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Abstract
In this paper we discuss our current research project, which
is a clinical application of biomechanical modeling for the
purpose of motivating behaviour change (motor speech learn-
ing) among the clients of speech intervention services. We
review and discuss previously developed computer-based speech
therapy approaches and then discuss the challenge of deriv-
ing clinical-relevant intervention targets. Then we discuss
issues that concern our data acquisition techniques, our data
processing methods, our need for patient-specific modeling,
and other issues that arise at the juncture of gamification and
real-time visualization.
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1. Introduction
There has been a recent surge in the creation of game-based
interventions for rehabilitation of motor disorders arising af-
ter a stroke or due to various neurological conditions (e.g.,
Parkinson disease, cerebral palsy etc). The games often use
motion tracking technologies and enhanced visual feedback
to provide engaging rehabilitation experiences. Develop-
ment of visualization approaches for motor speech disorders
has been challenging due to lack of technologies for track-
ing movements of the tongue, the primary articulator. With
maturing technologies such as electromagnetic articulogra-
phy, tracking the tongue in real time becomes possible.

Using a motor learning paradigm, our aim is to enhance
the essential auditory and somatosensory feedback with vi-
sual information. Visual information plays an important role
in speech development [1] as well as speech perception and
intelligibility [2, 3]. Enhancing visual information might
therapeutically benefit individuals with proprioceptive and
tactile deficits such as individuals post stroke and those liv-
ing with Parkinson’s disease (PD) [4, 5]. Additionally, we
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hypothesize that these visualizations might provide more
motivating and memorable learning experiences, leading to
efficient learning.

2. State of The Art
The state of the art in clinical practices for speech reha-
bilitation is not fully benefiting from the state of the art in
speech science. Speech scientists are now taking advantage
of 3D electromagnetic articulography (EMA), a fairly re-
cently developed sensor technology, to gather large volumes
of real-time data about the movement of the tongue and
other speech articulators from relatively large numbers of
different speakers. Without EMA or other sensor technolo-
gies, the speech articulators cannot be easily studied, since
most of the articulators are hidden from view and entail
millisecond-duration movements. EMA represents a leap
forward in accessibility over earlier technologies that have
been employed by speech scientists, such as x-ray microbeam,
in terms of logistic feasibility (such as cost and the need
for highly specialized expertise, staff and infrastructure).
EMA systems are on the cusp of becoming feasible for clin-
ical use, but as of yet have not been adopted. Admittedly,
EMA systems are expensive, but there is reason to conjec-
ture that their price point could be significantly lowered,
given favourable market forces. EMA can be seen as a
disruptive technology to extant clinical practices, since of-
tentimes clinical interventions are not computer-based, let
alone sensor-based. Extant clinical methods, however, of-
fer simplicity and accessibility, both in terms of equipment
and clinical training. Extant methods are driven largely by
speech-language pathologist (SLP) expertise, which is gained
via advanced training, and whose auditory perceptions of
disordered speech are a main driver of the course of a given
client’s clinical intervention. Visual methods include, for
example, the use of a mirror for reflecting the image of the
patient’s visible articulators (i.e., the jaw and lips). In gen-
eral, these methods rely heavily on feedback from the SLP.

2.1. Computer-Based Speech Therapy (CBST)
Computer-Based Speech Therapy (CBST) systems provide
a means of automatically acquiring, analyzing and provid-
ing feedback for particular speech parameters. When exam-
ining prior CBST systems, it can be helpful to distinguish
between product-oriented and process-oriented approaches.



In the case of speech therapy, methods that focus on the use
of various organs associated with the production of speech
are process-oriented [6], whereas methods that focus on the
final output of speech (i.e., the resultant sound) are said to
be product-oriented. Historically, CBST systems tended to
be product-oriented as opposed to process-oriented, since
acoustical information is more readily available (e.g., only
requiring a microphone) than data about the movement of
the speech articulators (which are predicated on the develop-
ment of appropriate sensor technologies or highly-accurate
acoustic inversion techniques).

2.1.1. Product-Oriented Visual Feedback

To be effective, product-oriented CBST systems depend on
high-quality acoustic data acquisition and the selection of
intervention goals that can be defined through acoustic pa-
rameters. These goals include timing, pitch and volume (or
loudness).

One of the earliest of these systems provided feedback
on pitch and loudness in two different scenarios [7]: one
scenario entailed a game-like challenge, whereas the other
was a straightforward feedback visualization. The game-
like scenario was a basketball-like game with the goal to
pass a ball through a wall and into a basket. The speaker
could control the height of the ball, as the height was tied to
the fundamental frequency (F0) of the acoustic signal that
was produced by the speaker. Avoidance of the wall served
to motivate the speaker to exert control over pitch. The other
scenario entailed the display of an avatar, where the height
of the laryngeal prominence was controlled by pitch and the
size of the avatar’s mouth was controlled by loudness.

Subsequent systems followed the template of this early
example in that they provided visual feedback of acousti-
cal parameters in the form of pleasing graphics or game-like
challenges. SpeechViewer by IBM has a range of visual-
izations and scenarios for various acoustical speech param-
eters, as well as accompanying exercises (such as producing
contrast between sounds) [8, 9]. These early systems illus-
trated the issue of setting reference standards during prac-
tice. In SpeechViewer, for instance, the speaker’s best pro-
duction would be used as the basis for setting a reference.
The Indiana Speech Training Aid (ISTRA) used a speaker-
dependent word recognition system [10]. The reference was
formulated as a distance metric of the built-in speech recog-
nition system. In another system, Box of Tricks, references
were derived on the basis of a database of representative
samples that were obtained from native speakers without
speech disorders [11, 12].

2.1.2. Process-Oriented Visual Feedback

To be effective, process-oriented CBST systems depend on
the acquisition of high-fidelity data about the function of
speech articulators. Many process-oriented CBST systems
employ visually-based anatomical models (using sagittal views

or other types of cut-aways to expose the vocal tract) to pro-
vide information regarding the spatial properties of speech
sounds and for user feedback. The relative role of the visual
mode of feedback (on the basis of a third-person perspective
of an anatomical model) in the construction of the neural
representation of one’s vocal tract is not known. However,
the identification of the most effective mode of visual feed-
back is essential, given the reports of the conceptual dif-
ficulty that users have with using anatomical models (for
instance, in the ARTUR system, children could not under-
stand the representation of the palate [13]). This remains a
key challenge for these systems — how to select an appro-
priate format for representation and feedback?

Prior systems have used a variety of representation paradigms.
Anatomically correct, 3D talking head models with cut-aways,
such as Baldi [14], have been developed. These systems
give speakers a reference model during speech learning. The
majority of existing models provide interactive references
of idealized articulator behaviour during correct speech pro-
ductions, but they do not provide feedback about the speaker’s
own articulators or production success. This approach was
shown to be effective for improving the speech of children
with hearing impairment, [14], however, it remains to be
shown effective for motor speech impairment. Other than
anatomical models, other process-oriented representations
have been employed: for instance, the Box of Tricks sys-
tem uses cartoon-like cross-sectional images (at least in its
process-oriented mode), whereas the Speech Illumina Men-
tor (SIM) system employed a collection of magnetic reso-
nance image (MRI) cross-sections and a speech recognition
system to provide game-like feedback scenarios [15]. The
efficacy of these approaches have not been reported.

Others systems, such as “the ARticulation TUtoR” (AR-
TUR) [16, 13, 17, 18] aim to provide user-specific feed-
back. ARTUR uses anatomical models in combination with
acoustic-articulatory inversion, which is a technique for es-
timating speech articulator positions on the basis of acoustic
signal. Acoustic-articulatory inversion is a challenging tech-
nique to perform and has a large error margin [19] as well as
a non-trivial processing latency. EMA-based sensing tech-
niques provide an alternative to acoustic-articulatory inver-
sion in the provision of the speaker-specific feedback in the
process-oriented mode.

3. Speech Targets
Another challenge in the development of the CBST system
is the selection of appropriate speech intervention targets.
Speech articulation therapy aims to improve speech intelli-
gibility of a patient through training, structured around clin-
ically viable goals. In the context of developing therapies,
these clinical goals must first be defined on the basis of the
nature of the speech ’signal’ and then through the param-
eters that can be feasibly altered via motor learning. The
selection of these goals/targets should also be theoretically



motivated and empirically validated. Because our approach
is based on the acquisition of tongue motions, treatment tar-
gets of our envisioned therapy program are based on kine-
matic parameters of speech.

The search for speech targets/goals as elements of central
motor control has a rich history in speech science. The ex-
tensive debate over the supremacy of the auditory-acoustic
over the articulatory (or vice versa) information in coding
speech targets [20, 21] has resulted in the prevalence of in-
tegrated models [22, 23, 24, 25]. In these integrated mod-
els, auditory as well as somatosensory information is rep-
resented inside the motor commands associated with vari-
ous speech segments. Somatosensory information could be
coded as target regions [26] or as various movement trajec-
tory characteristics including its overall shape, velocity pro-
file or curvature [27, 28, 29, 30]. All of these elements can
be visualized through digital means for rehabilitative pur-
poses.

As a first step, we consider the articulatory working space
(AWS) as a key representative feature of the tongue’s motion
during speech. AWS characterizes the volume that is re-
cruited by the tongue, represented via a point-parameterized
technique, during the production of speech. AWS is known
to be sensitive to disease-related changes in the speech pro-
duction of individuals with motor speech disorders. Specifi-
cally, individuals with Parkinson’s disease (PD) show a con-
sistent reduction in articulatory movements across all oral
articulators (jaw, lips and tongue) [31, 32], which is reflected
in the reduction of individuals’ AWS [33]. Thus, it is our po-
sition that AWS, as calculated over an entire utterance, pro-
vides a suitable clinical target for sentence-level motor prac-
tice in PD. There remain, however, several key empirical
questions: first is the degree to which AWS can be changed
through motor learning, and second is the degree to which
motor learning can be enhanced via instructive visualiza-
tions of the AWS.

4. Experience Design
Our clinical application is predicated on the hypothesis that
providing augmented visual feedback, in the form of com-
puter games, will facilitate the expansion of the AWS in pa-
tients with PD and improve their speech intelligibility.

The promise of so-called ’gamification’ approaches, which
have proliferated so wildly in the last decade, has been to
elicit psychological, and then subsequently, behavioural out-
comes, via the mechanism of motivation as elicited by var-
ious affordances [34]. The efficacy of the myriad of affor-
dances in eliciting behavioural outcomes have been empiri-
cally evaluated and validated, and include provisions such as
points, leader-boards, levels, story/narrative, progress indi-
cations, and feedback. Evidence of the efficacy of feedback
for speech motor learning is also compelling [35]. Thus, the
premise of our design is positioned at a convergence point
between the gamification and the motor learning research

literature.
The basic template of our interactive system is as follows:

(i) the system provides a visual representation of the clinical
speech target to the interactant, (ii) the system cues or oth-
erwise elicits speech production from the interactant, (iii)
the interactant is presented with a visualization of his or her
speech production, which provides feedback that instruc-
tively relates the elicited production to the clinical target.
This ‘interaction template’ is embedded within a broader,
possibly multi-session context, which also includes phases
for training-familiarization-learning, for repetition, and for
the provision of summative and/or integrative feedback. As
might be clear from the outset, there are many engineering
and design issues that must be addressed in computation-
ally instantiating this system, which we discuss below. First,
however, we present an overview of the system architecture.

4.1. System Architecture
The core processes of our therapy require a means to drive
games with tongue motions. This requirement is realized
through the integration of two enabling technologies. First,
the Wave Speech Research System (Northern Digital Inc.,
Canada) that provides articulator motion tracking. Second,
the Unity3D game development tool provides a means of
rapidly prototyping visually rich interactive scenarios.

Our high-level system architecture models two interact-
ing client-server relationships, one between the recording
system and a middle-layer and another between this mid-
dle layer and the Unity3D engine. The middle-layer runs
on the visualization system and serves as the primary link
between data and visualization. This effectively creates a
flow of data from tongue to game, making the tongue into a
flexible game controller. An early prototype of this system
was presented in [36]. Figure 1 shows an overview of the
system, which has the following components.

4.1.1. Clinical/Experimental User Interface (UI)
This module allows the clinician to control the parameters of
a session. Here they can select speech stimuli, design motor
exercises (blocks, repetitions, feedback frequency), set ther-
apy targets/goals and choose visualizations for feedback.

4.1.2. Middle Layer
• Unity Plug-in: The main interface between the middle-

layer and the Unity game engine.

• Wave Filter: A series of filters that transform and
clean the raw motion data into usable control signals.

• Dispatcher: A module that is responsible for dis-
tributing high level data between the middle-layer com-
ponents and the external network client (i.e. the clini-
cian).

• Data Layer: A module that implements the main database
operations for storing traces, sessions, and patient–
related information.
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Figure 1: An overview of our game system framework.

• Abstract Game Engine: A layer that serves to make
the framework game engine independent from the other
middle-layer modules.

• Configuration: A module that configures each ses-
sion on the basis of the parameters set by the clini-
cian.

• Recorder: A module that records each training ses-
sion and stores its relevant data in the main database.

• Player: A module that affords replay of any previ-
ously recorded session that is stored in the main database.

4.1.3. Unity (External Game Engine and Development En-
vironment)
• Unity Communication: An abstraction of the com-

munication with our middle layer.

• Unity Agent: A module that translates between mo-
tion data in the abstract game engine’s format to Unity3D
data types.

5. Data Acquisition and Modeling Issues
There are a number of technical issues and subtleties associ-
ated with the output of most motion tracking systems. Our
system is not an exception. In this section, we describe our
motion capture device and how our data processing pipeline
addresses such issues.

5.1. Data Acquisition
Articulatory movements were captured using a 3D electro-
magnetic articulograph, the Wave Speech Research System.

The accuracy of the Wave system has previously been re-
ported as < 0.5mm [37]. The Wave system can track the
position and orientation of up to six sensors. Our sensor ar-
ray is composed of a 6DOF sensor positioned on the head
as well as a pair of jaw and a pair of tongue sensors. The
tongue sensors are located on the tongue blade (1 cm away
from the tip) and on the tongue dorsum (3 cm away from
the tongue blade sensor). Data for each sensor can be cap-
tured up to a maximum frequency of 400Hz. Since the fre-
quency range of the tongue’s motion associated with normal
speech production is lower than 15Hz [38], a sampling fre-
quency of 400Hz is sufficient for our purposes. Our current
experiments, and therefore this section, focus primarily on
positional data.

5.1.1. Processing Data for Clinical Target Identification

During early experiments we noticed that the sampling fre-
quency of our Wave system is not uniform. The sampling
period can vary by a few milliseconds from its nominal value.
To address this issue, the first stage of our pipeline interpo-
lates the recorded samples with a cubic spline, from which
it then draws an equal number of uniformly spaced samples.

We also noticed in our experiments that the data indicat-
ing the position of a sensor exhibits frequencies above the
range that is commonly observed in normal speech produc-
tion (> 15Hz [38]). The second stage of our processing
pipeline removes this high frequency noise by applying a
bi-directional, fifth order, low pass Butterworth filter with
an empirically determined cutoff frequency of 13.5 Hz.

During long speech utterances, such as passages, we noted
that spikes occurred in the data stream which were in viola-



tion of physical or biomechanics constraints. For instance,
sampled positions would fall outside of the possible range
as if the tongue were penetrating the hard palate. An inves-
tigation of this phenomena is still underway. Our conjec-
ture is that the occurrence of these spike artifacts is corre-
lated with the duration of the speech data. In the meantime,
while our investigation continues, we added a third stage
in the pipeline to handle this issue. The third stage in our
pipeline classifies the passage data with a 2σ error ellipsoid.
Intuitively, this means that all data within the ellipsoid are
classified as speech data, whereas data outside the ellipsoid
are considered non-speech. This ellipsoid is defined by the
squared Mahalanobis distance, or generalized squared inter-
point distance [39], and a constant threshold K:

(x−mx)T Σ−1
x (x−mx) ≤ K (1)

where x is a data point, mx is the mean of x, and Σx is
the covariance matrix. Setting K = 7.84 corresponds to
95%CI or 2σ [40]. All points with distance equal to or less
than K are on the surface or within the ellipsoid respec-
tively.

Once processed, the data can then be examined to define
speaker-specific therapy goals - in this case AWS expansion
volume. In order to do this, we acquire approximately an
hour worth of articulatory data captured during utterances
of various speech elicitation stimuli. We examine the data
off-line to make estimates of where the participant is with
respect to their AWS and where they should be moved dur-
ing learning.

5.2. Real-time Data Processing
In order to provide our clinical targets as visual feedback,
real-time processing in the form of computational geometry
and other mathematics typical to computer graphics takes
place in the game engine.

5.2.1. Head Correction
All sensor data is head corrected in real-time so that the
speaker may sit and move comfortably as they speak without
changing the relative position of articulator sensors (tongue,
jaw, etc). This transformation is predicated on the position
and rotation information of the 6 Degree of Freedom (DOF)
head reference sensor. First, a snapshot of the initial head
position and orientation are taken just after sensor setup. At
each frame during the session, an inverse translation and
quaternion rotation are derived from the current head po-
sition and applied to each of the tracked 5 DOF articulator
sensors. This effectively places the sensors in head space.

5.2.2. Modeling of Speaker AWS
In the current stage of our research project, the clinical target
for the speaker is to achieve an AWS of a particular volume.
The desired behavioural outcome, in terms of motor speech,
is expansion of the AWS volume through the increase in

the range of speech movements. To derive the speaker’s
progress with respect to our clinical target parameters, we
use an accumulation of the tetrahedrons from a 3D Delau-
nay tetrahedralization to establish an instantaneous speaker-
specific AWS model, as defined using a convex hull. This
approach is effective because a Delaunay triangulation in
three dimensions generates space-filling tetrahedrons whose
combined free surface forms a convex hull. To do this in
real time we make use of a modified version of the MICon-
vexHull Library [41], which implements a highly optimized
version of the QuickHull algorithm. The target AWS is de-
rived on a speaker-specific basis and is a proportional en-
largement of the baseline AWS as defined by prior analysis
(our current empirical work has demonstrated that the en-
largement ratio should be tailored to each client).

6. Visual Feedback and Control
At this time, we are still experimenting with and empiri-
cally evaluating different visualization paradigms for both
the clinical target and for the feedback. For example, we
are currently focusing on three visualization variants: (i) a
blooming flower (fig. 2a); (ii) a 2D circle (fig. 2b); and (iii)
numerical feedback (fig. 2c). These visualizations provide
increasing levels of abstract feedback on AWS expansion
progress.

While our current experimental setup provides visualiza-
tions of characteristics derived from the interactant’s tongue
motions, such as the AWS that was utilized in the visual-
ization scenarios, we have also shown, in prototype visu-
alizations, that we can directly visualize the interactant’s
tongue motions within the volume of a playable game space
as in Figure 3. For these type of visualization scenarios,
there is a need to ensure that the system always visualizes
the speech motions within the playable volume. To address
this requirement, we have undertaken several data collec-
tion studies and have established that a profile of a speaker’s
range-of-motion can be effectively derived from the AWS
that formed during the utterance of a common speech pas-
sage [42]. The system applies a transformation from speech
movement space to game space. The transformation is de-
rived on the basis of the component ranges, the centroid of
the speaker-specific AWS, and the space constraints of the
game. When scaled to a normalized space (i.e., [-1,1] in all
three dimensions) the speaker-specific AWS can be used to
formulate a relative control device, like an analog control
stick, in three dimensions. Indeed, this characterization of
an individual’s overall speech space affords many control
designs (for instance, it would be possible to discretize this
space and to formulate regions as “buttons”). This flexibil-
ity allows for a rich set of motor speech targets and exercise
designs within the framework.



(a) (b) (c)

Figure 2: An overview of our experimental visualizations (a) blooming flower (b) circle (c) percentage. Each visualization is
an animated representation of expansion controlled by the speaker’s instantaneous AWS volume. Target expansion is visualized
as a bandwidth of acceptable range using high-contrast colours.

(a)

(b)

Figure 3: An overview of various prototype tongue move-
ment visualizations (a) pollinating bee (b) exercise ball. The
pollinating bee scenario provides feedback on 3D tongue
movements. The exercise ball visualizes one dimensional
tongue movement (tongue elevation, or vertical movement).

7. Conclusion
We have presented a prototype system that provides visual
feedback, in the form of interactive computer games, to pa-
tients undergoing speech therapy interventions. A key as-
pect of the system is its ability to track the motion of the
patient’s tongue in real-time, and compute suitable abstrac-
tions, such as the AWS, that can be connected to elements
in a game. Our next step is to evaluate the clinical efficacy
of the system with a user study at the UHN – Toronto Reha-
bilitation Institute.
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