
SIMD Packet Techniques for Photon Mapping
Shawn Singh∗ Petros Faloutsos†

UCLA Computer Science Department

Figure 1: Sponza Atrium scene (model by Marko Dabrovic) at 900×300 and 100 samples per pixel, showing only indirect lighting, rendered with
our framework in 91 seconds using 2 threads, averaging approximately 25 million shader operations per second.

ABSTRACT
We present a novel photon mapping framework that uses Single In-
struction, Multiple Data (SIMD) parallelism to accelerate the final
gathering phase of photon mapping. By using SIMD instructions,
four coherent tasks can be computed in parallel using almost the
same memory traffic as it would cost to process one task alone.
This approach has been very successful for real-time ray tracing,
but until now it has been unclear how to effectively apply the same
approach to final gathering. Our solution is to use sample-point
density estimation instead of k-nearest neighbor density estimation,
a technique drawn from reverse photon mapping. Sample-point es-
timation removes the overheads that make SIMD instructions im-
practical, while retaining the same benefits and image quality as
traditional photon mapping.

Additionally, an important question arises whether it is better to
use forward or reverse photon mapping. In an interactive context,
classical asymptotic algorithmic analysis is not enough to compare
the two algorithms. We provide a novel asymptotic bandwidth anal-
ysis, which addresses more issues found in practice. The analysis
motivates the use of forward photon mapping when using SIMD
parallelism as well as partial reordering for improved scalability.
The resulting framework can achieve interactive rates for photon
mapping at low resolutions, including the time it takes to trace pho-
tons and build the photon map.
Index Terms: I.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing; I.3.1 [Computer Graphics]:
Hardware Architecture—Parallel processing

1 INTRODUCTION
Photon mapping is generally accepted as an efficient, versatile, and
high-quality global illumination algorithm. While photon mapping
has many advantages in its algorithmic simplicity and good scala-
bility, it is typically regarded as an offline rendering algorithm, and

∗e-mail: shawnsin@cs.ucla.edu
†e-mail: pfal@cs.ucla.edu

no existing implementation is truly real-time. This limits the scope
of where photon mapping could be used, even though there are nu-
merous applications where interactive photorealism would be ideal.
In this paper we consider the goal of interactive photon mapping us-
ing SIMD data parallelism, towards the long-term goal of achieving
real-time photorealism.

There is a striking similarity between the computations used in
real-time ray tracing and those used in photon mapping. In ray
tracing, a ray traverses through a KD-tree (or similar data structure)
of geometric primitives, to find ray-intersection tests to compute
visibility. In photon mapping, a point sample traverses through a
KD-tree (or similar data structure), finding 〈photon, camera-point〉
pairs to compute global illumination. In other words, both algo-
rithms involve a core operation – ray intersection tests and 〈photon,
camera-point〉 shader operations – and both algorithms use a spa-
tial database, often a KD-tree, to efficiently cull the number of core
operations that must be performed.

Because of this strong similarity between ray tracing and photon
mapping, the techniques used in real-time ray tracing could also ap-
ply to photon mapping. Specifically we are referring to the use of
SIMD packets, which has been a key factor in achieving real-time
ray tracing [21]. The observation of applying packet techniques to
photon mapping has been suggested before [22], but to our knowl-
edge no real implementation has demonstrated the use of packets in
this way.

This problem can be attributed to the type of search being per-
formed by photon mapping. Traditional photon mapping performs
a k-nearest neighbor search using the KD-tree, which has additional
overheads. For necessary algorithmic efficiency, the lists of k items
are organized as heaps or priority queues [6], which incurs more
processing overhead. More importantly, each heap or priority queue
has different branching logic while being updated, and this branch-
ing cannot be handled in parallel with SIMD instructions. Because
of this, it has remained unclear how to effectively use SIMD paral-
lelism for photon mapping.

Contributions. We propose a way to solve this problem by re-
placing the k-nearest neighbor query with a different density es-
timation technique known as sample-point estimation [19]. This
results in a simpler search that does not need to keep track of k
neighbors at once, while retaining approximately the same quality

of estimation. Sample-point estimation has been used previously in
reverse photon mapping [4] to gain algorithmic benefits over photon
mapping, but it has not been used previously in the context of tradi-
tional (forward) photon mapping. By applying this new estimation
technique to forward photon mapping, each 〈photon, camera-point〉
pair can be computed independently. This is what makes it possible
to effectively use SIMD instructions for photon mapping.

In addition to the main contribution described above, we also ask
whether it is better to use forward or reverse photon mapping for
interactive performance. As explained below, an algorithmic anal-
ysis does not give enough information to answer this question. We
provide a novel asymptotic bandwidth analysis that gives a more
complete comparison, concluding that forward and reverse photon
mapping have the same scalability except for higher potential co-
herence in forward photon mapping. Also, an important aspect of
fast photon mapping is how to efficiently order the queries to a pho-
ton map for better coherence. We describe a method of implement-
ing partial Hilbert reordering, which introduces a way to tradeoff
the cost of reordering with the cost of queries to the photon map.
Finally, we demonstrate these contributions with a software frame-
work that uses real-time ray tracing, a fast KD-tree build, our SIMD
accelerated photon-map queries, and partial reordering.

The rest of this paper is organized as follows. Section 2 discusses
related work in performance for photon mapping. Section 3 de-
scribes the sample-point estimator. Section 4 gives a novel asymp-
totic bandwidth analysis which motivates the decisions made for
our implementation. Sections 5 describes the SIMD framework,
Section 6 describes our approach to ray coherence and photon co-
herence including Hilbert reordering, and Section 7 discusses per-
formance results. Finally, Section 8 concludes.

2 RELATED WORK

Our implementation of real-time ray tracing is based heavily on
the work by Wald [20]. The reader is referred to Wald’s work and
recent surveys [20, 24, 25] for more information on highly opti-
mized ray-triangle intersections, KD-tree traversal, SIMD ray trac-
ing techniques, and global illumination using ray tracing.

The first works on photon mapping are by Jensen [5]. The key
advantage of photon mapping is that the representation of illumi-
nation in the scene, photons traced from light sources, is organized
separately from geometry. This allows lighting complexity to scale
independently of geometry. Photon mapping is widely agreed to be
a scalable and high-quality global illumination algorithm.

Since then, some research has suggested that photon mapping
would be interesting for real-time. Larsen and Christensen [8] sim-
ulate the photon map using a hemi-cube render-to-texture approxi-
mation on the GPU. Purcell et al. [12] suggest and demonstrate that
a GPU implementation of photon mapping could eventually benefit
from the power of the streaming paradigm. Both these works used
a previous generation of GPU technology, and it would be inter-
esting to revisit GPU implementation of photon mapping in future
work now that GPUs have become more general-purpose. Günther
et al. [3] integrated the photon map with a real-time ray tracer, but
only used the photon map for caustics.

An important aspect of improving performance of photon map-
ping is reordering computations and generally reducing memory
traffic. Steinhurst et al. [16] show that re-ordering the nearest-
neighbor queries can drastically reduce the amount of required
memory traffic to render a single frame. Specifically, they used
Hilbert reordering, which sorts query points along a space-filling
Hilbert curve for a very high coherence. They show that it offers
up to four orders of magnitude reduction of the required memory
traffic, and that the resulting order of operations was in some sense
optimal, because photons were loaded to memory on average only
2-3 times. Several other works [4, 11, 20] also address the topic of
exploiting coherent operations, usually by reordering computations

in some way that results in significantly improved cache behavior.
Another equally important aspect of photon mapping perfor-

mance is how to improve the cost of each photon map query. Since
this operation occurs millions of times, it is critical to increase its
performance as much as possible. For example, a 512× 512 reso-
lution image with 100 secondary rays per pixel would require more
than 25 million queries, each of which would have roughly 15-100
shader operations. Massive parallelism (e.g., [7]) is an essential
way to improving the throughput of queries. Wald et al. [22] show
how the photon map can be organized to optimize the cost of per-
forming each k nearest neighbor query. Ma and McCool [9] propose
an approximate nearest neighbor technique that has lower overhead
than the traditional k-nearest neighbor search. Havran et al. [4] de-
scribe reverse photon mapping, which uses sample-point density
estimation to achieve algorithmic benefits compared to traditional
photon mapping. In reverse photon mapping, instead of each cam-
era point searching through a photon map, each photon searches
through a database of camera points.

To our knowledge, our work is the first implementation to
demonstrate the possibility of SIMD packets for photon mapping
queries, and no prior work has explicitly described the asymptotic
bandwidth scalability of photon mapping. With this bandwidth
analysis we reach a different conclusion than the analysis found
in Havran et al. [4], because their work focuses on fast production-
quality rendering instead of interactive performance. In an interac-
tive setting, preprocessing such as reordering and building a photon
map must also be included in the analysis. Unlike Günther et al. [3],
we use photon mapping for general global illumination instead of
caustics. Finally, unlike some other works that approximate the
algorithm or sacrifice scalability for better performance, our work
retains the mathematical soundness (Section 3) and scalability (Sec-
tion 4) of traditional photon mapping.

3 DENSITY ESTIMATORS FOR PHOTON MAPPING
Each query to the photon map computes the radiance along a given
ray by using the location and color of nearby photons. This is done
by estimating the density of photons, and this estimate can be com-
puted using techniques drawn from density estimation literature in
statistics. Here we briefly recall the estimation technique used in
traditional photon mapping, as well as the technique used in reverse
photon mapping and our work.

Traditional photon mapping [6] uses a k-nearest neighbor esti-
mator [13, 19]. Photons are organized into a KD-tree to make them
efficient to search. Using these photons and the radius r that en-
closes these photons, the radiance along each camera ray can be
computed. This k-nearest neighbor estimator can be expressed as:

L̂(y,ωo) =
1

πr2

k
∑
i=1

f (y,ωi,ωo)∆ΦiK
(

| y− xi |

r

)

, (1)

where, L is the radiance we want to estimate, K is a kernel function
centered around each photon. The kernel is scaled by the photon
power ∆Φi and the BRDF reflectance f , and r is the radius of a
sphere that encloses all k photons. As mentioned above, in order to
efficiently perform a k-nearest neighbor search, a heap or priority
queue data structure is needed to keep track of the closest photons.
Also, the radiance estimate must wait for all k photons to be col-
lected before r can be computed.

We use a sample-point estimator [19], which can be written as:

L̂r(y,ωo) =
n
∑
i=1

1
h(xi)2 f (y,ωi,ωo)∆ΦiK

(

| y− xi |

h(xi)

)

, (2)

where h(xi) is the kernel width, derived from an initial coarse es-
timate of photon density. As before, a kernel function centered
around each photon is applied to the estimate each camera point.

However, instead of searching for a fixed number of photons, this
time all n photons whose kernel width h(xi) overlaps the query point
are used for shading.

Each photon can have a potentially different kernel width, but
for this work we used the same kernel width for all photons. Pre-
vious works [4, 14] demonstrate variable kernel widths, and our
initial experiments suggest that it can be done with relatively lit-
tle overhead compared to fixed kernel widths. For the purposes of
this paper, fixed-width kernels result in the same subjective image
quality. Variable kernel widths are more accurate in dark regions
of a scene where photons are sparser, and it will be appropriate to
address in future work.

In the sample-point estimator in Equation 2, there are no parame-
ters outside the summation. This means each portion of the sum can
be computed independently and directly added to the final image. A
photon can be used for shading immediately when it is found, with-
out having to wait for k other photons. Even if an implementation
still maintains a queue of photons to shade, the order no longer mat-
ters because it is not a k-nearest neighbor search, and thus a heap
or priority queue is not needed. This is the key change that allows
SIMD parallelism to be used effectively.

4 ASYMPTOTIC BANDWIDTH BEHAVIOR
Because we are using sample-point estimation, originally used in
reverse photon mapping, an interesting question arises whether it
is better to use forward or reverse photon mapping for interactive
performance. In this section we address this question based on
the trend of multi-core parallelism where bandwidth will become
a limited resource for each core. In the context of SIMD packets,
we conclude that forward photon mapping is more appropriate over
reverse photon mapping. We also use this analysis to motivate the
use of partial reordering, which reduces the implicit constant cost
of reordering.

4.1 Asymptotic algorithm complexity
Let us first briefly recall the algorithmic analysis of forward and re-
verse photon mapping. In forward photon mapping, p photons are
organized into a KD-tree, and for all m camera points, a k-nearest-
neighbor query is performed. In reverse photon mapping, m camera
points are organized into a KD-tree, and for all p photons, a fixed-
radius search is performed, resulting in an average of k photons
contributing to each camera point. Thus, the algorithmic complex-
ity is

A f orward = O(p log p+m log p+ km), (3)
Areverse = O(m logm+ p logm+ km). (4)

Here, the first term is the cost of building the tree for search, the
second term is the cost of performing all searches, and the third
term is the cost of actually shading k photons for each camera point.
Usually the number of camera points is far greater than the number
of photons, that is, m � p. Therefore, the O(m logm) and O(km)
terms dominate reverse photon mapping, while the O(m log p) and
O(km), dominate in forward photon mapping. The value of k typi-
cally varies from 35 to 150, while logm can vary from 25-50 – the
important point being that in practice O(m logm) and O(km) have
roughly the same scalability. This shows that algorithmic analy-
sis does not give us enough information to compare forward and
reverse photon mapping.

4.2 Asymptotic bandwidth complexity
An asymptotic bandwidth analysis is equally important, if not
more important, to compare forward and reverse photon mapping.
With the growing trend of multi-core parallelism, computational
throughput is likely to continue increasing exponentially, while
bandwidth will scale much more slowly. This means that any algo-
rithm that is embarrassingly parallel, such as photon mapping, will

be able to scale until it becomes bandwidth limited. To understand
the true scalability of photon mapping, we must understand asymp-
totically how much memory traffic the photon mapping algorithm
requires.

We define bandwidth complexity to be an expression that is pro-
portional to the number of O(1) memory operations needed to com-
pute an algorithm, where each memory operation transfers a con-
stant number of bits between processor cache and main memory.
By this definition, bandwidth complexity cannot be larger than al-
gorithmic complexity, because any larger cost would have to be
part of the algorithmic complexity in the first place. The bandwidth
complexity can be less than the algorithmic complexity, typically
influenced by good cache behavior.

It turns out that the bandwidth required for the search portion
of photon mapping is very low, because of the compact, efficient
representations for a KD-tree node. Most of these nodes may al-
ready be cached, and each node is only 8 bytes. In [14], the
bandwidth required for the shading portion is consistently less than
5% of the total raw bandwidth cost. Even asymptotically, look-
ing at Equations 3 and 4, the complexity of the search, O(m log p)
and O(p logm), will not grow faster than the shading complexity,
O(km). For these reasons it is appropriate to eliminate search com-
plexity from the bandwidth analysis entirely.

On the other hand, the bandwidth required to construct a KD-
tree is very high. To build one node of the KD-tree, all the points
contained inside that node must be traversed in order to bin it to the
right or left child – this applies to any type of KD-tree. Thus the
bandwidth complexity is the same as the algorithmic complexity –
O(p log p) for forward photon mapping and O(m logm) for reverse
photon mapping. Near the bottom layers of the tree, all the points
contained in a given node can fit into cache. Simulations from pre-
vious work [14] show that caching a depth-first KD-tree build can
reduce the bandwidth by about half. Asymptotically, however, the
required bandwidth will outgrow the benefits of cache, and so the
cost remains O(n logn) for n points.

The bandwidth cost of shader computations can be characterized
in two different ways, depending on the ordering of operations. If
consecutive operations are mostly incoherent, we can assume that
the bandwidth cost will be proportional to the algorithmic cost,
O(km). In this case, the total bandwidth complexity is:

B f orward = O(p log p+ km), (5)
Breverse = O(m logm+ km), (6)

where the logarithmic term is the cost of building the KD-tree, and
km is the cost of shading computations. Because p is usually sev-
eral orders of magnitude smaller than m, forward photon mapping
requires less bandwidth than reverse photon mapping.

If consecutive operations are coherent, it is unclear exactly how
the km term is reduced. We can estimate the required bandwidth as
O(km/q), where q represents the coherency between consecutive
operations. The higher the coherence, the lower the bandwidth cost
will be.

One major approach to increasing coherence is to explicitly re-
order computations [4, 11, 16]. To our knowledge, the best reorder-
ing techniques require O(n logn) algorithmic and bandwidth cost
to reorder n operations. For example, Hilbert reordering, shown to
be nearly optimal [16], can be implemented as building an octree
in O(n logn) [1]. It is still an open problem to determine if similar
optimal coherence can be achieved with less costly preprocessing,
but intuitively it seems that O(n logn) is the best that can be done,
since “optimal ordering” implies that all n operations have been
properly sorted or organized in a tree structure. Finally, note that
reordering improves only the bandwidth cost of shading, but it adds
an additional term to both algorithmic and bandwidth analysis. Ac-
counting for the benefit and additional cost of optimal reordering,

we can approximate the bandwidth complexity to be:

B
′
f orward = O(m logm+ p log p+ km/q), (7)

B
′
reverse = O(p log p+m logm+ km/q). (8)

Interestingly, in this case forward and reverse photon mapping have
the same bandwidth cost. However, now both methods have the
extremely costly O(m logm) term.

4.3 Our approach
One detail that distinguishes Equations 7 and 8 is the use of SIMD
parallelism. SIMD parallelism is only beneficial when the four si-
multaneous queries are very coherent. If they are not coherent, then
the average number of active queries per SIMD operation decreases,
resulting in very little gain compared to a non-SIMD implemen-
tation. Photons are generally sparser and more evenly distributed
than camera points, and thus, even with reordering, a SIMD packet
of photons would be less efficient than a packet of camera points.

Also, the bandwidth cost of reordering can be reduced via partial
reordering. With effective reordering, photon mapping can become
compute-limited instead of bandwidth limited. Therefore, there
comes a point where reordering computations further no longer im-
proves performance significantly. For this reason, we employ a par-
tial Hilbert reordering scheme that reorders queries to the photon
map just enough that the best performance is achieved, but with-
out wasting computation on further reordering. Since m � p, par-
tial reordering benefits forward photon mapping more than reverse
photon mapping. Our specific implementation of reordering is de-
scribed in Section 6.2.

In summary, our bandwidth analysis reveals several points that
a traditional algorithmic analysis does not show. First, the implicit
constant cost associated with search is very small, and thus the cost
of searching for shader operations is negligible. Second, we see that
reordering and building a KD-tree are the bottlenecks towards better
scalability, because of the high bandwidth requirement. Third, our
bandwidth analysis shows that forward and reverse photon map-
ping have effectively the same bandwidth scalability, and so our
approach is to favor forward photon mapping because it can benefit
greater from SIMD and partial reordering techniques.

5 SIMD PHOTON MAPPING FRAMEWORK

In Section 3 we described the sample-point estimator that allows
SIMD parallelism, and then in the previous section we justified the
use of forward photon mapping. In this section we describe our
SIMD framework.

5.1 Photon and ray tracer
The foundation of our framework is a real-time ray tracer based
on work by Wald [20], with minor differences in data layout. We
use up to four threads, which allows efficient execution on multi-
core processors. On a 2.66 GHz Core 2 Duo, this foundation can
trace up to 20 million rays per second on trivial scenes, 10 million
rays per second on moderately complex scenes including texture
mapping, BRDF evaluation, and direct lighting, and 2-8 million
rays per second with secondary rays that gather indirect lighting.
While it is possible to improve performance even further on state
of the art processors, such work is beyond the scope of this paper,
and this performance gives ample time for photon map queries to
be computed.

Our specific implementation of final gathering is described as
follows. Primary rays are traced from the camera into the scene,
and many secondary rays are spawned from the intersection point
of each primary ray. Throughout the paper, the metric “samples per
pixel” is equal to the number of secondary rays per primary ray,
because we use only one primary ray per pixel. The intersection

point found for each secondary ray becomes a photon map query,
where we estimate radiance along the secondary ray.

We use only single rays to trace photons in order to avoid altering
the distribution of photons. The number of photons is small enough
that tracing single rays is still very fast. Also, in practice, we found
that the O(p log p) cost of building a KD-tree photon map is fast
enough for interactive performance when p, the number of photons,
is approximately 500,000 or less. This is enough photons to capture
indirect lighting effectively for most scenes. Note that this is why
reverse photon mapping, though very efficient for offline rendering,
cannot be used interactively: every frame would require building a
KD-tree of millions of camera-points. Finally, our photon tracing
and KD-tree build do not exploit multiple threads, but parallelizing
these two phases of computation is straightforward and should give
the expected speedups.

5.2 Data layout
Our data structures and layout are as follows. Photons are stored in
two separate lists, one for the “hot” data that is accessed frequently,
and one for the “cold” data that is only accessed when the photon
contributes its information to a camera point:

// 16 bytes
struct PointSample {

Point p; // x, y, z, location
void * coldData;

};

// 24 bytes
struct PhotonData {

Vector incomingDirection;
Color power; // red, green, blue

};

The photon map is a KD-tree, stored as an array of KDNode struc-
tures. The layout is similar to the structure described by Pharr and
Humphreys [10].

// 8 bytes
struct KDNode {

union {
float splitPlane;
unsigned int axis; // 2 bits

};
int childrenIndex;

};
KDNode photonKDTree[NUM_PHOTONS];

In this tree, one photon is placed with each KD-tree node, and the
split plane of the node is chosen specifically so that the photon lies
on the split plane. Because of this, we must use an index instead
of a pointer for the children, and in turn we must place the 2-bit
axis either in the upper bits of the index or in the lower bits of
the floating-point mantissa of splitPlane. Putting this flag in
the upper bits of a number requires using conditional branching or
costly shift operations, therefore for this implementation we placed
the bits in the floating-point mantissa. The loss of accuracy because
of this is negligible in our experience.

Originally we tried to adapt the sliding-midpoint KD-tree that
is effective for reverse photon mapping [4]. However, this data
structure stores up to 30 points per leaf node, and no points in in-
ner nodes. This approach works well for reverse photon mapping,
where a photon may contribute to several hundred camera points,
and thirty camera points in one leaf are all likely to be used. For
forward photon mapping, however, where each camera point typi-
cally uses fewer than 100 photons, this data structure resulted in too
many wasteful shader operations where the photon was too far from
the camera point, resulting in no contribution. We also tried reduc-
ing the number of points per leaf node for the sliding-midpoint KD-
tree, but this resulted in a prohibitively large tree. By using the tree

where photons lay on the split planes, we were able to avoid most
of the unnecessary shader operations and place known bounds on
the size of the tree – at most the KD-tree will have the same number
of nodes as there are photons.

To implement SIMD photon gathering, we use Intel SSE instruc-
tions. The first piece of data is four points that were found from
tracing a packet of rays, and the second piece of data is the incident
directions.

struct SSEPoint {
__m128 x;
__m128 y;
__m127 z;

} queryPoint;

struct SSEVector {
__m128 dx;
__m128 dy;
__m128 dz;

} incomingDirection;

Here, m128 holds four floating-point values that are processed
in parallel with SIMD instructions. These two data structures al-
ready occur in the packet ray tracer as the origin and direction of
a ray. For photon mapping, queryPoint represents four cam-
era points where photon illumination needs to be computed, and
incomingDirection represents the incident direction on each
point, used for shading.

5.3 SIMD traversal
After a packet of secondary rays has been traced, the resulting
points of intersection are query points where the illumination infor-
mation of photons is computed using the sample-point estimator.
This can be done by using a fixed-radius search through the photon
map. Two pieces of information are passed on from the packet of
rays to the SIMD photon gathering code. The first piece of data is
a bit mask indicating which rays of a packet did intersect anything,
and which rays of the packet should be omitted from the photon
query. The second piece of data is the intersection points of the
packet of rays.

Our SIMD traversal is similar to the SIMD ray tracing traversal
shown by Wald [20], but the details are different because we are
traversing points instead of rays. The pseudocode is as follows and
explained below:

float searchRadius
SSEPoint queryPoint; // four values of x, y, z
KDNode currentNode // initialized to the root node
stack; // search stack

while (stack.notEmpty())
{

if(IS_LEAF(currentNode)) {
ShadeCurrentNode(...);

}
else {

// determine if axis is x, y, or z
axis = DIMENSION(currentNode.axis);
dist = queryPoint[axis] - currentNode.splitPlane;
maskLeft = mask & (dist < -searchRadius);
maskRight = mask & (dist > searchRadius);
if (maskLeft)
stack.push(leftChildNode,mask);

if (maskRight)
stack.push(rightChildNode,mask);

if (maskLeft & maskRight)
ShadeCurrentNode(...);

}
(currentNode,mask) = stack.pop();

}

In this pseudocode, maskLeft and maskRight are 4-bit masks
indicating which of four query points should remain active when
searching through the left or right children. A query point remains
active if its search radius overlaps the child node. If any one of
the four simultaneous queries is active in both children, that is, if
(maskLeft & maskRight) is non-zero, then that means the
query radius overlaps the splitting plane. In this condition, the
photon associated with the current node is used for shading, be-
cause the photon lies on the split plane of the current node. Finally,
ShadeCurrentNode uses the photon associated with the current
KD-tree node to compute a portion of the summation described
in Equation 2. This function performs a more accurate distance
check to make sure the photon actually contributes to the appropri-
ate query points.

6 COHERENT ORDERING

6.1 Ray coherence
It is already given that packets of primary rays, traced from the
camera view, will be highly coherent. However, secondary rays are
less spatially coherent, and so it is a challenge to handle how mem-
ory is accessed throughout the photon mapping algorithm. Given a
point where a primary ray intersected, this point becomes the ori-
gin for packets of secondary rays. To generate directional vectors
for these secondary rays, we use a stratified sampler. A stratified
sampler divides the sample space into a regular grid of cells, and
chooses a fixed number of samples for each cell. This is a method
of uniform sampling, so for importance sampling, this grid of cells
is then mapped to the appropriate desired distribution. Stratified
sampling has the nice property that as the number of stratified cells
increases, the size of each cell decreases, and therefore coherency
of samples within a single cell and in nearby cells also improves.
We place four random samples in each stratified cell, so that these
four samples will create rays with similar directions and the same
origin.

We also interleave computations per thread by having threads
process every other pixel (or every fourth pixel, in the case of four
threads). Simply giving each thread a different tile of the image was
clearly incoherent, because four threads began to perform worse
than two threads on a dual core processor. By interleaving the
computations, even though we do not enforce any synchronization,
four threads were able to scale performance slightly better. Our ap-
proach to ray coherence works well enough to show performance
increase using SIMD packets, but in future work a better ordering
technique is necessary for higher performance.

6.2 Photon coherence
For each secondary ray, instead of immediately performing the pho-
ton query, we store the points where secondary rays intersect so that
all the queries can be reordered and performed after tracing all rays.
This approach reduces cache thrashing between the scene geometry
data during ray tracing and the photon data during shading. During
reordering and shading, the query points can be streamed in and out
of cache predictably and therefore with less latency overhead.

To reorder the query points, we use Hilbert reordering, which
has been shown to be highly effective for reordering photon map
queries [16]. Figure 2 depicts the analogy between a 2-D Hilbert
curve and a quadtree. The Hilbert curve traverses all nodes of the
quadtree in a specific order. As the Hilbert curve and quadtree are
recursively expanded, the coarse ordering determined by previous
recursive steps does not change. Infinitely recursing, the Hilbert
curve fills the entire space, while the nodes of the quadtree become
infinitesimally small. In this way the space filling curve is exactly
the same as a quadtree with specific ordering of its nodes. The same
analogy holds between a 3-D Hilbert curve and an octree.

Based on this property, query points can be sorted along a Hilbert
curve simply by organizing the points into an octree, while enforc-

Figure 2: Visualization that shows how a 2-D Hilbert curve is analo-
gous to a quadtree. The same analogy holds between a 3-D Hilbert
curve and an octree.

ing a specific ordering of nodes. The ordering of nodes is deter-
mined by the path that the Hilbert curve takes, which is given pro-
cedurally by a Lindenmayer system – a system of rules that define
how the curve recursively subdivides. In our case, we store the L-
system as a straightforward, compact look-up table that describes
the ordering of child nodes given the ordering and orientation of
the parent node. This allows us to sort points along a Hilbert curve
for essentially the same cost as building an octree, O(n logn).

Partial reordering. In Section 4.3 we motivated the use of par-
tial reordering. Because a Hilbert curve is defined recursively, we
can implement partial reordering by simply stopping recursion be-
fore points are fully sorted. Partial reordering allows us to achieve
the “sweet spot” where photon mapping becomes compute-limited,
where further improving the cache behavior with reordering no
longer improves performance. Another “sweet spot” to explore is
to optimize the sum of time spent reordering and time spent per-
forming queries. In the case of using SIMD packets, the second
sweet spot is more important and requires a finer granularity of re-
ordering to make coherent packets. In this work, we stop recursion
when there are 16 or fewer points being recursively sorted. This
value was found by manual trial and error, and determining this
value automatically is left as future work.

7 RESULTS
General performance can be seen in Table 2, Table 3, and Figure 4.
In the rest of this section, we discuss specific aspects of perfor-
mance in more detail.

Effectiveness of SIMD. To measure the effectiveness of SIMD
parallelism, we looked at the average number of active shader op-
erations taking place during the function ShadeCurrentNode.
Since there are at most four parallel operations in SSE instructions
and at least one active query if the function is used at all, this metric
can range from 1.0 in worst case to 4.0 in best case. Table 1 shows
that SIMD can be effectively used for photon map queries, but only
when combined with reordering which improves the coherence of
photon queries. We also found that more total samples (reordered)
and a larger search radius for each query point improve this metric.

Comparison between SIMD and non-SIMD is shown in Table 3.
Performance improves significantly, but not ideally. This is because
our current implementation only applies SIMD to the search and
does not parallelize the shader operations, since each query point
in a SIMD packet may potentially have a different BRDF. In future
work we expect it will be straightforward to address this by using
SIMD parallelism for shader operations that use the same BRDF.

Multi-core scaling. Scalability for our renderer on the Sponza
Atrium and Cornell Box scenes can be seen in Table 2. These re-
sults were acquired on a 2.66 GHz Intel Core 2 Duo with 4 MB
shared cache, except for the last entry running four threads, which
was captured on a 2.66 GHz Intel quad-core processor with 8 MB
cache. In both scenes, performance scaled linearly with the number
of cores. Note that the complexity of photon mapping is mostly in-
dependent of scene geometry. Even though the Cornell Box scene
has simple geometry, our Cornell Box test uses a bigger average k
value, and therefore the queries to the photon map take more time
despite the simplicity of the scene. Also note that the results in

Without With
reordering reordering

Cornell Box
Direct visualization 3.18 N/A
16 samples per pixel 1.07 2.84
64 samples per pixel 1.16 3.32
100 samples per pixel 1.20 3.41

Sponza
Direct visualization 3.74 N/A
16 samples per pixel 1.41 3.83
64 samples per pixel 1.72 3.92
100 samples per pixel 1.84 3.93

Table 1: Average number of individual queries active during a SIMD
shading operation. This metric ranges from 1.0 (worst case) to 4.0
(best case). These numbers were acquired at 256×256.

Sponza Cornell Box
Resolution 308×308 308×308

Number of triangles 66,454 30
Samples per pixel 576 576

Average k 45 60
SIMD ray tracing only 104 s 65 s

1 core 235 s 276 s
2 cores 118 s 146 s
4 cores 61 s 80 s

Shader-operations
per second per core 10 million 11 million

Table 2: Performance for the configuration of Sponza and Cornell
Box scenes shown in Figure 3, showing how performance scales with
SIMD and multiple cores. k is the average number of shader oper-
ations per camera point, and “SIMD ray tracing only” gives baseline
performance of the ray tracer, ray tracing all samples, but with no
gathering phase.

Table 2 do not use reordering. With reordering, the coherency of
query points is independent of the coherence of secondary rays that
generated these queries; such results can be seen in Table 3.

Interactive performance. Images of an interactive session can
be seen in Figure 4, averaging about 10-11 frames per second when
visualizing photons directly and 1.14 frames per second when visu-
alizing the photon map indirectly with 16 samples per pixel. These
images were captured using 4 threads on the 2.66 GHz Intel quad-
core processor. It is possible to interactively move the camera and
light sources. Tracing photons, building the photon map KD-tree,
tracing primary and secondary rays, reordering, and computing fi-
nal gathering are all recomputed dynamically in every frame.

Benefits of reordering. Table 1 and Table 3 both show per-
formance with and without reordering. Performance improves sig-
nificantly with reordering, and it is clearly necessary for effective
SIMD parallelism. We observed two distinct benefits of reordering.
The first is improved cache behavior, which can be achieved by a
coarse partial reordering. The second is improved SIMD perfor-
mance which benefits more from finer granularity reordering. This
distinction may be interesting to exploit for faster, equally effective
reordering techniques in future work. Both Table 1 and Table 3
reflect performance using partial reordering, described above, that
stops recursion when there are 16 or fewer points in a recursive step.

Tracing photons and building the photon map. The time taken
to trace photons using single rays was reasonable, able to trace up
to 500,000 photons in less than half a second. It would be straight-

Figure 4: Images that represent the quality of rendering with interactive performance. Photons are traced and organized into a KD-tree dynam-
ically every frame. The 2-D user interface is 900×900, but the rendering software used a resolution of 256×256. The leftmost image shows
photons directly visualized, averaging about 10 frames per second (fps). The samples per pixel (spp) and frame rate for the other three images,
from left to right, are 16 spp (1.14 fps), 64 spp (0.34 fps), and 100 spp (0.23 fps).

No With With
of rays H.R. H.R. H.R. Time to

Scene (millions) SIMD single SIMD reorder
Cornell 6.5 M 9.5 s 3.8 s 3.1 s 0.20 s
Cornell 10 M 14.3 s 5.8 s 4.6 s 0.33 s
Sponza 6.5 M 19.9 s 12.32 9.3 s 0.36 s
Sponza 10 M 28.8 s 18.34 13.6 s 0.56 s

Table 3: Comparison showing the cost of partial Hilbert Reordering
(H.R.) and how it significantly improves performance. These num-
bers correspond to the Cornell Box and Sponza scenes rendered at
320×320 with 64 and 100 samples per pixel, using 2 million photons.

forward to trace photons in parallel with multiple threads, but it is
not clear how to trace coherent packets of photons without biasing
the distribution of lighting information.

Building the photon map KD-tree can be done very quickly as
long as the number of photons is less than about 500,000. In our
experience this is true for both the sliding-midpoint KD-tree used
in reverse photon mapping as well as the KD-tree we used in our
implementation. For 500,000 photons, the KD-tree typically takes
about 1/3 of a second to build. Beyond this, the KD-tree build
takes too long for interactive performance. Note that if we had
used reverse photon mapping, the KD-tree would have been built
over the set of query points, and we would have been forced to re-
build a KD-tree of millions of points every frame, which would be
prohibitive for scalable performance.

7.1 Discussion
One useful metric to measure the performance of photon queries is
the number of shader operations per second, where each shader op-
eration is the process of computing a 〈photon, camera-point〉 pair’s
contribution to a pixel. The reason we propose this metric instead
of the number of queries per second is that the average number of
photons per query, k, may vary depending on several factors, and
so a direct comparison of queries/sec across different works may
not be as informative. The computation required for one shader op-
eration is more consistent and predictable. We typically achieved a
rate of 8-12 million shader operations per second per core, as shown
in Table 2 and Figure 1 on the first page. While this is enough for
interactive performance, we estimate that hundreds of millions of
shader operations per second will be necessary for real-time high
quality global illumination.

We focused on diffuse surfaces because this represents the worst-

Figure 3: Sponza Atrium scene (model by Marko Dabrovic) and Cor-
nell Box scene using our SIMD photon mapping framework, showing
only indirect lighting from 500,000 photons, rendered at 308×308
and 576 samples per pixel. These images correspond to the results
in Table 2.

case incoherent distribution of secondary rays, especially when us-
ing fewer secondary rays per primary ray. Consequently, the dis-
tribution of queries to the photon map is also roughly worst-case.
A glossy material, on the other hand, will have many more rays
bouncing in a similar direction, resulting in better coherence after
reordering. Our framework is capable of handling glossy materials
by using the appropriate BRDF function – f () in Equation 2.

Concurring with the bandwidth analysis we gave in Equation 7,
the performance of this framework is roughly proportional to the
number of shader operations, and the bandwidth cost of tree-build
and search are usually only 10-30% of the entire time spent render-
ing. Table 2 shows that nearly half the time for gathering is spent
tracing rays, this is because our secondary rays are not ideally co-
herent. As mentioned before, this ray incoherence is independent
of photon coherence when using reordering.

7.2 Future Work
Our implementation has significant room for improvement. The
code that performs sampling and material properties is based on
the implementation in the pbrt software [10], which has a virtual
interface to invoke a BRDF evaluation. This occurs four times
in the most critical part of the shader computations, because each
〈photon, camera-point〉 can potentially have a different surface ma-
terial to evaluate the contribution. Furthermore, we did not try to
aggresively optimize SIMD implementation. Fine-tuning a SIMD
implementation is a meticulous process that often requires brute-
force trial and error, but can make a significant difference in perfor-

mance. It is very likely that careful use of the prefetch instruction
and avoiding needlessly unpacking and repacking SIMD data can
hide the latency of several hot spots in our implementation that are
currently limiting performance.

The use of sample-point estimation for photon mapping still has
many open questions. For many common lighting scenarios, fixed-
width kernels are accurate enough, but in future work it will be
appropriate to use a variable kernel width. In reverse photon map-
ping, Havran et al. [4] used the sliding-midpoint KD-tree to esti-
mate kernel widths based on the density of photons in leaf nodes.
We tried to apply this same technique with forward photon map-
ping, but found that the sliding-midpoint KD-tree resulted in too
many wasteful shader computations. The sample-point estimator
will also be interesting to examine on the GPU, because it has less
overhead than the traditional k-nearest neighbor estimation tech-
nique and is conducive to massive parallelism.

Finally there are many techniques that could be combined with
SIMD photon mapping towards interactive performance in the fu-
ture work. These include, but are not limited to, frameless ren-
dering [2], temporal coherence [18], density control [17], GPU ac-
celeration [12], custom hardware acceleration [15], and integration
with other effective real-time ray tracing techniques for global illu-
mination [23].

8 CONCLUSION
We have presented a framework that uses SIMD (single instruc-
tion, multiple data) parallelism to accelerate photon mapping. Un-
til now, it was unclear how to effectively use SIMD extensions,
because the k-nearest neighbor search had data structure overheads
and branching logic that is not appropriate for SIMD. By applying
the sample-point estimator, previously used in reverse photon map-
ping, we were able to reduce the overheads that prevented the use of
SIMD instructions. At the same time, the question arises whether
we should simply apply SIMD instructions to reverse photon map-
ping, or if forward photon mapping is more applicable to real-time.
Since an algorithmic analysis was not enough, we provided a novel
bandwidth analysis to show that forward photon mapping and re-
verse photon mapping have the same bandwidth scalability, but that
forward photon mapping has a slight advantage in the context of
SIMD parallelism and partial reordering. We demonstrated these
contributions with a framework that can compute millions of shader
operations per second, which is enough for interactive performance
at low resolutions.

ACKNOWLEDGEMENTS
This work was partially supported by the NSF grant CCF-0429983.
We would like to thank Joshua Steinhurst, Anna Majkowska, and
the anonymous reviewers for their comments. We would also like
to thank Intel Corp., Microsoft Corp., Ageia Corp., and ATI Corp.
for their generous support through equipment and software grants.

REFERENCES
[1] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D.

Teresco. Dynamic octree load balancing using space-filling curves.
Technical Report CS-03-01, Williams College Department of Com-
puter Science, 2003.

[2] A. Dayal, C. Woolley, B. Watson, and D. P. Luebke. Adaptive frame-
less rendering. In O. Deussen, A. Keller, K. Bala, P. Dutré, D. W.
Fellner, and S. N. Spencer, editors, Rendering Techniques, pages 265–
275. Eurographics Association, 2005.

[3] J. Günther, I. Wald, and P. Slusallek. Realtime caustics using dis-
tributed photon mapping. In Rendering Techniques 2004, Proceedings
of the Eurographics Symposium on Rendering, pages 111–121, June
2004.

[4] V. Havran, R. Herzog, and H.-P. Seidel. Fast final gathering via reverse
photon mapping. In Proceedings of Eurographics 2005, volume 24,
pages 323–333, Dublin, Ireland, August 2005. Blackweel.

[5] H. W. Jensen. Global illumination using photon maps. In Render-
ing Techniques ’96 (Proceedings of the Seventh Eurographics Work-
shop on Rendering), pages 21–30, New York, NY, 1996. Springer-
Verlag/Wien.

[6] H. W. Jensen. Realistic Image Synthesis Using Photon Mapping. A.
K. Peters, Ltd., 2001.

[7] T. Kato and J. Saito. “Kilauea”: parallel global illumination renderer.
In EGPGV, pages 7–16, 2002.

[8] B. D. Larsen and N. J. Christensen. Simulating photon mapping for
real-time applications. In A. Keller and H. W. Jensen, editors, Ren-
dering Techniques, pages 123–132. Eurographics Association, 2004.

[9] V. C. H. Ma and M. D. McCool. Low latency photon mapping us-
ing block hashing. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
89–99, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics
Association.

[10] M. Pharr and G. Humphreys. Physically Based Rendering: from The-
ory to Implementation. Morgan Kaufmann Publishers, 2004.

[11] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering com-
plex scenes with memory-coherent ray tracing. Computer Graphics,
31(Annual Conference Series):101–108, 1997.

[12] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanra-
han. Photon mapping on programmable graphics hardware. In HWWS
’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, pages 41–50, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[13] B. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, 1985.

[14] S. Singh and P. Faloutsos. The photon pipeline revisited. The Visual
Computer, 23(7):479–492, 2007.

[15] J. Steinhurst. PhD thesis, University of North Carolina, 2007.
[16] J. Steinhurst, G. Coombe, and A. Lastra. Reordering for cache

conscious photon mapping. In GI ’05: Proceedings of the 2005
conference on Graphics interface, pages 97–104. Canadian Human-
Computer Communications Society, 2005.

[17] F. Suykens and Y. D. Willems. Density control for photon maps. In
B. Peroche and H. Rushmeier, editors, Rendering Techniques 2000
(Proceedings of the Eleventh Eurographics Workshop on Rendering),
pages 23–34, New York, NY, 2000. Springer Wien.

[18] T. Tawara, K. Myszkowski, K. Dmitriev, V. Havran, C. Damez, and
H.-P. Seidel. Exploiting temporal coherence in global illumination. In
SCCG ’04: Proceedings of the 20th spring conference on Computer
graphics, pages 23–33, New York, NY, USA, 2004. ACM Press.

[19] G. R. Terrell and D. W. Scott. Variable kernel density estimation. The
Annals of Statistics, 20(3):1236–1265, 1992.

[20] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Computer Graphics Group, Saarland University, 2004.
Available at http://www.mpi-sb.mpg.de/∼wald/PhD/.

[21] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive ren-
dering with coherent ray tracing. In A. Chalmers and T.-M. Rhyne,
editors, Computer Graphics Forum (Proceedings of EUROGRAPH-
ICS 2001, volume 20, pages 153–164. Blackwell Publishers, Oxford,
2001. available at http://graphics.cs.uni-sb.de/ wald/Publications.

[22] I. Wald, J. Günther, and P. Slusallek. Balancing considered harmful
- faster photon mapping using the voxel volume heuristic. Comput.
Graph. Forum, 23(3):595–604, 2004.

[23] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interac-
tive global illumination using fast ray tracing. In Proceedings of the
13th EUROGRAPHICS Workshop on Rendering. Saarland University,
Kaiserslautern University, 2002.

[24] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. State of the art in ray tracing animated scenes.
In STAR Proceedings of Eurographics 2007. Eurographics Associa-
tion, Sept. 2007. to appear.

[25] I. Wald, T. J. Purcell, J. Schmittler, C. Benthin, and P. Slusallek. Re-
altime ray tracing and its use for interactive global illumination. In
Eurographics State of the Art Reports, 2003.

