examined the techniques of fuzzy value prediction and fast
estimation with error control to leverage error tolerance in Yeh et al.
[2006]. As an initial attempt at quantifying error, we showed the
absolute difference in object position, object orientation, and con-
straint error against the baseline simulation. Our current study pro-
vides the error measuring methodology and maximum tolerable er-
ror lacking in our previous study.

In general, prior work has focused on simple scenarios in iso-
lation (involving 2 colliding objects, a human jumping, human
arm/foot movement, etc.). Isolated special cases allow us to see the
effect of instantaneous phenomena, such as collisions, over time. In
addition, they allow a priori knowledge of the correct motion which
serves as the baseline for exact error comparisons.

Complex cases do not offer that luxury. In complex cases such
as multiple simultaneous collisions, errors become difficult to de-
tect and may cancel out. We are the first to address this challenging
problem and provide a methodology to estimate the perceptual er-
ror tolerance of physical simulation corresponding to a complex,
game-like scenario.

2.4 Simulation Believability

Seugling and Rolin [2006, Chapter 4] compares three physics en-
gines (ODE [Smith], Newton [], and Novodex [AGEIA]) by con-
ducting performance tests. These tests involved friction, gyroscopic
forces, bounce, constraints, accuracy, scalability, stability, and en-
ergy conservation. All tests show significant differences between
the three engines, and the engine choice produces different sim-
ulation results with the same initial conditions. Even without any
error-injection, there is no single correct simulation for real-time
PBA in games as the algorithms are optimized for speed rather than
accuracy.

3. METHODOLOGY

One major challenge in exploring the trade-off between accuracy
and performance in PBA is coming up with the metrics and the
methodology to evaluate believability. Since some of these metrics
are relative (i.e., the resultant velocity of an object involved in a
particular collision), there must be a reasonable standard for com-
paring these metrics. In this section, we detail the set of numeri-
cal metrics we have assembled to gauge believability, along with a

technique to fairly compare worlds which may have substantially
diverged.

3.1 Experimental Setup

To represent in-game scenarios, we construct a complex test case
which includes stacked, articulated, and fast objects shown in
Figure 1. The scene is composed of a building enclosed on all four
sides by brick walls with one opening. The wall sections framing
the opening are unstable. Ten humans with anthropomorphic di-
mension, mass, and joints are stationed within the enclosed area.
A cannon shoots fast (88 m/s) cannonballs at the building, and two
cars collide into opposing walls. Assuming time starts at 0 sec, one
cannonball is shot every 0.04 sec. until 0.4 sec. The cars are accel-
erated to roughly 100 miles/hr (44 m/sec) at time 0.12 to crash into
the walls. No forces are injected after 0.4 sec. Because we want to
measure the maximum and average errors, we target the time period
with the most interaction (the first 55 frames).

The described methodology has also been applied to three other
scenarios with varying complexity.

(1) 2 spheres colliding ( [O’Sullivan et al. 2003], video);
(2) 4 spheres and a chain of square objects (Figure 3, video);
(3) Complex scenario without humans (not shown).

Our physics engine is a modified implementation of the publicly
available Open Dynamics Engine (ODE) version 0.7 [Smith]. ODE
follows a constraint-based approach for modeling articulated fig-
ures, similar to Baraff [1997] and AGEIA [], and it is designed for
efficiency rather than accuracy. Like most commercial solutions it
uses an iterative constraint solver. Our experiments use a conserva-
tive timestep of 0.01 sec. and 20 solver iterations as recommended
by the ODE user-base. This is a conservative estimate of the re-
quired timestep, and in Section 5.1 we show that this can be reduced
to 60 FPS.

3.2 Error Sampling Methodology

To evaluate the numerical error tolerance of PBA, we inject errors
at a per-instruction granularity. We only inject errors into Floating-
Point (FP) add, subtract, and multiply instructions, as these make
up the majority of FP operations for this workload.

Our error injection technique is fairly general, and should be rep-
resentative of a range of possible scenarios where error could oc-
cur. At a high level, we change the output of FP computations by
some varying amount. This could reflect changes from an imprecise
ALU, an algorithm that cuts corners, or a poorly synchronized set
of ODE threads. The goal is to show how believable the simulation
is for a particular magnitude of allowed error.

To achieve this generality, we randomly determine the amount of
error injected at each instruction, but vary the absolute magnitude
of allowed error for different runs. This allowed error bound is ex-
pressed as a maximum percentage change from the correct value,
in either the positive or negative direction. For example, an error
bound of 1% would mean that the correct value of an FP computa-
tion could change by any amount in the range from −1% to 1%.

A random percentage, less than the preselected max and min,
is applied to the result to compute the absolute injected error. By
using random error injection, we avoid biasing of injected errors.
For each configuration, we average the results from 100 different
simulations (each with a different random seed) to ensure that our
results converge. We have verified that 100 simulations are enough
to converge by comparing results with only 50 simulations; these
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Fig. 4. Simulation worlds. CD = Collision Detection. IP = Island Pro-
cessing. E = Error-injected.

results are identical. We evaluate the error tolerance of the entire
application and each phase individually.

Both error injection and precision reduction are done by
replacing every floating-point add, subtract, and multiply operation
by a function call which simulates either random error injection
or precision reduction. This is done by modifying the source code
of ODE. ODE uses its own implementation of the solvers, and the
errors are introduced in every single floating-point add, subtract,
and multiply.

3.3 Error Metrics

Now that we have a way of injecting error, we want to determine
when the behavior of a simulation with error is still believable
through numerical analysis. Many of the metrics we propose are
relative values, and therefore we need to have reasonable compar-
ison points for these metrics. However, it is not sufficient to sim-
ply compare a simulation that has errors injected with a simulation
without any error. Small, but perceptually tolerable differences can
result in large behavioral differences, as shown in Figure 3.

To address this, we make use of three simulation worlds as shown
in Figure 4: Baseline, Error-injected, and Synched. All worlds are
created with the same initial state, and the same set of injected
forces (cannonball shooting or cars speeding up) are applied to all
worlds. Error-injected refers to the error-injected world, where ran-
dom errors within the preselected range are injected for every FP
+/− /∗ instruction. Baseline refers to the deterministic simulation
with no error injection.

Finally, we have the Synched world, a world where the state of
every object and contact is copied from the error-injected world af-
ter each simulation step’s collision detection. The island processing
computation of Synched contains no error injection, so it is using
the collisions detected by Error-injected but is performing correct
island processing. The reason for synching after, instead of before,
collision detection is that both gap and penetration already provide
information specific to the effects of errors in collision detection.
The Synched world is created to isolate the effects of errors in is-
land Processing.

We use the following seven numerical metrics:

—Energy Difference. Difference in total energy between baseline
and error-injected worlds: due to energy conservation, the total
energy in these two worlds should match.

—Penetration Depth. Distance from the object’s surface to the con-
tact point created by collision detection. This is measured within
the simulation world.

—Constraint Violation. Distance between object position and
where object is supposed to be based on statically defined joints
(car’s suspension or human limbs).

—Linear Velocity Magnitude. Difference in linear velocity mag-
nitude for the same object between Error-Injected and Synched
worlds.

—Angular Velocity Magnitude. Difference in angular velocity mag-
nitude for the same object between Error-Injected and Synched
worlds.

—Linear Velocity Angle. Angle between linear velocity vectors of
the same object inside Error-Injected and Synched worlds.

—Gap Distance. Distance between two objects that are found to be
colliding, but are not actually touching.

We can measure gap, penetration, and constraint errors directly in
the Error-injected world, but we still use Baseline here to nor-
malize these metrics. If penetration is equally large in the Base-
line world and Error-injected world, then our injected error has not
made things worse.

The aforesaid error metrics capture both globally conserved
quantities, such as total energy, and instantaneous per-object quan-
tities such as positions and velocities. The metrics do not include
momentum because most simulators for computer games trade off
momentum conservation for stability [Seugling and Rolin 2006].

4. NUMERICAL ERROR TOLERANCE

In this section, we explore the use of our error metrics in a complex
game scene with a large number of objects. We inject error into this
scene for different ODE phases. The response from these metrics
determines how much accuracy can be traded for performance.

Before delving into the details, we briefly articulate the poten-
tial outcome of error injection in different ODE phases. Because
Broad-phase is a first-pass filter on potentially colliding object-
pairs, it can create functional errors by omitting actually colliding
pairs. Since Narrow-phase does not see the omitted pairs, the omis-
sions can lead to missed collisions, increased penetration (if colli-
sion is detected later), and, in the worst case, tunneling (collision
never detected). On the other hand, poor Broad-phase filtering can
degrade performance by sending Narrow-phase more object-pairs
to process.

Errors in Narrow-phase may lead to missed collisions or different
contact points. The results are similar to omission by Broad-phase,
but can also include errors in the angular component of linear ve-
locity due to errors in contact points. Also, additional object-pairs
from poor Broad-phase filtering could be mistakenly identified by
Narrow-phase as colliding if errors are injected in Narrow-phase.

Because Island Processing sets up the constraint equations to be
solved, errors here can drastically alter the motion of objects, caus-
ing movement without applied force. Errors inside the LCP solver
alter the applied force due to collisions. Therefore, the resulting
momentum of two colliding objects may be severely increased or
dampened. Since the LCP algorithm is designed to self-correct al-
gorithmic errors by iterating multiple times, LCP should be more
error tolerant than Island Processing.

While our study focuses on rigid body simulation, we qualita-
tively argue that perceptual error tolerance can be exploited simi-
larly in particle, fluid, and cloth simulation. We leave the empirical
evaluation for future work.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 5, Publication date: December 2009.



5:6 • T. Y. Yeh et al.

Max Gap

0.0

0.2

0.4

0.6

0.8

1.0

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

G
a
p
 (

m
e
te

r)

Broadphase Narrowphase

Island Processing LCPsolver

All

Fig. 5. Gap for Error-injection. X-axis shows the maximum error to value
ratio for injected errors. Note: Extremely large numbers and infinity are
converted to the max value of each Y-axis scale for better visualization.

4.1 Numerical Error Analysis

For this initial error analysis, we performed a series of experiments
where an increasing degree of error is injected into different phases
of ODE. Figures 5, 6, 7, and 8 demonstrate each metric’s maximal
error that results from error injection. Following the error injection
methodology of Section 3, we progressively increased the maxi-
mum possible error in order-of-magnitude steps from 0.0001% to
100% of the correct value, labeling this range 1.E-6 to 1.E+00 along
the x-axis. We show results for injecting error into each of the four
ODE phases alone, and then an All result when injecting error into
all phases of ODE.

The serial phases, Broad-phase and Island Processing, exhibit
the the highest and lowest per-phase error tolerance, respectively.
Only Broad-phase does not result in simulation blow-up as in-
creasingly large errors are injected. Island Processing is the most
sensitive individual phase to error. The highly parallel phases of
Narrow-phase and LCP show similar average sensitivity to error.
We make use of the per-phase requirements when trading accuracy
for performance.

As shown by Figures 5, 6, 7, and 8, most of the metrics are
strongly correlated. Most metrics show a distinct flat portion and
a knee where the difference starts to increase rapidly. As these er-
rors pile up, the energy in the system grows with higher velocities,
deeper penetrations, and higher constraint violations. The excep-
tions are gap distance and linear velocity angle. Gap distance re-
mains consistently small. One reason for this is the filtering that is
done in collision detection. For a gap error to occur, Broad-Phase
would need to allow two objects which are not actually colliding to
get to Narrow-Phase, and Narrow-Phase would need to mistakenly
find that these objects touch one another. Gap errors are more rele-
vant to manually constructed scenarios that have been used in prior
work. A penetration error is much easier to generate; only one of
the two phases needs to incorrectly detect that two objects are not
colliding.

The angle of linear velocity does not correlate with other metrics
either; in fact, the measured error actually decreases with more er-

ror. The problem with this metric is that colliding objects with even
very small velocities can have drastically different angles of deflec-
tion depending on the error injected in any one of the four phases.
From the determination of contact points to the eventual solution
of resultant velocity, errors in angle of deflection can truly propa-
gate. However, we observe that these maximal errors in the angle
of linear velocity are extremely rare and mainly occur in the bricks
composing our wall that are seeing extremely small amounts of jit-
ter. This error typically lasts only a single frame and is not readily
visible.

While these maximal error values are interesting, the average er-
ror in our numerical metrics and the standard deviation of errors are
both extremely small (data not shown). This shows that most ob-
jects in the simulation are behaving similarly to the baseline. Only
the percentage change in magnitude of linear velocity has a signifi-
cant average error. This is because magnitude change on extremely
small velocities can result in significant percentage change.

4.2 Acceptable Error Threshold

Now that we have examined the response of physics engines to in-
jected error using our error metrics, the question still remains as
to how much error we can tolerate and keep the simulation believ-
able. Consider Figures 5, 6, 7, and 8 where we show the maximum
value of each metric for a given level of error. Instead of using fixed
thresholds to evaluate tolerable error, we argue for finding the knee
in the curve where simulation differences start to diverge towards
instability. The average error is extremely low. The majority of er-
rors result in imperceptible differences in behavior. Of the remain-
ing errors, many are simply transient errors lasting for a frame or
two. We are most concerned with the visible, persistent outliers that
can eventually result in catastrophic errors. For many of the maxi-
mal error curves, there is a clear point where the slope of the curve
drastically increases; these are points of catastrophic errors that are
not tolerable by the system, as confirmed by a visual inspection of
the results.

Table I summarizes the maximum % error tolerated by each com-
putation phase (using 100 samples), based on finding the earliest
knee where the simulation blows-up over all error metric curves. It
is interesting that All is more error tolerant than only injecting er-
rors in Island Processing. The reason for this behavior is that inject-
ing errors into more operations with All is similar to taking more
samples of a random variable. More samples lead to a converging
mean which in our case is zero.

To further support the choices made in Table I, we consider four
approaches: (1) confirming our thresholds visually, (2) comparing
our errors to a very simple scenario with clear error thresholds
[O’Sullivan et al. 2003], (3) comparing the magnitude of our ob-
served error to constraint reordering, and (4) examining the effect
of the timestep on this error.

4.2.1 Threshold Evaluation 1. First we visually investigate the
differences in our thresholds. The initial pass of our visual inspec-
tion involved watching each error-injected scene in real time to see
how believable the behavior looked, including the presence of jitter,
unrealistic deflections, etc. This highly subjective test confirmed
our thresholds, and only experiments with error rates above our
thresholds had clear visual errors, such as bricks moving on their
own, human figures flying apart, and other chaotic developments.

4.2.2 Threshold Evaluation 2. Second, we constructed a sim-
ilar simulation as the experiment used in O’Sullivan et al. [2003]
(but with ODE) to generate the thresholds for perceptual metrics.
This scenario places two spheres on a 2D plane: one is stationary
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Fig. 6. Energy and penetration data for Error-injection. X-axis shows the maximum possible injected error. Note: Extremely large numbers and infinity are
converted to the max value of each Y-axis scale for better visualization.
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Fig. 7. Constraint violation and linear velocity data for Error-injection. X-axis shows the maximum possible injected error. Note: Extremely large numbers
and infinity are converted to the max value of each Y-axis scale for better visualization.

and the other has an initial velocity that results in a collision with
the stationary sphere. No gravity is used, and the spheres are placed
two meters above the ground plane.

We injected errors into this simple scenario by using the er-
ror bounds from Table I. The error bounds that we experimentally
found in the previous section show no perceptible error, as accord-
ing to thresholds from O’Sullivan et al. [2003], for this simple ex-
ample. The first column of Table II shows the perceptual metric
values for 0.1% error injection in all phases, and the rightmost col-
umn shows thresholds from prior work [O’Sullivan et al. 2003]. For
the additional metrics we introduce, we mark them as Not Available
(NA) for the simple threshold column.

Perceptible errors can be detected as the errors are increased by
an order of magnitude. The thresholds are conservative enough to
flag catastrophic errors such as tunneling, large penetration, and
movement without collision.

4.2.3 Threshold Evaluation 3. However, when applying the
same method to a complicated game-like scenario, the thresholds
from prior work become far too conservative. Even the authors of
O’Sullivan et al. [2003] point out that thresholds for simple scenar-
ios may not generalize to more complex animations. In a chaotic
environment with many collisions, it has been shown that human
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Fig. 8. Angular velocity and linear velocity angle data for Error-injection. X-axis shows the maximum possible injected error. Note: Extremely large numbers
and infinity are converted to the max value of each Y-axis scale for better visualization.

Table I. Max Error Tolerated for Each Computation Phase
Island

Error Tolerance Broadphase Narrowphase Processing LCP All
(100 Samples) [1%] [1%] [0.01%] [1%] [0.1%]

Table II. Perceptual Metric Data for Simple Scenario
Simple Scenario Simple Scenario
Error Injection Threshold

Perceptual Metrics All Phases 0.1%
Energy (% change) 1.5 NA
Penetration (meters) 0.17 NA
Constraint Error (ratio) 0.00 [0.03,0.2]
Linear Vel (ratio) 0.13 [−0.4,+0.5]
Angular Vel (radians/sec) 0.00 [−20,+60]
Linear Vel Angle (radians) 0.005 [−0.87,+1.05]
Gap (meters) 0.000 0.001

perceptual acuity becomes even worse, particularly in areas of the
simulation that are not the current focal point.

When we enable reordering of constraints in ODE, most of our
perceptual metrics exceed the thresholds from O’Sullivan et al.
[2003], compared to a run without reordering. There is no particu-
lar ordering which generates an absolutely correct simulation when
using an iterative solver such as the one used in ODE. Changes
in the order in which constraints are solved can result in simulation
differences. The ordering present in the deterministic, baseline sim-
ulation is arbitrarily determined by the order in which objects were
created during initialization. The same exact set of initial conditions
with a different initialization order results in constraint reordering
relative to the original baseline.

To understand this inherent variance in the ODE engine, we have
again colored objects with errors and analyzed each frame of our
simulation. The variance seen when enabling/disabling reordering
results in errors that are either imperceptible or transient. Based
on this analysis, we use the magnitude of difference generated by
reordering as a comparison point for the errors we have experimen-

Table III. Perceptual Metric Data for Complex Scenario
Error Injection Random

Perceptual Metrics All Phases 0.1% Reordering Baseline
Energy (% change) −0.23% −1% NA
Penetration (meters) 0.20 0.25 0.29
Constraint Error (ratio) 0.07 0.05 0.05
Linear Vel (ratio) 15.4 5.27 NA
Angular Vel (radians/sec) 10.7 4.48 NA
Linear Vel Angle (radians) 2.63 1.72 NA
Gap (meters) 0.01 0.01 0.01

tally found tolerable in Table I. Our goal is to leverage a similar
level of variance as what is observed for random reordering when
measuring the impact of error in PBA.

Table III compares the maximum errors in our perceptual metrics
for error injection or reordering as compared to the baseline simu-
lation of a complex scenario. We injected errors into this complex
scenario by using the error bounds from Table I.

For baseline simulation, only absolute metrics (i.e., those that
require no comparison point like gap and penetration) are shown,
and relative metrics that would ordinarily be compared against the
baseline itself (i.e., linear velocity) are marked NA.

The first thing to notice from these results is that the magnitude
of maximal error for a complex scene can be much more than the
simple scenario data shown in Table II. The second thing to no-
tice is that despite some large variances in velocity and angle of
deflection, energy is still relatively unaffected. This indicates that
these errors are not catastrophic, and do not cause the simulation to
blow-up. It is also interesting to notice the magnitude of penetration
errors. Penetration can be controlled by using a smaller timestep,
but by observing the amount of penetration from a baseline at a
given timestep, we can ensure that it does not get any worse from
introducing errors.

The magnitude of the errors from reordering demonstrates that
the thresholds from O’Sullivan et al. [2003] are not useful as a
means of guiding the trade-off between accuracy and performance
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in large, complex simulations. Furthermore, the similarity in mag-
nitude between the errors of error injection, which we found to be
tolerable, and the errors from reordering establishes credibility for
the results in Table I.

4.2.4 Threshold Evaluation 4. Some metrics, such as penetra-
tion and gap, are dependent on the timestep of the simulation; if
objects are moving rapidly enough and the timestep is too large,
large penetrations can occur even without injecting any error. To
demonstrate the impact of the timestep on our error metrics, we
reduce the timestep to 0.001. The maximum penetration and gap
at this timestep for a simulation without any error injection re-
duce to less than 0.001 meters and 0.009 meters, respectively. Both
metrics see a comparable reduction when shrinking the timestep,
which demonstrates that the larger magnitude penetration errors in
Figure 6 are a function of the timestep and not the error injected.

4.2.5 Believability Prediction. As described in Section 4.1,
most metrics are strongly correlated. As higher velocities, deeper
penetrations, and higher constraint violations are observed, the sim-
ulation energy of the system grows accordingly. Given this behav-
ior, we conclude that the difference in total energy is a reliable pre-
dictor of believable physical simulation in interactive entertainment
applications. Human subject studies utilizing real-world applica-
tions may be used to further evaluate this conclusions. In the next
section, we utilize this finding to evaluate four different methods of
trading accuracy for performance.

5. CASE STUDIES

In this section, we present four case studies to make use of the per-
ceptual believability methodology presented this article to trade off
accuracy for performance. The first two, simulation timestep and
iteration count, deal with the tuning of physics engine parameters.
Fast Estimation with Error Control (FEEC) is a software optimiza-
tion proposed in Yeh et al. [2006], and precision reduction is a hard-
ware optimization.

5.1 Simulation Timestep

As described in Section 2, the simulation timestep largely defines
the accuracy of simulation. In this case study, we apply a similar
methodology to study the effects of scaling the timestep. We re-
strict the data shown here to the max % energy difference as it has
been shown to be the main indication of simulation stability. We
evaluate timesteps corresponding to frame rates of between 15 to
60 Frames Per Second (FPS). The baseline for energy comparison
is the energy data using 60 FPS or 0.0167 sec. per frame. All sim-
ulations performed use 20 iterations for the LCP solver.

As shown on Figure 9, the simulation for our test scenario begins
to stabilize at 34 FPS or a timestep of 0.0294 sec. per frame. While
the energy data for 30 FPS is acceptable, it is within the region of
instability between 15 FPS and 33 FPS. For a gaming application,
it may be appropriate to select a timestep of 0.0167 sec. per frame
(60 FPS) for two reasons: (1) to avoid instability during game play
with different user input and (2) to synchronize the timing of ren-
dering and physics. Although the appropriate timestep may depend
on details of the exact scenario, our methodology can be leverage
to tune the timestep for optimal performance.

5.2 Iteration Count

In addition to the simulation timestep, the number of iterations used
within the constraint solver is another important parameter affect-
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Fig. 9. Effect on energy with timestep scaling.
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Fig. 10. Effect on energy with iteration scaling.

ing simulation accuracy. In this case study, we evaluate the effect
of scaling from 1 to 30 iterations for a given timestep. The baseline
energy data is from simulation using 60 FPS and 20 iterations.

In Figure 10, we present detailed data on 2 points representa-
tive of the entire FPS range from the timestep case study (60 FPS
and 33 FPS). The 60 FPS curve represents the stable points in
Figure 9. As shown, simulation remains stable from 30 to 11 it-
erations. Additional reduction in iteration count causes simulation
blow-up. This confirms that the suggested default of 20 iterations
for ODE’s LCP solver is a conservative choice. The next case study
evaluates a performance optimization that further reduces the iter-
ation count.

The 33 FPS curve represents the unstable points in Figure 9.
While certain iteration counts produce acceptable energy data, sim-
ulation with 33 FPS is unstable even with over 30 iterations (data
not shown). This behavior suggests that iteration count scaling can-
not be used to compensate for the errors produced from a small
timestep.

5.3 Fast Estimation with Error Control

Based on the results of Yeh et al. [2006] and our observation with
simulation energy, error propagation can quickly lead to simulation
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Fig. 11. Effect on energy with FEEC.

instability. This case study examines the energy data of the Fast
Estimation with Error Control (FEEC) optimization as presented in
Yeh et al. [2006]. FEEC is an optimization technique to trade ac-
curacy for performance. It works by creating two logical threads of
execution: (A) a precise thread and (B) an estimation thread. The
precise thread produces slow but accurate results, same as the base-
line simulation, by simulating with conservative parameters such
as the ones used in the baseline of previous case studies (60 FPS
and 20 iterations). The previous frame’s precise result is fed to the
inputs of both the precise thread and estimation thread at the be-
ginning of each frame. The estimation thread returns earlier than
the precise thread and allows other components of the application
such as rendering or artificial intelligence to start consuming the
estimated results earlier.

There are many estimation methods, but we focus on reducing
the number of iterations as described in Yeh et al. [2006]. FEEC
effectively reduces the application’s critical path by generating fast
and usable results for dependent components. At the same time,
simulation stability is achieved by correcting all errors when pre-
cise results are used at the beginning of each frame. The main cost
of FEEC is the increase in hardware utilization.

The prior work which proposed FEEC [Yeh et al. 2006] exam-
ined only differences in constraint violations, position, and orien-
tation. We utilize our new methodology of using energy to evaluate
FEEC’s perceptual quality.

In Figure 11, we present the energy data of using FEEC to scale
down the number of iterations for the estimation thread. As shown
by the data, the energy of the estimation thread is stable from 20
iterations down to 1 iteration. This energy behavior further supports
the findings of Yeh et al. [2006].

5.4 Precision Reduction

In this final case study, we apply our findings to the hardware opti-
mization technique of precision reduction.

5.4.1 Prior Work. The IEEE 754 standard [Goldberg 1991]
defines the single precision floating-point format as shown in
Figure 12. When reducing a X number of mantissa bits, we re-
move the least-significant X bits. There is never a case where all
information is lost since there is always an implicit 1.

Our methodology for precision reduction follows two prior pa-
pers [Samani et al. 1993; Fang et al. 2002]. Both prior works emu-
late variable-precision floating-point arithmetic by using new C++
classes.

IEEE Single-Precision Floating Point

s eeeeeeee mmmmmmmmmmmmmmmmmmmmmmm

0 1            8 9 31

Nvidia half format (Cg16)

s eeeee mmmmmmmmmm

0 1      5 6                         15

Reduced-Precision Floating Point [7 mantissa bits]

s eeeeeeee mmmmmmm

0 1            8     9                15

Fig. 12. Floating-point representation formats (s = sign, e = exponent,
and m = mantissa).

Table IV. Numerically Derived Mantissa Precision Required in
Each Computation Phase

Mantissa Bits Island
Derived Broadphase Narrowphase Processing LCP
[round, truncate] [5-6, 6-7] [5-6, 6-7] [12-13, 13-14] [5-6, 6-7]

Table V. Simulation-Based Mantissa Precision Requirement in
Each Computation Phase

Mantissa Bits Island Narrow +
Simulated Broadphase Narrowphase Processing LCP LCP
[round, truncate] [3, 4] [4, 7] [7, 8] [4, 6] [5, 7]

5.4.2 Methodology. We apply precision reduction first to both
input values, then to the result of operating on these precision-
reduced inputs. This allows for more accurate modeling than
Samani et al. [1993] and is comparable to Fang et al. [2002]. Two
rounding modes are supported (round to nearest and truncation).
We support the most frequently executed FP operations for physics
processing which have dedicated hardware support: +, −, and *.
Denormal handling is unchanged, so denormal values are not im-
pacted by precision reduction.

Our precision reduction analysis focuses on mantissa bit reduc-
tion because preliminary analysis of exponent bit reductions shows
low tolerance (not even a single bit of reduction is allowed). A sin-
gle exponent bit reduction can cause up to orders of magnitude er-
rors being injected.

5.4.3 Per-Phase Precision Analysis. The goal of precision re-
duction is to reduce the size of floating-point hardware (FPUs) on
processors. The cumulative area taken by a large number of FPUs in
processors occupies a large percentage of total processor area. The
fine-grain parallelism in the computation phases of Narrow-phase
and LCP can be exploited more effectively with reduced-precision
FPUs in physics accelerators or GPUs.

Based on the error tolerance shown in Table I, we can numeri-
cally estimate the minimum number of mantissa bits for each phase.
When using the IEEE single-precision format with an implicit 1,
the maximum numerical error from using an X-bit mantissa with
rounding is 2−(X+1) and with truncation is 2−X . Rounding allows
for both positive and negative errors while truncation only allows
negative errors.

Since base 2 numbers do not neatly map to the base 10 values
shown in Table I, we present a range of possible minimum mantissa
bits in Table IV for rounding and truncation. Now that we have an
estimate on how far we can take precision reduction, we evaluate
the actual simulation results to confirm our estimation.

By utilizing the methodology of Section 4.2, we summarize the
per-phase minimum precision required in Table V based on energy
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Fig. 13. Energy data for precision reduction using rounding. X-axis shows
the number of mantissa bits used. Note: Extremely large numbers and in-
finity are converted to the max value of each Y-axis scale for better visual-
ization.

change data in Figure 13. When comparing Table IV and Table V,
we see that the actual simulation is more tolerant than the stricter
numerically derived thresholds. This gives further confidence in our
numerical error tolerance thresholds.

While the exact precision reduction tolerance may vary across
different physics engines, this study shows the potential for lever-
aging precision reduction for hardware optimizations.

6. CONCLUSION

We have addressed the challenging problem of identifying the max-
imum error tolerance of physical simulation as it applies to interac-
tive entertainment applications. We have proposed a set of numeri-
cal metrics to gauge the believability of a simulation, explored the
maximal amount of generalized error injection for a complex phys-
ical scenario, and proposed the use of maximum % energy differ-
ence (as compared to an accepted baseline) to evaluate the percep-
tual quality of the simulation. We then investigated four different
approaches to trading accuracy for performance based on our find-
ings. For error-sensitive applications utilizing PBA such as medical
simulations, more detailed examination of perceptual metrics may
be required. Future work will extend the proposed methodology for
error-sensitive applications.
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