
Robust Classification of Strokes with SVM and
Grouping

Gabriele Nataneli and Petros Faloutsos

University of California Los Angeles
nataneli@cs.ucla.edu,

pfal@cs.ucla.edu

Abstract. The ability to recognize the strokes drawn by the user, is
central to most sketch-based interfaces. However, very few solutions that
rely on recognition are robust enough to make sketching a definitive al-
ternative to traditional WIMP user interfaces. In this paper, we propose
an approach based on classification that given an unconstrained sketch,
can robustly assign a label to each stroke that comprises the sketch. A
key contribution of our approach is a technique for grouping strokes that
eliminates outliers and enhances the robustness of the classification. We
also propose a set of features that capture important attributes of the
shape and mutual relationship of strokes. These features are statistically
well-behaved and enable robust classification with Support Vector Ma-
chines (SVM). We conclude by presenting a concrete implementation of
these techniques in an interface for driving facial expressions.

1 Introduction

In recent years there has been a proliferation of sketch-based solutions designed
for a variety of different applications. Some approaches rely on a procedural map-
ping between two-dimensional strokes and possibly higher-dimensional geome-
tries [1] or models [2]. The problem is generally well-defined and well-constrained
in these cases. As a result, these solutions tend to be very usable and effective,
although they may be limited to a specific domain. Other approaches rely on
the detection of a well-defined dictionary of symbols. In this context, there is a
large literature on interfaces based on handwriting recognition and the recogni-
tion of other symbols that belong to the vernacular of a particular application.
Alternatively, some solutions define a new set of symbols that is easy to learn
and can be employed to simplify certain interactive tasks. Motion Doodles [3]
is an example of the latter, which enables users to define character animation
through a fluid set of cursive motions.

The most challenging task is that of recognition-based sketching. A general
approach for recognition-based solutions , such as [4], is to analyze the sketch
by identifying and recognizing components that capture the semantics of the
sketch. We call these components simply as strokes.

In this paper, we explore the problem of recognizing strokes robustly with
particular emphasis on the problem of classification. We use a support vector

G. Bebis et al. (Eds.): ISVC 2007, Part I, LNCS 4841, pp. 76–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Robust Classification of Strokes with SVM and Grouping 77

machine that is trained on quantifiable aspects of the sketch to perform the
classification. We then use stroke grouping to augment the capability of the
classifier to work with complex sketches in the presence of outliers.

The contributions of this work can be summarized as follows:

– We propose a machine learning approach to classify the elements of uncon-
strained input sketches based on support vector machines

– We propose a set of attributes that capture both individual shape features
and spatial relationships of groups of strokes.

– We propose a grouping technique that makes our approach robust to outliers.

2 Related Work

There is a large body of work concerned with the related problem of handwriting
recognition. [5] presents an approach for recognizing and grouping handwritten
text. This work groups strokes by minimizing a cost function efficiently using a
dynamic programming algorithm. This paper is similar in spirit to our approach,
but is tailored around the problem of symbol recognition, while our approach
strives to be more general. [6] is related to [5] and uses stroke groupings to aid in
the recognition of numeral strings. Their work selects the best grouping based on
a grouping-hypothesis and their focus is restricted to the recognition of numeral
strings. This paper also puts particular emphasis on segmentation which is ab-
sent both in [5] and our paper. The work by Saunds on perceptual organizations
[7,8] is one of the main sources of inspiration for our approach based on group-
ings. These papers show how to organize strokes into groups that are perceptu-
ally sound. Sharon in the paper [4] presents an approach for sketch-recognition
based on a computer vision technique referred to as constellation model, which
is related to our work. The classic work by Arnheim [9] presents an enlightening
study of visual perception in the context of art and psychology. This work is the
basis and main inspiration for the shape attributes that we use to train the SVM.
We briefly mention a few additional papers that present interesting ideas that
are related to our work. The paper [2] describes a similar application for posing
3D faces via sketches, but it does not rely on sketch recognition. The work by
Yang [10] presents an approach for the analysis of sketches based on their connec-
tivity. Some of the ideas introduced by this paper, such as the use of templates
and the parametrization, resemble some aspects of our application described in
section 9.

3 Overview

As the user draws a sketch interactively, we record every continuous motion of
the mouse or stylus as a separate stroke. In order to recognize the sketch, a
classifier assigns a label to each stroke that comprises the sketch based on the
content of a user-generated training set. The training set is based on a compact
and statistically well-behaved set of shape descriptors, called shape attributes,

78 G. Nataneli and P. Faloutsos

that are discussed in section 7. We augment the capabilities and robustness of
the classifier by grouping strokes [7,8]. What is novel in our approach is that
our mechanism for selecting the groupings is largely data driven. As a result we
do not simply rely on spacial groupings [5] or groupings based on the geometry
of strokes [5,8], but we also enable groupings based on the semantics of the
sketch that can be inferred from the training set. In the following sections, we
describe our classification mechanism and then show how it can be associated
with groupings to robustly handle complex sketches containing outliers. Our
discussion is followed by a detailed description of shape attributes, which lie at
the heart of the classification. A detailed understanding of shape attributes is
not required to understand the following sections, but the interested reader may
want to skip ahead to section 7 before reading sections 4 and 5.

4 Classification

Our approach for classification relies on a support vector machine (SVM). The
robustness of SVM depends primarily on the amount and choice of training data
as well as the choice of a kernel. If the training data makes the structure of
the data obvious, we can expect machine learning to perform robustly even for
a fairly small training set. Otherwise, even a large training set may perform
poorly. For the specific problem of classification the quality of a training set
can be evaluated quantitatively by studying the variance of the data. Items that
belong to the same class should exhibit relatively low variance, while items that
belong to different classes should be well-separated and therefore exhibit large
variance. A classifier trained on a training set that possesses these properties
is expected to perform robustly. We represent shape through a set of features
that we call shape attributes. In this paper, we use the term shape attribute
interchangeably to express both the features of strokes and the functions used
to quantify these features.

We use the following formalism to clarify our approach. When the user draws
a stroke, we store it in memory as a vector of points si. When the drawing
is complete the entire sketch is merely a set of strokes S = {s1, s2, . . . , sn}. A
shape attribute is a function A(si) that analyzes the stroke si and produces a
real number a ∈ �. During training the user also needs to manually associate
a label li to each stroke si in the sketch. We construct a training vector ti by
combing the label li with a selection of shape attributes. Hence, a training vector
ti has the form

ti = [li, A1(si), A2(si), . . . , Am(si)]

A training example T for the SVM corresponding to the sketch S is therefore
represented by the set of training vectors T = {t1, t2, . . . , tn}. During perfor-
mance, the user draws a new sketch S′ = {s′1, s

′
2, . . . , s

′
k}. For each stroke s′i we

construct a query vector

qi = [A1(s′i), A2(s′i), . . . , Am(s′i)]

Robust Classification of Strokes with SVM and Grouping 79

The query vector qi is then used to query the classifier C and obtain a class
label l′i for each corresponding input stroke

l′i = C(qi)

We initially developed 12 shape attributes that capture the notions described
in [9]. However, for the classifier we restricted the number of shape attributes to
a stable subset that results in robust classifications. To find this stable subset,
we generated many alternative training sets using different selections of shape
attributes and we studied their variance. We chose a selection of shape attributes
that exhibits small variance for strokes that belong to the same class and large
variance for strokes that belong to distinct classes. We repeated this process for
various categories of sketches corresponding to faces, houses, and cars to make
sure that our selection is independent of the content of the sketch. Table 1 shows
the stable selection of shape attributes that we chose for the classification. Sur-
prisingly all these shape attributes correspond to high level features of strokes.
This finding agrees with our intuition. In fact, a few generic strokes are generally
sufficient for a human to recognize the content of a sketch and a robust classifier
is expected to do the same.

Bounding Box Width
Bounding Box Height

Bounding Box Aspect Ratio
Centroid X
Centroid Y

Horizontal Ordering
Vertical Ordering

Overall Stroke Count
Depth

Fig. 1. The stable selection of shapes attributes used for the classification

We verified the robustness of the classification based on this selection of
shape attributes by training the SVM and running cross-correlation tests. Subse-
quently, we tested the classification manually by drawing many sample sketches
and observing classification results. The average accuracy of our classifier with
different training sets is about 93%. Our sample sketches did not contain either
outliers or duplicate strokes - that is multiple strokes of the same class. We refer
to sketches that satisfy these two properties as clean sketches.

Our experiments show that in general a fairly small training set that contains
approximately ten training vectors per class is sufficient to obtain a robust clas-
sification of clean sketches using our method. The actual size of the training set
that is needed to achieve a robust classification is correlated to the variance of
training vectors. If the training vectors of two distinct classes exhibit a small
variance, we need more examples for those two classes.

80 G. Nataneli and P. Faloutsos

A SVM is sensitive to the scaling of data, so we always have to normalize
shape attributes before using them in the training. However, we observed a
20% improvement in the classification by exploiting a non-uniform scaling of the
data. Specifically, the ordering attributes, the overall stroke count, and the depth
attribute are left unchanged as integer values. This improvement follows from
the fact that the different scaling makes the SVM weigh these shape attributes
differently. This choice also impacts how the choice of kernel for the SVM affects
the performance of the classifier.

Support Vector Machines rely on a choice of kernel for their operation. The
only two kernels that provide acceptable performance for our task are linear
and polynomial. A linear kernel works best when we want to classify sketches
containing a single stroke or sketches in which the relationship of strokes is not
relevant. In these cases, the SVM prioritizes the shape attributes that are prop-
erly scaled, which for us are the ones that relate to individual features of a stroke.
On the other hand, A polynomial kernel is less influenced by the non-linearity of
the training set, so it is the best choice in all common sketch recognition tasks.
This property of our classifier offers an advantage over solutions that rely solely
on the relation of strokes [4].

5 Grouping

In the previous section we highlighted the fact that our core classification mech-
anism is only expected to work robustly for clean sketches. Again, a clean sketch
is one that satisfies the following two properties:

1. It does not contain outliers.
2. No two strokes belong to the same class (duplicate strokes).

We know that a clean sketch is classified successfully only if each query vec-
tor is assigned a distinct label. Therefore, if we find a duplicate label in the
classification results, we are certain that a misclassification has occurred. This
is a central property for searching the space of possible groupings as explained
later. Furthermore, we also expect more reliable classifications for clean sketches.
Clean sketches do not contain outliers, which are one of the major sources of
errors in classification. An outlier is a stroke whose correct label is not present in
the training set. Hence, outliers always lead to misclassifications, since the clas-
sifier is always expected to output a label for any given query vector. The reason
why the second property of clean sketches is important is more subtle. Duplicate
strokes are strokes whose corresponding query vectors exhibit low variance and
thus are assigned the same label by the SVM during performance. Therefore,
duplicate strokes are intrinsically ambiguous and they are generally not well-
behaved statistically. Moreover, if we allowed duplicate strokes, we would not
have any automated way for distinguishing a duplicate stroke from a misclassi-
fied one. In summary, clean sketches give us a better way to attest the robustness
of the classifier.

Robust Classification of Strokes with SVM and Grouping 81

Sketches of practical interest, however, do not satisfy the properties of clean
sketches in most cases. Therefore we use groupings to accommodate more com-
plex sketches within the existing framework for classification. Given a Sketch
S = {s1, s2, . . . , sn} a grouping G = {g1, g2, . . . , gn} is a set of groups gi where

1. gi ⊂ S
2. gi ∩ gj = ø with i �= j

Our objective is to find a proper grouping G of sketch S that is guaranteed to
be clean. Any sketch that is not clean can be reduced to a clean sketch by some
grouping as follows:

– Group duplicate strokes with the same label into the same group
– Group every outlier with some other stroke

Groupings, however, present an additional challenge as well. After we group
several strokes, we need to define the meaning of applying a shape attribute
to the group - that is we have to define the meaning of A(gi). We do this by
replacing the group gi with a new stroke that characterizes the basic features of
the group. This is explained more in detail later in this section.

The space of possible groupings is a power set over the number of strokes
given as input and it is clearly intractably large to be searched exhaustively. In
order to make the problem tractable, we need to prune the space. We consider
three different kinds of groupings to accomplish this task: structural grouping,
overlap grouping, and semantic grouping. Each kind of grouping corresponds to
a specific level of abstraction of the properties of the sketch.

Structural Grouping. At the lower level we have structural groupings. A struc-
tural grouping is based on purely geometric notions of proximity and continuity.
Proximity refers to strokes that are aligned (vertically or horizontally) and are
near each other. In terms of shape attributes, a proximity grouping selects strokes
that have the same ordering (refer to Section 7) and whose distance between the
centroids is below a threshold. Figure 2a is an example of proximity group. We
characterize the proximity group with a new stroke that connects the centroids
of each stroke that participates in the group.

Continuity refers to strokes whose endpoints are near each other. Unlike [7] we
are not considering the orientation of the strokes in order to establish continuity,
since the purpose of groupings in our case is slightly different. Figure 2b is an
example of continuity group.

A structural grouping corresponds to a perceptual organization as described
in [7] and [8]. A structural grouping is also the simplest kind of grouping and does
not depend on the training set. The strokes that are candidates for a structural
grouping are generally very common and very numerous in a typical sketch, so
we do not want to perform expensive calls to the SVM in order to establish these
groups. At the same time, even though structural groupings are not tailored to
the training set -that is the particular domain of the recognition task - this fact
does not affect the ability of higher level groupings, such as overlap groupings and

82 G. Nataneli and P. Faloutsos

semantic groupings, to analyze the semantics of the sketch successfully. Lastly,
structural groupings are very effective at pruning the space of possible groupings
and removing common outliers.

Overlap Grouping. At an intermediate level of abstraction there are group-
ings based on overlap. Stroke si overlaps stroke sj if Adepth(si) > Adepth(sj) and
‖centroid(si) − centroid(sj)‖ < α, where Adepth is the depth shape attribute,
centroid is a function that returns the position of the centroid for the given
stroke, and α is a threshold. In this example, strokes si and sj form an over-
lap group candidate (OGC) goc = {si, sj}. We determine all OGCs efficiently
by building an adjacency matrix of all strokes, while computing the shape at-
tributes. The depth of an OGC goc is

depth(goc) = max(|Adepth(si) − Adepth(sj)|)

where si, sj ∈ goc. Figure 2c is an example of overlap group. The body of the
house, the window, and the window grille form an OGC. The body has depth 0,
the window has depth 1, and the window grille has depth 2. Hence, the depth
of the OGC is 2.

We first reduce the number of strokes in each OGC by grouping the strokes
in each OGC so that their depth falls below a given threshold β. The value of
β depends on the amount of detail that we want to preserve. In Figure 2c if we
set β to 2, we will discard the window grille. For each OGC we run an algorithm
that can be summarized as follows:

1. Consider the power set of all OGCs. This will generate many subsets of
OGCs of the form {g1

oc, . . . , g
k
oc}.

2. For each subset of OGCs group the strokes in each OGC. This will partition
the original set of strokes S into a grouping of the form G = {g1, . . . , gk, sj ,
. . . , sn} where each g is a group of strokes that is replaced with a stroke that
represents the bounding box of the group and si (groups of cardinality 1)
are strokes that are not grouped.

3. Classify the grouping G with SVM and obtain a set of labels L = {l1, . . . , ln}.
If L contains any duplicate, then the grouping G does not represent a clean
sketch, so we reject this grouping. Otherwise, if L does not contain duplicates
we accept the grouping G.

4. Rank all accepted groupings based on the heuristic described in section 6.
5. Repeat the steps for each subset generated in step 1.
6. Choose the grouping with the best rank.

Although the number of OGCs is generally fairly small, the number of subsets
generated in step 1 may still be prohibitively large. However, performance is
still acceptable since most subsets are either rejected or they get low rankings.
In our experiments we only considered subsets of cardinality 2 or 3 without
compromising the capability of our algorithm.

Robust Classification of Strokes with SVM and Grouping 83

Semantic Grouping. In some cases, there are no strokes that overlap or there
is not any subset of OGCs that results in a clean sketch. Semantic groupings
consider groups that cannot be captured by either structural groupings or over-
lap groupings. Therefore, semantic groupings deal with groups of strokes that
are generally not correlated by geometrical features, but are correlated by the
semantics of the drawing that can be inferred from the training set.

We proceed similarly to overlap groups, but we replace step 1 with the power
set over the strokes that are left ungrouped after performing structural grouping
and overlap grouping. We refer to these as candidate strokes. Unfortunately there
is no obvious way to prune the power set of candidate strokes, so we adopt a
heuristic that was fairly effective in our experiments. We first run the classifier on
all candidate strokes; the classification results are expected to contain duplicates
at this stage. We then consider each group of duplicate as a candidate and run
the same algorithm over the power set of these groups. The rationale is that
duplicate strokes are likely to be related semantically.

Our approach for grouping gives us robustness against outliers. Outliers would
always result in incorrect classifications if they are individually fed to the classi-
fier. More precisely, outliers are very likely to generate classifications that contain
duplicates by the pigeon hole principle. As a result, our approach for grouping
forces outliers to be grouped with other strokes so that they will not reach the
classifier in isolation. Moreover, our approach can cope with outliers gracefully,
as we can improve the robustness by expanding the training set.

(a) (b) (c)

Fig. 2. Examples of different kinds of groups. (a) Proximity group. (b) Continuity
Group. (c) Overlap group.

6 Ranking

Our approach for overlap and semantic groupings is effectively an optimization
that searches for the grouping with a best rank. In turn, the ranking scheme is
based on the results of the classifier. In general, we only want to rank classifica-
tions that do not contain duplicates - that is classifications that are known to
correspond to clean sketches. We do this, because, we can only expect the clas-
sifier to perform robustly for clean sketches. We want to rank higher groupings
that result in the largest number of distinct classification labels. This is because,
we would like to exploit the variety of the training set as much as possible and
we also want to avoid to group strokes that belong to distinct classes. Hence,
we compute the rank by simply adding the number of distinct labels produced
by the classification. In some cases, for semantic groupings we cannot simply re-
ject groupings that contain duplicates; therefore, we actively penalize duplicates

84 G. Nataneli and P. Faloutsos

by subtracting the number of groups containing duplicates from the number of
distinct labels.

7 Shape Attributes

In this section, we describe shape attributes in detail. Shape attributes provide
an effective representation of strokes that acts as a useful abstraction for ana-
lyzing hand-drawn sketches. We originally developed 12 shape attributes for the
application described in section 9. Here we only describe the subset of shape at-
tributes that we use in the classification. For a complete list of shape attributes
refer to [11].

Bounding Box. The bounding box captures the proportions of the drawing
and is used to inform the classifier about the relative size of objects. We always
normalize the actual size of the bounding box for each stroke with respect to the
bounding box enclosing the whole sketch. This way proportions remain consistent
even if sketches are drawn at different scales.

Centroid. The centroid is computed in the usual manner by averaging the x
and y components of the points comprising the stroke. The centroid effectively
captures the region of a stroke that carries the largest perceptual weight [9] and
is used to inform the classifier about the relative position of strokes in the sketch.
The centroid is also used to compute several other shape attributes described in
[11].

Horizontal and Vertical Ordering. Horizontal and vertical ordering are very
effective attributes that allow us to quantify the relation in the position of strokes
without having to know the class of neighboring attributes in advance. Figure 3
shows a sample face with values of horizontal ordering for every stroke.

2

31

2

X

2

31

X

Fig. 3. Horizontal ordering. The image on the left shows a typical example in which the
value of horizontal ordering is well defined. The image on the right shows an ambigous
case in which the horizontal ordering for the mouth is not well defined.

Given an input sketch S = {s1, s2, . . . , sn}, let ho : S �→ N be a function
that maps a stroke to its value of horizontal ordering. The horizontal ordering
is determined by applying the following rules in succession.

– Given strokes X and Y, ho(X) = ho(Y) if the projection of their bounding
boxes on the x axis overlaps

Robust Classification of Strokes with SVM and Grouping 85

– If X and Y are not overlapping and the centroid of X > Y , then ho(X) >
ho(Y)

It is not always possible to assign values of horizontal ordering and simultane-
ously satisfy both rules. Figure 3 shows one example of an ambiguous situation.
If a stroke generates an ambiguity it means that the value of horizontal ordering
is not relevant for that particular stroke and we can assign to it some arbitrary
value. Referring again to Figure 3 we observe in fact that the value of horizontal
ordering is essential to distinguish the left eye from the right eye, but it doesn’t
have any meaning for the mouth. On the other hand, the vertical ordering is
very useful to distinguish the eyes from the mouth. We say that strokes si and
sj x-overlap iff the projection on the x axis of their bounding box overlaps and
width(s1) < width(s2). The algorithm for computing the horizontal ordering
follows:

1. Scan strokes from the ones with smaller width to the ones with larger width
and group them based on their x-overlap. A group is a vector of the form
g = [s1, s2, . . . , sn] where si is a stroke in the sketch

2. Compute the average x position for each group and arrange the values in a
vector.

a = [avgx(g1), avgx(g2), . . . , avgx(gn)]

3. Sort the vector a.
4. Assign a value of horizontal ordering to each gi based on its sorted order in

the vector.
5. Assign the value of horizontal ordering for group gi to every stroke si ∈ gi.

Depth. The depth attribute informs the classifier about the overlap of strokes.
We say that stroke si overlaps sj if the bounding box of si is fully contained
in the bounding box of sj . Note that this definition of overlap is different from
the one given in section 5. Given a set of strokes S = {s1, s2, . . . , sn}, the depth
satisfies the following rules:

– If si does not overlap with any stroke in the set S \ {si} then its depth is
zero

– If si overlaps with sj ∈ S \ {si} then depth(si) < depth(sj)

The depth is computed as follows:

1. group all strokes that overlap in the same set.
2. Sort the items in the set based on the area of their bounding boxes.
3. Assign values of depth to each stroke in sorted order. From the way we

defined overlap we are guaranteed that small strokes have a value of depth
that is higher than the strokes that enclose them.

In practice we relax in our implementation the definition of overlap to detect
overlap even if two strokes are partially overlapping.

86 G. Nataneli and P. Faloutsos

8 Discussion and Results

Our classifier is based on a support vector machine and it is trained by the user.
We are not making strong assumptions on the content of the sketches; there-
fore our classifier is expected to be flexible and work effectively for a variety of
sketch-based applications. The main restriction on the capabilities of the classi-
fier is determined by representation of sketches we construct by means of shape
attributes. Specifically our method is designed to work best with diagrams or
graphic drawings, such as the ones discussed in section 9. We assess the quality
of the classifier on a set of controlled sketches we call clean sketches. We then
extend the classifier to accomodate more complex sketches by using the concept
of groupings. Our approach for grouping relies for the most part on the train-
ing set and it is therefore very adaptable. One of the most attractive aspects of
grouping is that it gives us robustness against outliers.

All the concepts described in this paper are implemented in a framework
called Sketch Analyzer. Several examples of our work and of Sketch Analyzer
are shown in the video accompanying this paper. We tested our approach with
sketches representing a house and a human face. We ran our experiments on a
2.13 Ghz Pentium 4 machine and the classifications took no more than 3 seconds
to complete. Figure 4 show several sketches that were classified successfully. All
the examples contain many outlier strokes that are not part of the training set,
such as the window grille for the house. The example on the right contains two
semantic groups that belong to the same class – the windows.

Fig. 4. Several sketches that are successfully handled by our technique using respec-
tively a training set for the components of a face and a house. All examples contain
several outlier strokes and are designed to put groupings to the test. The windows of
the house on the right are an example of semantic grouping.

9 Application: Driving Facial Expressions

We used the concepts described in this paper to implement a sketch-based inter-
face for driving facial expressions. The interface is described in detail in [11] and
several examples are shown in the accompanying video. The classifier described
in this paper along with grouping is used to recognize the components of the
sketch and establish a correspondence with the face model. Each component of
the face is then matched with a library of templates to establish the primary
features of the facial expression. Lastly, the result is refined by varying the in-
tensity of the various aspects of the facial expression through a parameterization
of strokes.

Robust Classification of Strokes with SVM and Grouping 87

10 Conclusion

We presented an approach for the classification of strokes that is based on SVM
and grouping. Our work can handle fairly complex sketches and strives for ro-
bustness in the presence of outliers. Shape attributes are one of the key com-
ponents of our approach and are designed to produce a well-behaved statistical
characterization of strokes for generic drawings. Our results show that the clas-
sifier can generate robust classifications even with relatively small training sets.
Two areas that need improvement and are interesting avenues for future research
are the heuristics we use for ranking classification results and pruning the space
of groupings, especially for semantic groupings. This work was partially sup-
ported by NSF grant No. CCF-0429983. We would also like to thank eFrontier
for their generous donations of software licences.

References

1. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3d freeform
design. In: SIGGRAPH 1999. Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pp. 409–416. ACM Press/Addison-
Wesley Publishing Co., New York (1999)

2. Chang, E., Jenkins, O.C.: Sketching articulation and pose for facial animation,
19–26 (2006)

3. Thorne, M., Burke, D., van de Panne, M.: Motion doodles: an interface for sketching
character motion. ACM Trans. Graph. 23, 424–431 (2004)

4. Sharon, D., van de Panne, M.: Constellation models for sketch recognition. SBIM
2006, 19–26 (2006)

5. Shilman, M., Viola, P., Chellapilla, K.: Recognition and grouping of handwritten
text in diagrams and equations. In: IWFHR 2004, pp. 569–574. IEEE Computer
Society Press, Washington, DC, USA (2004)

6. Cheong, C.E., Kim, H.Y., Suh, J.W., Kim, H.: Handwritten numeral string recog-
nition with stroke grouping. In: ICDAR 1999, p. 745. IEEE Computer Society,
Washington, DC, USA (1999)

7. Saund, E., Mahoney, J., Fleet, D., Larner, D., Lank, E.: Perceptual organization
as a foundation for intelligent sketch editing (2002)

8. Saund, E., Moran, T.P.: A perceptually-supported sketch editor. In: ACM Sym-
posium on User Interface Software and Technology, pp. 175–184. ACM, New York
(1994)

9. Arnheim, R.: Art and Visual Perception: A Psychology of the Creative Eye (1974)
10. Yang, C., Sharon, D., van de Panne, M.: Sketch-based modeling of parameterized

objects. In: Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp.
63–72 (2005)

11. Nataneli, G., Faloutsos, P.: Technical report: Sketching facial expressions. UCLA
(2007), URL: http://www.cs.ucla.edu/∼nataneli/pages/publications.html

http://www.cs.ucla.edu/~ nataneli/pages/publications.html

	Robust Classification of Strokes with SVM and Grouping
	Introduction
	Related Work
	Overview
	Classification
	Grouping
	Ranking
	Shape Attributes
	Discussion and Results
	Application: Driving Facial Expressions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

