
Watch Out! A Framework for Evaluating

Steering Behaviors

Shawn Singh, Mishali Naik, Mubbasir Kapadia, Petros Faloutsos,
and Glenn Reinman

University of California, Los Angeles

Abstract. Interactive virtual worlds feature dynamic characters that
must navigate through a variety of landscapes populated with various
obstacles and other agents. The process of navigating to a desired lo-
cation within a dynamic environment is the problem of steering. While
there are many approaches to steering, to our knowledge there is no
standard way of evaluating and comparing the quality of such solutions.
To address this, we propose a diverse set of benchmarks and a flexi-
ble method of evaluation that can be used to compare different steering
algorithms. We discuss the challenges and criteria for objectively eval-
uating steering behaviors and describe the metrics and scoring method
used in our benchmark evaluation. We hope that, with constructive feed-
back from the community, our framework will eventually evolve into a
standard and comprehensive approach to debug, compare and provide
an overall assessment of the effectiveness of steering algorithms.

1 Introduction

A fundamental requirement of nearly all agents in virtual worlds is steering: the
ability of an agent to navigate to a goal destination, through an environment that
includes static obstacles, such as buildings, and dynamic obstacles, such as other
virtual characters. Steering is a challenging problem for autonomous agents.
In reality, steering is a result of a complex process: An agent makes steering
decisions based on sensory information, predictions of the motion of dynamic
obstacles, social etiquette, personal experience, situation specific parameters,
cognitive goals and desires. Even within the simplified environment of a virtual
world, the state space of the steering problem is too large to allow for trivial
solutions, such as pre-computed state-action tables.

There is a significant amount of research that tries to address the steering
problem. Current solutions seem to address only a subset of the problem’s chal-
lenges. For example, particle-based approaches are well suited for macroscopic
crowd behaviors, while agent-based approaches work better for the local inter-
action of a small group of agents.

Given the importance of steering in modern applications and the growing
number of steering algorithms, it is important and timely to ask the question,
how can we compare different steering approaches? To our knowledge this paper
makes the first attempt to answer this fundamental question.

A. Egges, A. Kamphuis, and M. Overmars (Eds.): MIG 2008, LNCS 5277, pp. 200–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Watch Out! A Framework for Evaluating Steering Behaviors 201

We propose a novel benchmarking tool for comparing steering behaviors. Our
framework is based on two components that form the main contributions of this
paper:

– A diverse suite of steering benchmarks : We propose a forward-looking set
of scenarios that capture the broad range of situations a steering algorithm
may encounter in practical applications.

– A method and metrics of evaluation: We propose a set of metrics that can
be used to evaluate the behavior of steering algorithms. We also propose
a method of scoring the behavior, so that two steering algorithms can be
compared. We call this process benchmark evaluation.

1.1 Criteria for Effective Evaluation

The main challenge in designing steering benchmarks is how to evaluate a steer-
ing algorithm objectively. Determining the quality of the results of a steering al-
gorithm depends on many factors, many of which are situation-specific and/or
depend on cognitive decisions by the agents. For example, an agent may decide to
push through a crowd or politely go around the crowd, depending on the agent’s
situation and personality. To remain objective even with seemingly ad hoc con-
straints, we propose that steering evaluation should satisfy the following criteria:

1. The test cases should be representative of a broad range of situations that
are common in real-world scenarios.

2. The evaluation should be blind to the specifics of the steering algorithm.
3. The evaluation should be customizable to allow a user to test for certain

expected behaviors over others.

To meet these criteria, we separate the concepts of providing test cases and
evaluating a steering result. This allows users to specialize test cases to their
needs, and our benchmark evaluation would still apply to the custom test cases.
Our evaluation uses metrics computed from the position, direction, and the
goal that the agent is trying to reach. The interpretation of these metrics is
surprisingly meaningful, yet at the same time, they do not require any knowledge
of the algorithm that produced the steering result.

Of course, no set of benchmarks and associated metrics could cover and eval-
uate every possible steering situation that can happen in the real world – and
we do not claim that ours does. We cannot necessarily tell how well one algo-
rithm does in absolute terms. Instead, our framework gives a good indication of
the pros and cons of any steering algorithm and to effectively compare different
approaches.

2 Related Work

Benchmarking is a crucial process in many fields – ranging from business man-
agement to software performance. Benchmark suites have been developed for a

202 S. Singh et al.

variety of purposes related for graphics and multimedia, including hardware [1],
global illumination [2], animation for ray tracing [3], general-purpose architec-
ture [4], and many more. In these fields, benchmarks have clear metrics for
comparison: performance in seconds, signal-to-noise ratio, power consumption,
area, monetary price, etc. Steering behaviors and other aspects of artificial in-
telligence do not have a clear objective metric – instead, much of the evaluation
is inherently subjective.
Efficiency Metrics. Some works have proposed metrics that evaluate “believ-
ability” or “natural behavior.” One major approach is to follow the rule that
natural behaviors are usually efficient (e.g. [5]). This approach has been used
effectively for animation, e.g. [6,7]. Our work applies this same principle to the
evaluation of steering behaviors, while keeping the user in control of the final
evaluation process.
Approaches to Steering. Most steering behaviors can be classified into two
major categories: Dynamics-based and agent-based. Dynamics based models rep-
resent the environment with potential fields or flow maps, often treating each
agent as a particle (e.g., [8,9,10]). Rule-based models use heavy branching to
determine the exact scenario being described, and performs an action associated
with that scenario (e.g., [11,12,13,14]). A problem is that such papers only have
enough space to showcase their novel features, and it is difficult to assess how
effective a steering algorithm will be on fundamental, common scenarios that
were not the focus of the paper. A benchmark suite can illuminate these results
in a compact form that future papers could very easily include.

3 Benchmark Suite

Our framework consists of two major parts: (1) a diverse set of test cases, and
(2) a benchmark evaluation utility that uses several metrics to score a steering
algorithm. In this section, we describe the suite of test cases.
Overview. Our current framework contains 36 scenarios. Several of the scenarios
have many variations, resulting in a total of 50 test cases. The test cases can
be classified in five major categories: (1) simple validation scenarios, (2) basic
one-on-one interactions, (3) agent interactions including obstacles, (4) group
interactions, and (5) large-scale scenarios. Many test cases can be classified in
multiple categories – this classification is only for presentation, and does not
limit the test cases or evaluation process in any way. These five categories are
detailed in Section 3.1.

Each test case specifies a number of agents and static objects. Static objects
are specified by a bounding box. Agents are specified by their size, initial posi-
tion, initial direction, desired speed, and target location(s). Additionally, each
test case specifies which agents should be examined during benchmark evalu-
ation, and a set of weights that configure the evaluation process, discussed in
Section 5. Dynamic objects can be specified as agents in a customized scenario,
however, our current suite does not test agent’s steering behaviors with dynamic
objects because the expected behaviors in such cases are application-specific.

Watch Out! A Framework for Evaluating Steering Behaviors 203

Test Case Design Choices. The main challenge of designing the benchmark
suite is to cover the range of possible scenarios without having an inordinate
number of test cases. With this in mind, we choose our test-cases to be common,
frequently appearing scenarios, but with challenging, worst-case parameters. For
example, most of the static obstacles have sharp corners which are generally more
difficult to handle than smooth ones.

In our experience, an agent in a typical urban environment faces the following
situations:

1. Walking alone. Most of the time, an agent interacts with only 2-4 nearby
agents and a few obstacles at a time.

2. Walking as part of a small group. Often the agent moves in the same direction
with 2-6 other agents and encounters other groups and obstacles.

3. Walking as part of a crowd. Groups of hundreds of agents tend to form less
frequently, and only in specific situations, for example when a large number
of agents exit or enter a building at the same time.

Furthermore, some of the situations involving many agents, can often be viewed
as a sequence of smaller problems. For example, a lone agent that tries to go
through a dense oncoming crowd of hundreds of agents, may only consider 4-5
people at a time. Based on these observations, we choose test cases that reflect
these smaller problems which can represent a large number of composite real-
world scenarios.

It is fair to ask the question, what is the effect of the specific number of agents
in the large scale examples? We have selected default values for these parameters
based on what we think are average cases in the real world. We have no reason to
believe that the specific number of agents in the large scale examples is crucial. If
an algorithm can handle a bottleneck example with exactly 500 agents, it should
be able to handle around 500 as well. In any case, we would like to remind the
reader that our goal is to provide an estimate of an algorithms performance, not
a proof of its robustness or correctness.
Customizing the Suite. It is clearly not possible to cover every conceivable
situation in our test cases. Therefore, we have designed our benchmarking ap-
proach to be flexible and customizable, so that users can quickly focus on the
details of interest to their algorithm.

The user can easily create custom scenarios to use with our existing bench-
mark evaluation. This allows our benchmark evaluation process to be useful even
for applications that cannot use our provided test cases. For example, steering
behaviors found in a sports game will have unique steering scenarios that should
be evaluated with unique criteria.

The initial conditions and parameters can also be re-defined by the user. In its
current form, our test cases are intended to roughly approximate typical humans:
agents have a diameter of 1 meter (roughly the distance from elbow to elbow of
an average human) and an average walking speed of 1.3 meters per second [15].
The user can use slightly modified initial conditions to simulate cars, bicyclists,
or any dynamic objects.

204 S. Singh et al.

3.1 Description of the Scenarios

Here we describe the scenarios used in the current version of our benchmark suite.
These scenarios can be seen in Figure 1. Many of these test cases are very chal-
lenging and forward-looking, and we expect that initially very few algorithms, if
any, will be able to successfully handle all scenarios gracefully. Scenarios anno-
tated with an asterisk (∗) are in our opinion more difficult scenarios.

Simple Validation Scenarios. These scenarios are designed to test very basic,
fundamental abilities of a steering agent. While such behaviors are trivial, it is
still important for an algorithm to successfully handle these cases.

- Simple: one agent steering towards a target located to the left, right, or
behind.

- Simple-obstacle: one agent steering towards a target located behind an ob-
stacle.

- Simple-wall: two agents steering around a wall to reach a target.
- Curves: one agent steering through an S-curve to reach the target.

Basic One-on-one Interactions. These scenarios test the ability of agents to
steer around each other. In this category, the emphasis is on natural interactions
without other threats to distract the agents.

- Oncoming: two agents traveling in opposite directions towards a head-on
collision.

- Crossing: two agents crossing paths at various angles.
- Oncoming-trick: two oncoming agents that will not collide because their

targets are closer.
- Crossing-trick: two crossing agents that will not collide because their targets

are closer.
- Similar-direction: two agents with slightly different goals traveling in a sim-

ilar direction.

Agent-agent Interactions Including Obstacles. These scenarios test the
ability of an agent to navigate around static objects while interacting with other
agents.

- Oncoming-obstacle: two oncoming agents, with an additional obstacle in the
way.

- Crossing-obstacle: two crossing agents, with an additional obstacle in the
way.

- Surprise: two agents that do not see each other until the last minute because
of large obstacles.

- Squeeze: two oncoming agents walking through a narrow hallway.
- Doorway-one-way: two agents enter a doorway from the same side.
- ∗Doorway-two-way: two oncoming agents walk through a doorway from op-

posite sides.
- Overtake: one agent is expected to overtake the other agent in a hallway.
- ∗Overtake-obstacle: one agent is expected to overtake the other agent, with

obstacles in the hallway.

Watch Out! A Framework for Evaluating Steering Behaviors 205

simple simple-obstacle simple-wall curves oncoming
(1 agent) (1 agent) (2 agents) (1 agent) (2 agents)

crossing oncoming-trick crossing-trick similar-direction oncoming-obstacle
(2 agents) (2 agents) (2 agents) (2 agents) (2 agents)

crossing-obstacle surprise squeeze doorway-one-way ∗doorway-two-way
(2 agents) (2 agents) (2 agents) (2 agents) (2 agents)

overtake ∗overtake-obstacle fan-in fan-out cut-across
(2 agents) (2 agents) (6 agents) (4 agents) (2 agents)

3-way-confusion 4-way-confusion ∗4-way-obstacle frogger ∗oncoming-groups
(3 agents) (4 agents) (4 agents) (4 agents) (12 agents)

3-squeeze ∗double-squeeze ∗wall-squeeze hallway-one-way hallway-two-way
(3 agents) (4 agents) (3 agents) (200 agents) (200 agents)

∗bottleneck-squeeze ∗evacuation ∗free-tickets random forest
(1000 agents) (200 agents) (200 agents) (5000 agents) (500 agents)

Fig. 1. Approximate depiction of each scenario in the current version of our bench-
mark suite. The number in parentheses indicates how many agents are specified in the
scenario, and asterisks indicate more difficult scenarios.

206 S. Singh et al.

Group Interactions. Group interactions are composed of several agents and
static objects, intended to test an algorithm’s ability to handle a variety of
common situations.

- Fan-in: a small group of agents aiming for the same target. This tests how
agents cooperate while contending for the same space.

- Fan-out: a small group of agents aiming for slightly separated targets. This
tests whether agents will unnaturally stick to the crowd when their goal is
in a different direction.

- Cut-across: one agent cutting across a small group.
- 3-way-confusion: three agents traveling in different directions, meeting at

nearly the same time.
- 4-way-confusion: four agents traveling in four opposing directions, meeting

at nearly the same time.
- ∗4-way-obstacle: four agents crossing paths with a static object in the way.
- Frogger: one agent encounters many perpendicular crossing agents.
- ∗Oncoming-groups: a small group of agents encounters another small group

of agents traveling in opposite direction.
- 3-squeeze: two agents facing the same direction encounter an oncoming agent

in a narrow hallway.
- ∗Double-squeeze: two agents facing the same direction encounter two oncom-

ing agents in a narrow hallway.
- ∗Wall-squeeze: two agents facing the same direction encounter an oncoming

agent in a narrow hallway with an obstacle.

Large Scale Scenarios. These scenarios are designed to stress-test the ability
of an algorithm to handle macroscopic situations, and to scale to a large number
of agents.

- Hallway-one-way: many agents traveling in the same direction through a
hallway.

- Hallway-two-way: many agents traveling in either direction through a hall-
way. Agents should form lanes.

- ∗Bottleneck-squeeze: all agents begin on one side of the arena, and must enter
and traverse a hallway to reach the target. Note that hard corners at the
bottleneck are much more challenging than rounded corners.

- ∗Evacuation: all agents must exit a crowded room that has only one exit.
- ∗Free-tickets: all agents are aiming for the same target in the middle of the

arena, and have a random secondary goal once the middle target is reached.
This scenario is particularly difficult because agents that reach the middle
goal must then turn to face a dense oncoming crowd. This scenario requires
both natural individuals and natural crowds simultaneously.

- Random: each agent is placed randomly in the arena and has an individual
random target. Here, stress is placed on handling a large number of agents.
Our default test case specifies 5000 agents for this scenario.

- Forest: each agent is placed randomly in an arena filled with small obstacles.
- Urban: each agent is placed randomly in an arena filled with building-sized

obstacles.

Watch Out! A Framework for Evaluating Steering Behaviors 207

4 Metrics of Evaluation

Given the suite of benchmarks, the next question is how to evaluate the re-
sult of a steering algorithm. We propose that a set of meaningful metrics can
be measured directly from the output of a steering algorithm, without any
knowledge about the algorithm itself. This section describes the metrics that we
compute.

Our benchmark evaluation works as follows. First, the user records the posi-
tion, direction, and goal target of every agent for every frame. Second, our eval-
uation tool will read this recorded information to compute a variety of statistics
about each agent’s behavior. Users can see these detailed statistics or automat-
ically computed scores based on three primary metrics.

Primary Metric 1: Number of Collisions. The first primary metric is the
number of collisions that occur for a given agent. In most cases, fewer collisions
indicates more realistic steering behavior. One notable exception is the Surprise
scenario, where it would be natural for two agents to collide because they do not
see each other soon enough. Our evaluation tool computes the number of unique
collisions that occur as well as the total number of frames that each agent spent
in a collision with other objects.

Primary Metrics 2 and 3: Time and Effort Efficiency. The second and
third primary metrics measure two forms of efficiency. These, and most of the
detailed metrics as well, are based on the idea that efficient behaviors are very
often natural behaviors. Section 2 describes many references that use the same
principle.

Time efficiency measures how quickly the agent is able to reach its goal desti-
nations. Of course, the quicker the agent reaches its goal, the more time efficient
the agent is. Our evaluation tool measures time efficiency as the total time (in
seconds) that an agent spent to reach its goal.

Effort efficiency measures how much effort an agent spent to reach its goal
destinations. The less effort an agent spent, the more effort efficient the agent
is. Our evaluation tool measures effort efficiency as the integral (sum total)
of the magnitude of acceleration that an agent used to reach its goal. Note
that acceleration includes changes in speed and changes in direction, and its
magnitude is always positive.

The combined interpretation of time and effort efficiency provides insight into
a spectrum of behaviors. Some agents may desire to reach their destinations
quickly, willing to spend more effort. Other agents may desire to save effort and
slowly, politely progress towards their goals.

Detailed Metrics. The rest of the metrics measure variations of: (1) speed, (2)
turning rate (angular velocity), and (3) change in speed. Specifically, for each
of these three, we measure the total (integral), max instantaneous, average, and
max/min over a sliding window. The sliding window in our current implemen-
tation is an integral over an interval of 20 frames. We compute a new window
integral every next frame, and finally store the max/min of these values.

208 S. Singh et al.

These detailed metrics are interesting to examine when a user knows the ex-
pected behavior of a scenario. A user will usually be able correlate one or two
of the metrics with a clear indication of unnatural behavior in the scenario. For
example, if a character is expected to go straight towards its goal with very lit-
tle turning, then the “integral of turning rate,” which describes the total amount
of turning, should be close to zero. Similarly, if an agent is expected to have one
abrupt turn in the scenario, the “integral of turning rate in a window interval”
should be somewhat large, while the “total average turning rate” should be small.

5 Benchmark Scoring

After computing the metrics described in the previous section, the final task is to
compute a meaningful score that represents the quality of the steering behavior.
A score can be computed for (1) a single agent in a test case, (2) all agents in a
test case, or (3) across all test cases.

A Note About Benchmark Scores. It is important to note that scoring is
not intended to be a proof of an algorithm’s effectiveness. Instead, the purpose
of scoring is to create a simple number that allows for a quick, intuitive estimate
of evaluation, especially when comparing two approaches. To do a more rigorous
analysis of the pros and cons of an algorithm, users need to manually examine
the detailed metrics, and perhaps even tailor their own test cases.

Scoring One Agent in One Test Case. An agent’s score can be computed by
combining the three major metrics described in Section 4: number of collisions,
time efficiency, and effort efficiency. The user describes their relative importance
as numerical weights, specified in the test case. Each agent in the test case has
its own unique set of weights.

The score is simply a weighted sum of the metrics:

Si = wcC + wtT + weE, (1)

where Si is the score of the ith agent, wc, wt, and we are the user-specified weights,
C is the number of collisions, T is time efficiency, and E is effort efficiency.

Scoring all Agents in One Test Case, and Across all Test Cases. To evalu-
ate all agents in one test case, we simply compute the average over n agent scores:

SA =
n∑

i=0

Si. (2)

Because each agent can have its own set of weights, the user can easily control
the relative importance of agents in the scoring process.

Finally, to score an algorithm across all test cases, we can compute a sum
total of the scores from each test case.

Sm =
∑

A

SA. (3)

Watch Out! A Framework for Evaluating Steering Behaviors 209

6 Conclusion

In this paper we present a framework for evaluating steering behaviors. The
framework includes a diverse suite of test cases and an objective method of
evaluation. The framework covers a broad range of common scenarios, is blind
to the specifics of the steering algorithm, and is extensible and customizable.
In future work, we plan to continue growing the suite of test cases, make the
framework available online, and demonstrate its effectiveness on recordings of
real humans steering through our test cases. We envision that this framework
can grow into a standard for steering evaluation.

References

1. Futuremark: 3DMark (2008), http://www.futuremark.com
2. RealStorm: RealStorm Global Illumination Benchmark (2008),

http://www.realtimeraytrace.de/

3. Lext, J., Assarsson, U., Moller, T.: A benchmark for animated ray tracing. IEEE
Computer Graphics and Applications 21(2), 22–31 (2001)

4. Henning, J.L.: Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.
News 34, 1–17 (2006)

5. Reitsma, P.S.A., Pollard, N.S.: Evaluating motion graphs for character animation.
ACM Trans. Graph. 26(4), 18 (2007)

6. Wu, J.c., Popović, Z.: Realistic modeling of bird flight animations. ACM Trans.
Graph. 22(3), 888–895 (2003)

7. Tu, X., Terzopoulos, D.: Artificial fishes: physics, locomotion, perception, behavior.
In: SIGGRAPH 1994: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pp. 43–50. ACM Press, New York (1994)

8. Brogan, D.C., Hodgins, J.K.: Group behaviors for systems with significant dynam-
ics. Auton. Robots 4(1), 137–153 (1997)

9. Goldenstein, S., et al.: Scalable nonlinear dynamical systems for agent steering and
crowd simulation. Computers and Graphics 25(6), 983–998 (2001)

10. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: SIGGRAPH 2006:
ACM SIGGRAPH 2006 Papers, pp. 1160–1168. ACM, New York (2006)

11. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd sim-
ulation: a predictive approach. In: EUROGRAPHICS 2007, vol. 26, pp. 665–674
(2007)

12. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real
time navigation in complex and structured environments. Computer Graphics Fo-
rum 23(10), 509–518 (2004)

13. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban
environments using local laws. In: TPCG 2003: Proceedings of the Theory and
Practice of Computer Graphics 2003, p. 122. IEEE Computer Society, Washington
(2003)

14. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: SCA 2005: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pp. 19–28. ACM, New York (2005)

15. Knoblauch, R.L., Pietrucha, M.T., Nitzburg, M.: Field studies of pedestrian walk-
ing speed and start-up time. Transportation Research Record 1538, 27–38 (1996)

http://www.futuremark.com
http://www.realtimeraytrace.de/

	Watch Out! A Framework for Evaluating Steering Behaviors
	Introduction
	Criteria for Effective Evaluation

	Related Work
	Benchmark Suite
	Description of the Scenarios

	Metrics of Evaluation
	Benchmark Scoring
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

