
Dynamic Animation and Control Environment

Ari Shapiro
University of California, Los Angeles

ashapiro@cs.ucla.edu

Petros Faloutsos
University of California, Los Angeles

pfal@cs.ucla.edu
Victor Ng-Thow-Hing

Honda Research Institute, USA
vngthowhing@honda.hra.com

Abstract
We introduce the Dynamic Animation and Control En-

vironment (DANCE) as a publicly available simulation
platform for research and teaching. DANCE is an open
and extensible simulation framework and rapid prototyp-
ing environment for computer animation. The main focus
of the DANCE platform is the development of physically-
based controllers for articulated figures. In this paper
we (a) present the architecture and potential applications
of DANCE as a research tool, and (b) discuss lessons
learned in developing a large framework for animation.

Key words: Dynamic animation, graphics system.

Figure 1: Two skeletons using different control meth-
ods.The left skeleton is key-framed, while the right char-
acter responds to physical forces derived from the kine-
matic motion. Both characters can simultaneously coex-
ist and interact under DANCE.

1 Motivation
Physics-based animation research has a high barrier of
entry. Research groups must dedicate resources towards
building graphical tools and systems as a prerequisite
to new research. Most systems developed by the dy-
namic animation community are not shared, requiring
nearly every research group to re-engineer the same set

of tools. Openly available tool sets usually take the form
of libraries, such as RAPID [10] for collision detection
or Open Dynamics Engine [28] for dynamic simulation.
However, these disparate libraries address only parts of
what are needed to properly implement physical simu-
lation with articulated figures. In addition, they often
have overlapping aspects, resulting in duplicated code
that needs to be reconciled. Many individual libraries
use different code bases for primitive modeling types,
such as vectors and matrices, resulting in heavyweight
conversions between function calls. Developing a frame-
work for dynamic character simulation requires a great
deal of engineering work in order to generate a reusable
system. In addition, the various problem areas that have
been neatly segmented by the research community, such
as the separation of collision detection from collision res-
olution, must be unified in practice. We have found it
difficult to cleanly separate these and other areas as well
as the theories would suggest.

We have developed the Dynamic Animation and Con-
trol Environment (DANCE) as an open framework for
computer animation research. DANCE’s primary focus is
the development of simulations and dynamic controllers.
This is in contrast to many other animation systems which
are oriented towards geometric modeling and kinematic
animation.

1.1 Contributions
DANCE offers solutions to the problems of flexible reuse
of controllers, actuators and interactive participation in
3-D physically based animation. In particular, DANCE
has built-in support for physical simulation of articulated
figures. In addition, DANCE provides basic modeling
capabilities and support for kinematic animation such as
motion capture and key framing.

DANCE demonstrates a powerful, open system model
that permits a wide variety of different applications to be
built with a common fundamental core and allows com-
munication with external programs that can offer spe-
cialized functionality. The design of the base classes

in DANCE unifies the large amount of specialized con-
trollers and actuators that have been developed with a
standard interface so that they can be shared in a com-
mon physical environment.

The power of an open plug-in architecture lies in the
ability for a community of developers to work together to
rapidly build a very complex system made up of relatively
simple parts. As plug-ins can be selectively included into
the main system, DANCE can be a useful research tool
that enables various aspects of a system to be isolated for
study.

Section 2 discusses DANCE’s relation to other anima-
tion systems. Section 3 discusses the a number of design
issues that were considered in constructing DANCE. Sec-
tion 4 highlights the key base class components, called
primitive plug-ins, of DANCE’s architecture and outlines
how some of them were used to create interesting sub-
classes. Section 5 presents a set of examples that illus-
trate the flexibility of our system with a focus on the de-
velopment of dynamic controllers. In Section 6 we dis-
cuss limitations and restrictions of the system. In Sec-
tion 7 we discuss lessons that we learned while develop-
ing this system and present recommendations for build-
ing similar systems in the future. Finally, Section 8 dis-
cusses possible research directions to extend DANCE or
that DANCE can be applied to.

2 Related Work

Many tools, libraries and systems have been designed for
the purpose of creating animations. Commercial systems
such as Maya [1] and 3D Studio Max [5], focus on an
interactive interface for modeling and animation. These
tools are primarily oriented towards kinematic animation,
such as key-framing. They incorporate dynamics in the
form of particle systems and passive dynamics for rigid
bodies by extending their modeling and kinematic ani-
mation systems. Our system differs from these in that it
is tailored towards physics-based animation and control,
rather than modeling or kinematic animation. The con-
trol architecture of DANCE enables active dynamics and
interactive control during physical simulation, rather than
passive dynamics and simple ”rag doll” effects. DANCE
also provides modeling and kinematic functionality, but
does so as an extension of its dynamic capabilities, rather
than vice-versa. Houdini [29] uses procedural networks
to produce simulation and modeling results. DANCE’s
components are of a larger granularity than those pro-
vided by Houdini and it does not utilize a procedural net-
work paradigm.

Endorphin [20] is a commercial simulation tool that
provides basic dynamic control strategies for humanoid
characters during physical simulation. Endorphin pro-

vides a set of behaviors for their dynamic characters and
a simulation framework for developing character anima-
tion under physical simulation. We provide a research
framework for designing controllers for dynamic charac-
ters with any topology or complexity.

Breve [16] is a simulation environment meant for the
development of artificial life in a physically simulated
world. It uses a scripting language that allows control
strategies and event-based reactions to the environment
for large numbers of agents. DANCE differs in that it is
designed to support robust articulated objects with com-
plicated control strategies for small number of agents.

Other documented animation systems exist but are not
openly available for use. Industrial Light & Magic [15]
created a dynamics animation system suitable based on
a spring-mass model. Their solver is based on a second
order Verlet integration.

Many dynamics engines exists to assist the develop-
ment of physics-based animation, both open systems like
Open Dynamics Engine (ODE) [28], and commercial
ones such as Havok [11], Vortex [3] and SD/Fast [13].
Our system provides a framework and API with which to
incorporate any simulation engine. To date, five differ-
ent simulators are currently implemented in the DANCE
framework, including ODE, SD/Fast and others (see Sec-
tion 4.1).

Aside from architectural differences or design
paradigms, DANCE differs from many commercial
systems in that the code is publically available for use
and inspection by the entire research community. This
enables greater control over research and development
by the user, since fundamental properties of the system
can be modified as necessary. This also enhances the
ability to perform research by reducing barriers to entry
such as cost or restrictive licensing agreements.

2.1 Controllers
An interesting area of research in physics-based anima-
tion is the design and construction of controllers that can
compute the active forces and torques required to con-
trol a character, either as an articulated figure or a de-
formable object. Controllers have been created to pro-
duce a range of locomotive and non-locomotive tasks,
such as swimming[30, 34], running[12], walking[17]
and breathing [35]. Although controllers are inherently
reusable, their actual implementations are often restricted
and embedded in custom systems built by various re-
search groups for their own specific purposes. Other
experimental systems allowed only a limited number of
different types of controllers to coexist [30]. The incor-
poration of new controllers into such systems often im-
plied a large undertaking in code redesign and develop-
ment. DANCE allows controllers to be built as separate

programs that adhere to restricted, but general, interfaces
using standard object-oriented design. The end result is
that an animation can be constructed consisting of several
controllers cooperating or competing with each other as
in [8], [7] and [26].

A true physically based character could react to chang-
ing obstacles in its environment and produce unique mo-
tions that do not suffer from the repetitive, pre-fabricated
motion common in existing games and virtual worlds.
Current interactive applications store sequences of fixed
motion trajectories in finite state machines that selec-
tively play back different sequences of motion according
to user events.

Systems have been introduced, such as the MOTIVATE
Intelligent Digital Actor System[6], that attempt to syn-
thesize motion dynamically and model high-level behav-
iors. However, we do not believe that any physical sim-
ulation is being performed at the lower levels of motion.
Many existing strategies attempt to parameterize existing
motion kinematically to adapt it to different situations.
Such strategies do not offer true interactivity, as the pa-
rameterized motion is still inherently related to a limited
set of pre-recorded actions.

Figure 2: UML class diagram demonstrating the design
of the dynamic simulators, kinematic simulators and con-
trollers. The Open Dynamics Engine (ODE) is imple-
mented using the DSimulator class. Kinematic animation
can also be derived and used concurrently with dynamic
controllers, such as a proportional-derivative (PD) con-
troller. This enables simulation of mixed kinematic and
dynamic control.

3 System Design
DANCE’s design focus is on the creation of a modular
and open physics-based animation system. In some cases,

Figure 3: A dynamic character is programmed with dy-
namic controllers that allow it to roll and get up following
an interaction with a physical object.

compromises had to be made to find a balance between
competing requirements, like speed and data abstraction.
Other times, seemingly contrasting goals like tight inte-
gration and modularity had elegant solutions that allowed
both to be fulfilled.

DANCE is structured using the principled application
of object-oriented design and dynamically-linked objects
(plug-ins). The core architecture maintains a simple set
of base classes that it uses in its user-interface, display
and physical simulation subsystems. We have purposely
restricted the number of different primitives in order to
have a relatively simple core, while leaving all the func-
tionality and complexity within the plug-ins. For exam-
ple, the interface to the actuator primitive has allowed
us to serendipitously implement a wide set of features
that include collision detection, ground models, interac-
tive drag manipulators and deformable muscles as shown
in Figure 5. These features can be selectively included
in an animation, empowering the animator with a flexi-
ble set of tools that can be combined in different ways to
produce animations.

Realizing that physically-based animation is only one
possible means of creating motion, DANCE allows kine-
matically based controllers to handle traditional key-
framed animation in a manner that is consistent and sen-
sitive to the physical, dynamics-based environment. Fur-
thermore, animation generated with DANCE can be ex-
ported directly into commercial animation and rendering
systems such as Maya[1] or the RenderMan language[31]
to take advantage of the advanced rendering and model-
ing capabilities that such facilities offer.

Although DANCE is primarily a programming tool, it
can be used as an interactive modeling environment. It is
a system that allows an articulated figure and its physical
environment to be constructed with complete specifica-
tion and manipulation of different joint types. Without

leaving DANCE’s environment, a system of equations of
motion for the figure can be generated, followed by the
resulting simulation which can be adjusted and viewed in
real-time using interactive cameras and direct manipula-
tion. DANCE supports a number of different input de-
vices such as mice, joysticks and haptic devices. These
devices can be used as a means of interactively manipu-
lating a running simulation by providing real-time force
and torque information.

4 Plug-in Primitives
DANCE is primarily designed as a system for the
physics-based animation and control of articulated fig-
ures. The system is divided into components consisting
of C + + classes.

Many other classes exist that are necessary for the
proper execution of the DANCE environment, including
those that provide the underlying glue that connects vari-
ous components. For example, classes for management
of the graphical interface, script interpreter and driver
subsystem. The details for those classes will not be de-
scribed in this paper as they appear in the source code and
their details do not need to be understood in order to use
the functionality of the system. This section discusses the
most important classes of the system, that we refer to as
the plug-in primitives.

There are several diagrams given in this paper that
detail the structure of the relevant parts of the DANCE
system. Figure 4 shows the general structure of the
plug-in primitives, described below. Figure 7 shows the
derivation of systems of hierarchical objects necessary
for the development of complex articulated figures, such
as human-like characters. Figure 2 shows the structure
we used for the development of dynamic controllers.

The plug-in primitives, which provide the basic func-
tionality of the system, are the simulator, actuator, sys-
tem, modifier and geometry primitives. Each of these
primitives is described in the sections below.

Our plug-in mechanism is based on the object-oriented
facilities of the C++ programming language and the dy-
namic runtime linking provided by modern operating sys-
tems. DANCE exchanges information through the inter-
faces of the plug-in primitives, represented by classes,
which can be sub-classed to the dynamically linked ob-
jects.

4.1 Simulator Class
The simulator is one of the most important components of
a physics-based system as it performs the numerical inte-
gration to create motion over time. DANCE implements
simulators as plug-ins so that they can be compiled and
linked by the system at runtime.

To provide a uniform simulation interface for DANCE,

Figure 4: UML class diagram showing the DANCE plug-
in primitives. For readability, important attributes and
methods are shown to clarify the use of each class.

we bound the main simulation routines to methods of the
simulator class so that the simulator could be encapsu-
lated and associated with an individual System instance
(described in Section 4.3) such as articulated objects.
This allows DANCE to contain several different System
instances, each with their own individual simulators. Of
numerical importance, separate simulators can be applied
in situations where there are large differences between the
natural motion frequencies of several articulated objects.
Objects with high frequency motion could use smaller in-
tegration timesteps, while objects with smoother motion
would still be able to use larger timesteps. In contrast, if
only a single, global simulator existed, the timestep must
be set to the smallest value to ensure stability of the over-
all system.

To date, five different simulators are currently imple-
mented in the DANCE framework as plug-ins: ODE,
SD/Fast, ABDULA [9], a version of Baraff’s simulator
[2] and a version of Verlet integration [14].

These simulator implementations can solve the equa-
tions of motion for any plug-in that conforms to the prim-
itive plug-in API. Other simulators can be added to sim-
ulate deformable objects or particle-based systems, such
as fire, smoke or water.

4.2 Actuator Class
We define the actuator class to represent any source of
internal or external loads onto a system. Actuators can
apply forces and torques to all objects in a scene or to
specific objects, link and joints. The actuator class has

Spring

Drag

Muscle

Field

Collision

Plane ground

constructor

parameters

display

interaction

interface

exert load

ActuatorClass:

Virtual Methods

Figure 5: Actuator Class and some subclasses

proved to be a versatile class that is capable of modeling
a wide range of physical phenomena. Figure 5 shows the
structure of the actuator base class.

Field actuators can be applied globally or on an in-
dividual object basis. We use the field actuator to sim-
ulate the effects of Newtonian gravity, wind forces or a
water-based effects, such as in [34]. By implementing
these forces as an actuator, we can selectively apply it
to objects in the scene. The entire simulation environ-
ment can be controlled by turning these forces on and off
both interactively and automatically based on temporal
and contact-based events. Thus, users can remove or ap-
ply the physical effects of actuators on individual objects.

Damper actuators are global actuators that exert a vis-
cous force or torque at the joints of an object to emu-
late the effects of joint friction or air resistance. They
are mainly used to provide a more realistic physical en-
vironment that introduces gradual energy loss to the sys-
tem. Without them, a moving passive object would never
come to a complete rest because the physical simulation
conserves all the kinetic and potential energy in the sys-
tem.

To model periodic motions, we have built a PD-based
period actuator that can provide sinusoidal control. We
have used this actuator to create flapping wings in a hum-
mingbird model shown in Figure 6. Frequency and am-
plitude of the control signal can be altered to create many
different controllers for periodic locomotion. The details
for such an actuator and their relationship to controllers
are described in Section 5.

Traditionally, biomechanical studies have used linear
actuators modeled as line segments to represent muscles
in human motion studies [4]. As a result, forces are ap-
plied at single origin and insertion points at either end
of the muscle. We have built a detailed muscle actuator,
shown in Figure 8 that can apply forces over an area of
an object’s surface instead of a single point. The actua-

CB

A

Figure 6: A hummingbird model can be modeled in Maya
in order to enhance the appearance of an underlying phys-
ical model.

tor has a deformable geometry that can be displayed and
manipulated interactively, showing the flexibility of the
actuator class.

4.3 System Class
Systems encapsulate objects that are simulated in the
DANCE environment. Systems can be articulated ob-
jects, such as humanoid characters, or can represent hair
or cloth. A system maintains a state and it is often associ-
ated with a simulator that models how the system’s state
changes over time.

An example of use of the system class is the gener-
ation of articulated figures for simulation of humanoid
characters. We derive the ArticulatedObject class from
the DSystem class for this purpose, Figure 7, described
below. The ArticulatedObject allows dynamic simulation
of hierarchical structure, while also providing a represen-
tation for kinematic animation, such as motion capture.

Articulated Object Class
The ArticulatedObject class provides the animatable ob-
jects or characters in DANCE. We define an articulated
object to consist of one or more rigid body links held to-
gether by constraints. The articulated object class is ac-
tually a container class for joint and link class instances,
providing useful methods for adding and removing links.
A link represents the body segments of an object and can
have their own geometry instances. The geometry class
can be subclassed to create a variety of different visual
representations such as cylinders or triangle lists. The
joint class can represent any constraint between two links
and is responsible for handling the display and manipu-
lation of these constraints. DANCE supports a variety of
translational and rotational joints.

4.4 Modifier Class
Modifiers are generic structures which alter systems in
DANCE. A modifier could change a system by, for exam-
ple, transforming its underlying geometry. Alternatively,
a modifier could change the state of a system according
to some parameters, such as time or number of objects in
the scene. Whereas Systems are heavyweight objects that
establish rules and structure for objects that exist in a sim-
ulation environment, Modifiers are lightweight structures
that can be added and removed from the simulation with-
out disrupting the basic operation of the underlying Sys-
tem. As an example, we create a plug-in that implements
linear blend skinning as a modifier, which in turn manip-
ulates the underlying geometry of an ArticulatedObject
instance for better visual effect. The DANCE structure
allows the user to subclass the basic linear blend skin-
ning plug-in to create different interactive interfaces for
skinning [19] or more complex character skinning algo-
rithms, such as [18].

Figure 7: UML class diagram showing how articulated
characters extend from the DSystem class. Links and
joints are managed by the ArticulatedObject class. Char-
acter skinning is implemented by subclassing the DModi-
fier, which changes the ArticulatedObject and underlying
geometry.

4.5 Geometry Class
Geometry represents models, such as spheres, meshes
and surfaces. Basic geometry can be designed using
other modeling tools and subsequently imported into the
DANCE environment.

5 Applications
While the plug-in primitives establish the architecture of
the system, the power of the DANCE environment comes
from the development of plug-ins that can be generated
by extending the plug-in primitives.

We describe below a number of plug-ins that have been
developed using the DANCE system. The design of the
system allows us to to reuse modules developed for one

application for a different purpose. For example, the
development of a plug-in that represents gravity can be
reused for any application that utilizes the primitive plug-
in interfaces. Of special interest are plug-ins that enhance
the ability of the user to utilize physics-based animation
in a meaningful way.

Implementation of Controllers
The controller is a class of objects that can apply control
loads to specified objects. Its purpose is to allow the user
to implement simple or complex control techniques. It
extends the actuator primitive plug-in to avoid restricting
users to a specific type of controllers and also to avoid
overloading the system for users that do not wish to use
control.

We derive our controllers by refining the concept of
an actuator. The actuator represents a muscle or exter-
nal force independent of an object. Controllers, on the
other hand, can be thought of as a brain, which in turn
can affect a number of other actuators. Controllers can
hierarchical in structure and use sensors and feedback to
produce complex motions.

The controller implementation is very general and al-
lows virtually any control paradigm that is possible to
be implement by other systems, to be implemented as a
plug-in for DANCE. For demonstration purposes we have
implemented two different types of controllers namely
pose and kinematic controllers.

Pose controllers have been used extensively as the ba-
sic control structure in a variety of applications [17, 7].
They are suited particularly for periodic motions and can
be used with or without feedback. Typically, they are
represented as a finite state machine (FSM) with time
transitions. The states are snapshots of the character’s
motion which, in most cases, drive appropriate sets of
proportional- derivative controllers. The latter transform
the poses appropriately into spring and damping forces
that act on the object.

Our version of kinematic controllers can prescribe mo-
tion for articulated objects using inverse dynamics meth-
ods similar to those employed in [36]. The user can spec-
ify functions of time that define the acceleration, velocity
and positions of specific degrees of freedom of selected
objects. Pure kinematic controllers that utilize inverse
kinematics as well as other kinematic methods can also
be created from the basic controller class.

5.1 Drag Actuators and Spring Actuators
Drag actuators and spring actuators allow an animator
to interactively apply spring forces to objects. A spring
actuator is defined by two endpoints p1, p2 which can be
interactively attached to objects or at fixed locations any-
where in the scene. It is capable of automatically recog-

nizing if its endpoints are attached on immobile or mov-
ing objects. It exerts spring and damping forces on the
endpoints of the form:

fp1
= −fp2

= K(|l| − l0)
l

‖l‖
+ Dl̇,

where K,D are stiffness and damping constants, l0 is the
spring’s rest length, l = p2 −p1, the dots indicates a time
derivative. The user can interactively control the stiffness
and damping, the position of the endpoints, and the loca-
tions they are attached on any time during the simulation.
Thus the spring actuator is a powerful tool that allows the
user to position and manipulate objects in a physics based
way. For example, using a number of spring actuators we
can turn a system into a virtual puppet. The drag actuator
is a spring actuator with one point always following the
mouse pointer and the other attached on an object. Its rest
length is by default zero, thus dragging the attached point
towards the location of the pointer. It allows the user to
quickly and easily apply a spring force on a point of an
object by a simple mouse click.

A wide variety of animation applications involve ob-
jects interacting with a ground model. We avoid restrict-
ing the system to a specific type of ground model by im-
plementing the latter as an actuator. The plane ground
actuator implements a plane ground of arbitrary orienta-
tion. We have implemented a simple collision detection
method based on monitor points and we use a penalty
method to resolve the collisions. The user can interac-
tively affect the stiffness, damping and friction constants
any time during the animation to produce desired affects.
Using our interface it is trivial to create arbitrary plane
grounds on the fly with separately controlled parameters
in order to construct more complex environments.

5.2 Dynamic Muscle Modeling
We have applied DANCE’s open architecture to produce
a set of wide range of different systems.

Figure 8 displays parts of an anatomically-based mod-
eler for humanoid characters. Unlike previous models for
anatomical animation[25, 32], DANCE was used to im-
plement the muscles as actuators that are capable of ex-
erting physical forces on the bone links they are attached
to, directly creating motion in the articulated model. Con-
straint objects were used to establish point to point con-
tacts between portions of the muscle actuator and the
links. In each example, the user interfaces are customized
towards the specific application, while still retaining a
common core architecture. Note that the muscles were
added to existing plug-ins that described an articulated
character. We believe that the ability to share complex
components is the most interesting feature of a frame-
work like DANCE.

Figure 8: Biomechanical modeling and simulation in
DANCE.

5.3 Hair Simulation
Figure 9 demonstrates interactive hair simulation. The
hair model (derived from system) and the associated sim-
ulator are based on particle systems and dynamics. The
face model is a separate plugin derived also from the sys-
tem base class and is animated using a blendshape ap-
proach.

Figure 9: Hair simulation in DANCE using particle sys-
tems.

5.4 Speech and Facial Animation
By using blendshapes, extending the animation classes
and adding voice synthesis libraries, we are able to syn-
thesize speech and animate facial expressions within the
DANCE environment, as shown in Figure 10.

Figure 10: Expressive facial animation.

6 Limitations
Designing frameworks that provide the right level of
granularity can be tricky. A highly structured system pro-
vides power to a programmer by allowing him to cre-
ate complicated programs with small amounts of code.
Highly structured systems, however, can suffer from too
much rigidity, requiring the programmer to perform ad-
ditional work when designing behavior that falls outside
of the scope of the framework. On the other hand, too
little structure can result in a disparate set of functions
that is ignored by the programmer, who sees the frame-
work as unnecessary and powerless. DANCE errs on the
side of too little structure rather than too much, because
we believe that an overly restrictive environment would
discourage the use of the system as a research tool.

6.1 Metadata Efficiency
We designed DANCE to be flexible and modular. New el-
ements can be designed as plug-ins and replace or extend
existing functionality. However, this architectural flexi-
bility comes with a cost in performance. The metadata
required to generalize the interfaces is additional over-
head that the system must handle. For example, a stand-
alone version of cloth simulation ran nearly twice as fast
as it was when integrated into DANCE. However, the
cloth simulator integrated into DANCE can handle arbi-
trary cloth topology and arbitrary collision geometry, as
well as being able to coexist alongside other simulators.
Thus, our design preference for compatibility limits per-
formance at the expense of compatibility.

6.2 Optimization Limitations
It is difficult to optimize component interfaces without
adding some cost to the overall software system. This
cost will either take the form of: 1) circumventing the
interface by using the special capabilities of that com-
ponent, or 2) adapting the general interface to the opti-
mize component, forcing the other components to adhere
to the optimized interfaces, thus complicating the system.
Utilizing a more complicated interface reduces the effec-
tiveness of the framework by increasing the amount of
work necessary to integrate various components. Thus,
our system is generally slower than most commercial sys-
tems, which are usually optimized for performance. Run-
ning dynamics engines directly through their interfaces
will result in better performance than through DANCE,
since the metadata of the system provides overhead that
isn’t necessary for all uses of the tool. For example, the
ArticulatedObject, which describes a hierarchy of con-
nected bodies, updates the local transformation matrices
of all rigid bodies in the hierarchy at every timestep. This
update is not necessary for every application yet is per-
formed nonetheless for compatibility with other features

of the system, such as controllers.

Loose vs. Tight Coupling
Certain plug-ins require a tight coupling with other plug-
ins in order to work properly. For example, simulators
need specific collision information in order to effect col-
lision resolution on rigid bodies. Under our architec-
ture, a simulator, a collision detector and a collision re-
solver are three separate plug-ins derived from DSimu-
lator, DModifier and DActuator respectively. However,
the interfaces between DSimulator and DActuator are not
detailed enough in order to provide the proper function-
ality between the classes. Thus, instances of the sim-
ulator, collision detector and collision resolver override
the framework by referring to the specific functionality
of the other components. Future enhancements would ei-
ther design better interfaces in order to properly separate
the three plug-ins from each other, or combine all three
aspects into one plug-in.

Code Management
The DANCE code base has been altered by over 20 dif-
ferent people over a period of 5 years. This results in a
collection of different coding styles and design decisions
as different principals have moved the code in various di-
rections. As with any large system, maintenance of code
and the elimination of bugs is an ongoing process.

7 Lessons Learned
Below we present some of our findings in building a large
simulation system.

7.1 One Size Fits All Makes A Slow System
It is relatively easy to develop an animation system that
can simultaneously handle the needs of different complex
phenomena, such as rigid body simulation and fluid sim-
ulation. However, it is difficult to do so and have those
aspects run quickly and efficiently. Computer graphics
applications in particular must run quickly. To do so re-
quires optimization of various parts of the system. This
optimization is difficult to accomplish when the algo-
rithm must accommodate disparate kinds of data and can-
not make useful assumptions about the data. The original
focus of the DANCE system of a simulation environment
for developing controllers has not changed since its in-
ception, but it has been adopted to accommodate a num-
ber of different simulation environments. These adapted
environments run more slowly and present a less cohesive
programming environment for the user than they would
as standalone systems.

7.2 Development of Dynamic Controllers
Designing robust dynamic controllers is difficult. There
is no universally accepted method for the development

of dynamic controllers. Current methods of develop-
ment include adapting algorithms from biomechanics or
robotics, laborious hand coding of small actions or the
use of machine learning techniques such as genetic al-
gorithms or reinforcement learning. One of the design
goals of DANCE was to create an environment where
an inexperienced user could develop dynamic controllers
without having to understand control theory, biomechan-
ics and machine learning. We found it difficult to pro-
vide the vast number of resources required for such dis-
parate methods for use by an end user without requiring
the end user to have a large amount of specialized knowl-
edge. Future research work in this area will probably
need to describe a limited framework for developing spe-
cific types of dynamic control. DANCE remains a tool
for programmers.

8 Conclusions and Future Work

With DANCE, we have built an open, extensible
physically-based animation system that engages the ani-
mator to interactively direct a 3-D animation. The plug-in
architecture allows a large library of diverse actuators and
controllers to be implemented and integrated using a stan-
dard object-oriented interface. In addition, DANCE plug-
ins extend the system to utilize kinematic animation and
a variety of non-physically-based animation structures.

Controller designers can build their own actuators, un-
restricted by any particular technique. Indeed, controllers
can be built to perform prescribed motion to integrate
pre-existing motion path trajectories such as those cre-
ated with keyframe animation or spacetime constraint op-
timization [33]. Practitioners of physics-based animation
can exchange controllers with each other to test out novel
cooperative and competitive tasks. This area has not been
explored very much in computer animation, but was en-
ticingly hinted at in [27].

We use DANCE to build sophisticated, interactive 3-
D environments, including the physical anatomical-based
modeler shown in Figure 8. DANCE and its derivatives
have been used in a number of different research projects,
including [24, 8, 26, 21, 22, 23]. We openly and publicly
distribute DANCE at http://www.magix.ucla.edu/dance/
in the hope of encouraging the further cooperation and
sharing of controllers, actuators and other implementa-
tions. We see the DANCE platform as the basis for re-
search into computer graphics in the areas of character
animation, physically-based motion and control.

Acknowledgements

We would like to thank Joe Laszlo for many useful dis-
cussions and for porting earlier versions of DANCE on
MacOS. We would also like to thank Michael Neff for

testing early versions of the system and for his useful
comments. Lucio Flores implemented simulator plug-
ins. Albert Chu implemented the skinning module and
interface. Gordon Cook contributed an inverse kinemat-
ics solver. Alice Wang and Michael Emmi produced the
speech and facial animation images.

The work in this paper was partially supported by NSF
under contract CCF-0429983. We would also like to
thank Intel Corp., Microsoft Corp. and ATI Corp. for
their generous support through equipment and software
grants.

References
[1] Alias/Wavefront. Maya, 1997.

[2] David Baraff. Physically Based Modeling: Prin-
cipals and Practice. SIGGRAPH Online Course
Notes, 1997.

[3] CMLabs. Vortex, software. http://www.cm-
labs.com, 2004.

[4] Scott L. Delp, J. Peter Loan, Melissa G. Hoy,
Felix E. Zajac, Eric L. Topp, and Joseph M.
Rosen. An interactive graphics-based model of the
lower extremity to study orthopaedic surgical pro-
cedures. IEEE Transactions on Biomedical Engi-
neering, 37(8):757–767, 1990.

[5] Discreet. 3d studio max, 2003.

[6] The Motion Factory. Motivate intelligent digital ac-
tor advantage. www.motion-factory.com, 1997.

[7] Petros Faloutsos, Michiel van de Panne, and
Demetri Terzopoulos. Composable controllers for
physics-based character animation. In Proceedings
of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 251–
260, August 2001.

[8] Petros Faloutsos, Michiel van de Panne, and
Demetri Terzopoulos. The virtual stuntman: Dy-
namic characters with a repertoire of autonomous
motor skills. Computers & Graphics, 25(6):933–
953, 2001.

[9] Frans Faure. Fast iterative refinement of articulated
solid dynamics. IEEE Transactions on Visualization
and Computer Graphics, 5(3):268–276, 1999.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-
Tree: A hierarchical structure for rapid interference
detection. Computer Graphics, 30(Annual Confer-
ence Series):171–180, 1996.

[11] Havok. Havok 2. http://www.havok.com, 2004.

[12] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F.
O’Brien. Animating human athletics. In Computer

Graphics (SIGGRAPH ’95 Proceedings), pages 71–
78, 1995.

[13] Michael G. Hollars, Dan E. Rosenthal, and
Michael A. Sherman. Sd/fast. Symbolic Dynam-
ics, Inc., 1991.

[14] Thomas Jakobsen. Advanced character physics -
http://www.ioi.dk/homepages/thomasj/publications/g
dc2001.htm.

[15] Zoran Kai-Alesi;, Marcus Nordenstam, and David
Bullock. A practical dynamics system. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer animation, pages 7–16.
Eurographics Association, 2003.

[16] Jon Klein. Breve: A 3d environment for the simu-
lation of decentralized systems and artificial life. In
Proceedings of the eighth international conference
on Artificial life, pages 329–334. MIT Press, 2003.

[17] Joseph Laszlo, Michiel van de Panne, and Eugene
Fiume. Limit cycle control and its application
to the animation of balancing and walking. In
Computer Graphics (SIGGRAPH ’96 Proceedings),
pages 155–162, 1996.

[18] Alex Mohr and Michael Gleicher. Building ef-
ficient, accurate character skins from examples.
ACM Transactions on Graphics, 22(3):562–568,
July 2003.

[19] Alex Mohr, Luke Tokheim, and Michael Gleicher.
Direct manipulation of interactive character skins.
In Proceedings of the 2003 symposium on Interac-
tive 3D graphics, pages 27–30. ACM Press, 2003.

[20] Natural Motion. Endorphin.
www.naturalmotion.org, 2003.

[21] Michael Neff and Eugene Fiume. Modeling ten-
sion and relaxation for computer animation. In
SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer an-
imation, pages 81–88. ACM Press, 2002.

[22] Michael Neff and Eugene Fiume. Aesthetic edits
for character animation. In 2003 ACM SIGGRAPH /
Eurographics Symposium on Computer Animation,
pages 239–244, August 2003.

[23] Michael Neff and Eugene Fiume. Methods for
exploring expressive stance. In 2004 ACM SIG-
GRAPH / Eurographics Symposium on Computer
Animation, pages 49–58, July 2004.

[24] Victor Ng-Thow-Hing. Anatomically-based mod-
els for physical and geometric reconstruction of hu-
mans and other animals. PhD thesis, 2001.

[25] Ferdi Scheepers, Richard E. Parent, Wayne E. Carl-
son, and Stephen F. May. Anatomy-based model-
ing of the human musculature. In Computer Graph-
ics (SIGGRAPH ’97 Proceedings), pages 163–172,
1997.

[26] Ari Shapiro, Frederic H. Pighin, and Petros Falout-
sos. Hybrid control for interactive character ani-
mation. In 11th Pacific Conference on Computer
Graphics and Applications, pages 455–461, 2003.

[27] Karl Sims. Evolving virtual creatures. In Com-
puter Graphics (SIGGRAPH ’94 Proceedings), vol-
ume 28, pages 15–22, July 1994.

[28] Russell Smith. Open dynamics engine.
http://opende.sourceforge.net, 2003.

[29] Side Effects Software. Houdini, 2000.

[30] Xiaoyuan Tu and Demetri Terzopoulos. Artificial
fishes: Physics, locomotion, perception, behavior.
In Andrew Glassner, editor, Computer Graphics
(SIGGRAPH ’94 Proceedings), Computer Graph-
ics Proceedings, Annual Conference Series, pages
43–50. ACM SIGGRAPH, ACM Press, July 1994.
ISBN 0-89791-667-0.

[31] Steve Upstill. The Renderman Companion: A Pro-
grammer’s Guide to Realistic Computer Graphics.
Addison-Wesley Publishing Company, New York,
1989.

[32] Jane Wilhelms and Allen Van Gelder. Anatomi-
cally based modeling. In Computer Graphics (SIG-
GRAPH ’97 Proceedings), pages 173–180, 1997.

[33] Andrew Witkin and Michael Kass. Spacetime con-
straints. In John Dill, editor, Computer Graphics
(SIGGRAPH ’88 Proceedings), volume 22, pages
159–168, August 1988.

[34] Po-Feng Yang, Joe Laszlo, and Karan Singh.
Layered dynamic control for interactive character
swimming. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer an-
imation, pages 39–47. ACM Press, 2004.

[35] Victor B. Zordan, Bhrigu Celly, Bill Chiu, and
Paul C. DiLorenzo. Breathe easy: Model and
control of simulated respiration for animation. In
SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer an-
imation, pages 29–37. ACM Press, 2004.

[36] Victor B. Zordan and Jessica K. Hodgins. Mo-
tion capture-driven simulations that hit and react.
In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer an-
imation, pages 89–96. ACM Press, 2002.

	Motivation
	Contributions

	Related Work
	Controllers

	System Design
	Plug-in Primitives
	Simulator Class
	Actuator Class
	System Class
	Modifier Class
	Geometry Class

	Applications
	Drag Actuators and Spring Actuators
	Dynamic Muscle Modeling
	Hair Simulation
	Speech and Facial Animation

	Limitations
	Metadata Efficiency
	Optimization Limitations

	Lessons Learned
	One Size Fits All Makes A Slow System
	Development of Dynamic Controllers

	Conclusions and Future Work

