
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) Posters and Demos
R. Boulic, D. K. Pai (Editors)

DANCE : Dynamic Animation and Control Environment

Ari Shapiro1 Petros Faloutsos1 Victor Ng-Thow-Hing2

1 University of California, Los Angeles
2 Honda Research Institute, USA

1. Motivation

Physics-based animation research has a high barrier of entry.
Research groups must dedicate resources towards building
graphical tools and systems as a prerequisite to new research.
Most systems developed by the dynamic animation commu-
nity are not shared, requiring every group to re-engineer the
same set of tools. Openly available tool sets usually take the
form of libraries. However, these disparate libraries often
have overlapping parts, use different base classes for primi-
tive modeling types (such as vectors, matrices and so forth).
Developing a general framework that can be used as the ba-
sis for a range of research projects is a complex engineering
task.

We introduce the Dynamic Animation and Control En-
vironment 2.0 (DANCE) as a major step towards a pub-
licly available simulation platform for research and teaching.
DANCE is an open and extensible simulation framework and
rapid prototyping environment for computer animation re-
search.

1.1. Contributions

To briefly summarize, DANCE offers solutions to the prob-
lems of flexible reuse of articulated figures, physics-based
simulators, controllers and actuators. In addition, DANCE
provides basic modeling capabilities and support for kine-
matic animation such as motion capture and key framing.

DANCE’s plug-in architecture is the basis of a powerful,
open system model that permits a wide variety of different
applications to be built on top of a common fundamental
core. The design of the base classes in DANCE unifies the
large amount of specialized controllers and actuators that
have been developed with a standard interface so that they
can be shared in a common physical environment.

The power of an open plug-in architecture lies in the abil-
ity for a community of developers to work together to rapidly
build a very complex system made up of relatively simple
parts. As plug-ins can be selectively included into the main

system, DANCE can be a useful research tool that enables
various aspects of a system to be isolated for study.

2. System Design

DANCE is structured using the principled application
of object-oriented design and dynamically-linked objects
(plug-ins). The core architecture implements a set of APIs
(base classes) that abstract all entities within a simulated
scene. Specific scene elements are implemented as sub-
classes of these APIs. The base classes (interfaces) are
generic and leave the important functionality to the specific
subclasses. For example, the interface to the actuator primi-
tive has allowed us to serendipitously implement a wide set
of subclasses that include collision detection, ground mod-
els, interactive drag manipulators and deformable muscles.

DANCE also incorporates the following standard toolkits:
OpenGL for 3-D graphics, FLTK[Spi98] for window man-
agement, event handling and graphical user interface (GUI)
widgets (e.g. scroll bars, buttons), Tcl[Ous94] for scripting
and the Open Dynamics Engine (ODE) [Smi03] for physical
simulation.

3. Plug-in Primitives

The DANCE base classes (primitives) offer a general ab-
straction of a scene’s elements and impose few restrictions
on the design of the particular subclasses.

Systems are the base class for anything that can be consid-
ered a separate entity in an animation scene. For example,
articulated figures, particle systems, cloth, flexible cartoon
characters such as teapots are all examples of system sub-
classes.

Simulators model the motion of systems over time. ODE
is encapsulated by a simulator subclass. Motion capture
playback is also implemented as a kinematic simulator.

Actuators represent anything that can apply a load on a
system. For example, external loads such as gravity or wind

c© The Eurographics Association 2004.



A. Shapiro, P. Faloutsos, V. Ng-Thow-Hing / DANCE : Dynamic Animation and Control Environment

and internal muscle actuation are all represented by actua-
tors. A controller is an actuator subclass designed specifi-
cally to encapsulate physics-based controllers for articulated
figures.

Modifiers encapsulate generic structures that can alter or
refine systems. For example, our linear skinning module is
implemented as a modifier.

Geometries encapsulate geometric structures such as
polygon meshes or parametric surfaces.

3.1. Application: Controllers

An interesting area of research in physics-based animation is
the design and construction of controllers that can compute
the active forces and torques required to control a character.
Although controllers are inherently reusable, their actual im-
plementations are often restricted and embedded in custom
systems built by various research groups for their own spe-
cific purposes. Incorporating new controllers into such sys-
tems often implies a large undertaking in code redesign and
development. DANCE allows controllers to be built as sep-
arate programs that adhere to general interfaces using stan-
dard object-oriented design. The end result is that an anima-
tion can be constructed consisting of several controllers co-
operating or competing with each other. [FvT01] developed
a complex, two-level, reactive controller for human char-
acters on top of DANCE. Similarly, [NF02] is an example
of a physics-based control scheme with particular empha-
sis on aesthetic aspects of human motion, also built on top
of DANCE. [NTH00] developed a complex anatomically-
based muscle actuator on top of DANCE. [SPF03] combined
dynamic and kinematic control for interacting virtual char-
acters using DANCE, Figure1.

Figure 1: Two interactive skeletons: the left skeleton is key-
framed, while the right character is controlled dynamically.

3.2. Other applications

We have implemented a wide range of plug-ins on top of
DANCE such as linear skinning, free-form deformations,

particle systems et al. Figure 2 demonstrates an application
involving interactive hair simulation and facial animation.

Figure 2: Facial animation and hair simulation in DANCE.

4. Conclusions and Future Work

We have presented DANCE an open, extensible physically-
based animation system. Its plug-in architecture allows
researchers and educators to implement, integrate and
share animation modules such as character models, sim-
ulators, and controllers. DANCE is publicly available at
www.magix.ucla.edu/projects/dance with the hope that it
can be useful to the community.

References

[FvT01] FALOUTSOS P., VAN DE PANNE M., TER-
ZOPOULOS D.: Composable controllers for
physics-based character animation. In Proceed-
ings of ACM SIGGRAPH 2001 (2001), pp. 251–
260. 2

[NF02] NEFF M., FIUME E.: Modeling tension and
relaxation fro computer animation. In ACM
SIGGRAPH Symposium on Computer Animation
(July 2002), pp. 81–88. 2

[NTH00] NG-THOW-HING V.: Anatomically-based mod-
els for physical and geometric reconstruction of
musculoskeletal systems. PhD thesis, Univeristy
of Toronto, DCS, Toronto,Canada, 2000. 2

[Ous94] OUSTERHOUT J. K.: Tcl and the Tk Toolkit.
Addison-Wesley Publishing Company, 1994. 1

[Smi03] SMITH R.: Open dynamics engine.
http://opende.sourceforge.net, 2003. 1

[SPF03] SHAPIRO A., PIGHIN F., FALOUTSOS P.: Hybrid
control for interactive character animation. In Pa-
cific Graphics (2003), pp. 455–461. 2

[Spi98] SPITZAK B.: Fast light toolkit.
http://www.fltk.org, 1998. 1

c© The Eurographics Association 2004.


