
A Meta-Method for
Formal Method Integration

Richard F. Paige

Department of Computer Science, University of Toronto,

Toronto, Ontario, M5S 3G4, Canada. paige@cs.toronto.edu?

Abstract. We describe a meta-method for formal method integration
[Pai97]. The approach is applied to combining formal methods with other
formal and semiformal methods. We discuss the theory behind formal
method integration, present two example combinations, and use an inte-
grated method in solving a small problem.

1 Introduction

Method integration involves de�ning relationships between di�erent methods so
that they may be productively used together to solve problems. In a software
engineering context, method integration has seen recent research on combining
speci�c methods [LKP91, SFD92], and on the formulation of systematic tech-
niques [Kro93, Pai97]. In this paper, we follow the latter theme and describe a
meta-method for formal method integration based on heterogeneous notations
[Pai97].

We commence with a brief overview of method integration and the general
means we take to accomplishing it. Our approach is based on heterogeneous nota-
tions, combinations of existing formal and semiformal notations. After providing
the background for heterogeneous notations, and discussing their role in method
integration, we describe a meta-method for method integrations involving at
least one formal method, and then briey apply the technique to examples.

Due to space restrictions, this paper only provides high-level details concern-
ing our approach to formal method integration and heterogeneous notations.
The interested reader may �nd further results in [Pai97].

1.1 Method integration

When integrating methods, incompatibilities between techniques are resolved so
that the approaches can be safely and e�ectively used together [Kro93]. Method
integration in a software engineering context is a problem of growing research
interest. A signi�cant reason for this is that it is unlikely that one method
will su�ce for use in the development of increasingly complex systems [Jac95,

? Current address: Department of Computer Science, York University, North York,
Ontario, Canada, M3J 1P3. paige@cs.yorku.ca

DeM82]; method integration provides systematic techniques for dealing with this
complexity. Furthermore, method integration has been used and has proved to
be useful in practice in various forms, e.g., at Rolls-Royce [Hil91], BT [SFD92],
Westinghouse [Ham94], Praxis [Hal96], and elsewhere.

1.2 Heterogeneous notations and speci�cations

A notation is an important part of any method; it is used to describe the con-
crete products of the technique. Notations play a key role in how we integrate
methods. In particular, we combine notations as a �rst step towards combin-
ing formal methods. A heterogeneous notation is a combination of notations. A
heterogeneous notation is used to write heterogeneous speci�cations.

De�nition1. A speci�cation is heterogeneous if it is a composition of partial
speci�cations written in two or more notations.

We do not constrain what is to be allowed as a composition. Useful compositions
will depend on the context and the notations to be used. Compositionsmay occur
through use of speci�cation combinators, by use of shared state or shared names,
or in other ways. We supply some examples later.

Heterogeneous notations are useful for a number of reasons: for produc-
ing simpler speci�cation languages [ZaJ93]; for writing simpler speci�cations
than might be produced using a single language [ZaM93]; for ease of expres-
sion [BoH94]; and because they have been proven to be successful in practice
[ZaJ95, SFD92, Hal96].

The formal meaning of a heterogeneous speci�cation is given by de�ning the
semantics of all the notation compositions. Formal meaning is provided by a
heterogeneous basis.

De�nition2. A heterogeneous basis is a set of notations, translations between
formalisms, and formalizations, that provides a formal semantics to compositions
of speci�cations written in two or more notations.

The heterogeneous basis that is used in this paper is partially presented in
[Pai97]. It is created by translation. We discuss it in the next subsection, and in
Section 2 outline the process of its construction.

1.3 A heterogeneous basis

A heterogeneous basis supplies a formal semantics to a heterogeneous speci�-
cation [Pai97]. It is used to provide the foundation on which integrated formal
methods are de�ned. The basis in this paper consists of a set of languages with
translations de�ned between them. It is depicted in Fig. 1.

The predicate notation is from [Heh93]; Z is from [Spi89]; speci�cation state-
ments (i.e., w : [pre; post]) are from [Mor94]; CSP is from [Hoa85]; and the two
Larch languages are from [GuH93]. The remaining semiformal notations are from
SA/SD [DeM79, YoC79], SADT [MaM88], and Coad-Yourdon object oriented

predicates w : [pre, post]

Larch LSLLarch LCL Z

pseudocode OOA/D
notations

SA/SD
notations

CSP

notations
SADT

Fig. 1. A heterogeneous basis

analysis and design [CoY90]. More notations are considered in [Pai97]. Notations
were chosen to be placed in the basis for a variety of reasons: because they are
well-known, or because they have proven to be useful in practice, or because
there are existing method integrations involving such notations that can be used
for comparison.

In Fig. 1, the arrows represent translations between notations. Many of the
translations in Fig. 1 are described in detail in [Pai97]. We will give a few ex-
amples in Section 2, considering both formal and semiformal notations, and will
demonstrate the general technique that can be used for constructing (or extend-
ing) a heterogeneous basis that consists of formal and semiformal notations.

A speci�cation written using the notations from Fig. 1 is given a semantics
in terms of a formal speci�cation written using only one of the formal notations
of the basis. The user of the basis chooses the formal notation to use for their
particular application and context, and de�nes the meaning of a heterogeneous
speci�cation in this formal notation. Speci�c context-level problems must be
dealt with by the speci�er and user of the heterogeneous basis, e.g., how to resolve
parsing problems, and how to deal with di�erences in expressive capabilities (we
address some of these issues in Section 2).

The existence of the heterogeneous basis means that we can give a formal
semantics to compositions of partial speci�cations written in the notations of the
basis. It does not provide us with any results regarding the feasibility (or even
the possibility) of using speci�c notations in composition. Such compatibility
issues must be examined in a case-by-case setting.

1.4 Integrating methods with heterogeneous notations

Heterogeneous speci�cations are written using two or more notations. Formal
method integration is carried out by �rst precisely combining the notations used
by the methods. This �rst step occurs by constructing or extending a hetero-
geneous basis consisting of the notations of interest, and by resolving syntactic
di�erences among the notations. Once this is done, the method integration pro-
cess continues by generalizing method steps to use heterogeneous notations (i.e.,

by adding notations from one method to another method), and by interleaving
(perhaps generalized) method steps from the methods that are to be combined.

Heterogeneous notations will not solve all the problems of method integra-
tion; issues with respect to method compatibility and models of procedure remain
to be dealt with. We claim that heterogeneous notations provide a systematic
and lightweight basis for formal method integration, and we provide evidence to
support this claim herein.

1.5 Overview

We commence the paper by describing a general process for constructing the
heterogeneous basis of Fig. 1. We suggest a meta-method for formal method
integration and use it to combine methods: we integrate two re�nement-based
methods in one example, and combine a re�nement-based and structured method
in a second example. We then use the �rst integration in solving a small problem
(detailed examples using combined formal and semiformal methods are given in
[Pai97]).

2 A Heterogeneous Basis

A heterogeneous basis is shown in Fig. 1. The basis is created by translation: a
set of mappings are given that transform a speci�cation in one notation into a
speci�cation in a second notation. In this section, we summarize the process of
constructing the heterogeneous basis of Fig. 1. In particular, we consider the ad-
dition of formal notations (by translation), and the process of adding semiformal
notations to an existing basis (by formalization).

2.1 Formal translations

A formal notation may be added to a heterogeneous basis by providing a trans-
lation from the formal notation into a second formal notation already in the
heterogeneous basis. In doing so, the extender of the basis must analyze the ex-
pressive capabilities of the new notation, viz., what can and cannot be translated
into and from the new notation. The expressive capabilities of the notations will
a�ect the use of the translations, and will also a�ect how a semantics is given to
a heterogeneous speci�cation that uses the new notation.

We present several example translations here, building on those that have
been previously given in the literature [Kin90, HeM88, Mor94]. We also identify
several examples of untranslatable speci�cations. In a meta-method, di�erences
in notation expressiveness should be handled in a way that is most appropriate
to the users of the meta-method and heterogeneous basis; this might be carried
out by restricting translation domains, or by extending languages. In this paper,
we restrict translation domains, and therefore take an `intersection' approach to
semantics (i.e., only mutually expressible concepts in combinations of languages
are used). Alternative approaches|e.g., `union' approaches to semantics|are

considered or discussed in [ZaJ93, Pai97]. As we shall see, the meta-method
for formal method integration does not require that an intersection (or union)
approach to semantics be used. However, the examples in this paper only make
use of an intersection approach.

To simplify the process of integration, we assume that all languages use the
primed/unprimed notation of Z to distinguish poststate from prestate. We also
assume that types and type constructors can be freely translated. We retain the
convention of [Pai97] and describe each translation as a function from language
to language.

A predicate speci�cation frame w�P that does not refer to the time variables
t ; t 0 [Heh93] can be translated to a speci�cation statement [Mor94] using the
mapping PredToSS .

PredToSS (frame w � P) b= w : [true;P]

(Translations are given in [Pai97] for handling time variables.)

A speci�cation statement can be translated to a predicate as follows.

SSToPred(w : [pre; post]) b= frame w � (pre) post)

[Pai97] describes how to translate a speci�cation statement to a predicate that
includes references to the time variables t and t 0. The predicative notation can-
not represent angelic speci�cations [BaV89] and terminating but otherwise ar-
bitrary behaviour (i.e., havoc [Mor94]), and so SSToPred cannot translate these
speci�cations and maintain their interpretation.

The Z schema Op b= [�S ; i? : I ; o! : O j pred] can be mapped into a
speci�cation statement using the function ZToSS . This result is due to [Kin90].

ZToSS (Op) b= w : [(9w 0 : T j inv � pred); pred]

(The �-schema denotes those state elements Op can change. The inputs to
the operation are denoted by i?, and the outputs by o!. inv is a state invariant
obtained from the �-schema in the declaration of Op, and w consists of variables
in S together with the operation outputs.)

The speci�cation statement w : [pre; post] can be translated into Z using
function SSToZ .

SSToZ (w : [pre; post]) b= [��; �w j pre ^ post]

� is all state variables not in the frame w . The user of SSToZ may identify
input components (using a ?), or output (using a !) in the schema, instead of
placing all state components in � or � components. Miraculous speci�cations
(i.e., terminating and establishing false) cannot be translated under maintenance
of interpretation using this function.

We can add CSP [Hoa85] to the heterogeneous basis by translating from
CSP to action systems [Bac90] following the work of [WoM91]. An action system
consists of a state, an initialization, and a number of labelled guarded commands
on the state (a labelled guarded command is called an action). An example is
shown below.

var n � initially n := 0

count : n < 100! n := n + 1

reset : true ! n := 0

The initialization is executed, and then repeatedly one of the labelled commands
with a true guard is chosen and executed. The system deadlocks if no guard is
true, and diverges whenever a command aborts.

A communicating sequential process consists of an alphabet of events, and
a set of behaviours described in one of the models of CSP: traces, failures, or
failures-divergences.

In [WoM91] it is shown how to construct the traces, failures, and divergences
of an action system, thus mapping from action systems into CSP. First, de�ne
for any sequences of actions s and t , the sequential composition Ps , as follows:

Ph i b= skip; Phai b= Pa ; P
s
a
t
b= Ps ; Pt

We can now construct the traces, failures and divergences. Consider an action
system P with initializationPi and a set of actions A. Three laws from [WoM91]
are used for calculating traces, failures, and divergences of an action system.

Law 2.1 A sequence tr is a trace of P providing that :wp(P
hiiatr

; false).

Law 2.2 For a sequence of actions tr and a set of actions ref , the pair (tr ; ref)
is a failure of P if tr is a trace of P and:

:wp(P
hiiatr

; 9 x : ref � gd Px)

where gd Px is the guard of the action Px .

Law 2.3 A sequence tr is a divergence if :wp(P
hiiatr

; true).

Justi�cations for the laws are given in [WoM91].

The transformation from a CSP speci�cation (given in terms of traces, fail-
ures, and divergences) into an action system is also possible. Suppose we have a
set of traces T , a set of failures F , and a set of divergences D . First we construct
a set of actions L (these are simply names for actions). An action system P for
this speci�cation is as follows. The declaration and initialization of P is

var tr : L�; R : PL �

initially tr := h i; R : [tr 62 D ; (tr ;R) 2 F]

and for every l 2 L we form the guarded command

l : (l 62 R ^ (tr a hli) 2 T)! tr := tr a hli; R : [tr 62 D ; (tr ;R) 2 F]

Further details can be found in [WoM91].

The issue of whether speci�c combinations of formal notations in the het-
erogeneous basis are usable together is not directly considered here. Feasibility
(or compatibility) of use depends on the context in which the notations are
to be used, and on how compositions between notations are to be de�ned. We
do provide some evidence that particular notations are compatible, and can be
used productively together (see the examples, and the further case studies in
[Pai97]). More work remains to be done on examining the soundness of using all
combinations of the notations of the heterogeneous basis.

2.2 Semiformal translations

The heterogeneous basis contains semiformal notations, including those from
SADT [MaM88], Coad-Yourdon OOA/D [CoY90], and SA/SD [DeM79, YoC79].
To include a semiformal notation in the basis, we must �x an interpretation for
it and then express speci�cations in this notation in one of the formalisms in
the basis [Pai97]. If this interpretation or formalization is not appropriate for
a development setting, then it should be changed. Once a formalization of a
semiformal speci�cation has been constructed, the formalization can be used to
check for ambiguity or inconsistency.

We demonstrate how to add semiformalisms to the heterogeneous basis by
using examples of SADT notations. Other semiformal notations, e.g., data ow
diagrams and object notations, are dealt with in [Pai97].

There are many interpretations that might be taken for a semiformalism. In
particular, an interpretation and formalization will probably be useful only for
a speci�c problem context, or particular development context. Therefore, it is
important that the approach to heterogeneous basis construction be extendible
to new notations, interpretations, and formalizations. Our examples have con-
vinced us that the basis is partwise extendible and changeable; that is, we can
change formalizations without altering the rest of the heterogeneous basis.

An SADT actigram box is shown in Fig. 2. An actigram is made up of in-
terconnected boxes and arrows, with boxes representing functions and arrows
representing data ow. Actigram boxes may be annotated with processing de-
tails, just as data ow diagrams may be annotated with process speci�cations
(PSPECs).

The interpretation placed on an actigram is that it represents an operation on
a state; this maps conveniently into a Z style of speci�cation. If this interpretation
is inappropriate for the task at hand, it can be changed according to the users'
needs. For example, with this interpretation (and formalization) it will not be
straightforward to model nondeterminism or triggering conditions. If we need to

Activity
output

output_s

input

input_s

control control_s

mechanism mechanism_s

Fig. 2. An SADT actigram

model such concepts, we should use a more appropriate formalization (e.g., akin
to [LKP91, ZaJ95]). We represent the actigram of Fig. 2 in Z as follows. First,
we de�ne appropriate types for the inputs, outputs, mechanisms, and controls.
We create a state schema, ActivityState, for the actigram. This represents the
part of the outputs of the actigram that are used elsewhere, and is equivalent to
declaring an implicit data store.

ActivityState
output s : Os

We next construct a Z speci�cation of the box. In Fig. 2, ow labelled with a
s su�x comes from or goes to another box. Non-su�xed labels indicate data
ow from or to the environment. In the Z schema we annotate external interac-
tions with the Z syntax for input and output, and do not annotate the internal
interactions.

A Z schema for Activity is as follows.

Activity
control? : Ce

input? : Ie
output ! : Oe

mechanism? :Me

�input s
�mechanism s
�control s
�ActivityState

Each of input s,mechanism s, and control s are names of state schemas declared
elsewhere. They can be annotated with � instead of � if necessary. An invariant
may be added to Activity , by formalizing any associated processing details, if
such information is important for proofs.

An SADT datagram box is shown in Fig. 3.
Boxes represent data, and arrows represent activities on data. The interpre-

tation we place on a datagram box is that it is an entity (a set), and arrows
between datagrams (or between the environment and a box) represent relations
between entities. This can be modelled in Z as follows.

generating
activity activity

using

device
storage

Data

control
activity

Fig. 3. An SADT datagram

1. Create a type [ENVTYPE], the type of the environment. Model the envi-
ronment as a state schema with component env .

Environment
env : ENVTYPE

All external interactions will be with the entity Environment .
2. For each datagram box Data, declare a type [DATA]. Represent the box in

Z as a state schema.

Data
data : DATA

3. Each arrow labelled r between the environment and a datagram box D is
modelled as a one-to-one function from the environment to the box.

r : Environment 7� D

If there is more than one instance of D in the system that is represented by
the box, then the relation should instead be one-to-many.

4. Each arrow r from a datagram D to the environment is described as a one-
to-one function from the box to the environment.

r : D 7� Environment

If there is more than one instance of D in the system that is represented by
the box, the relation should instead be many-to-one.

5. Each arrow from a datagram D1 to a datagram D2 is modelled as a pair of
appropriately-named relations. For example, consider the arrow in Fig. 4.
It is described in Z as follows.

gen : D1 $ D2
use : D2 $ D1

Constraints on the domain and range of the relation can be added as invari-
ants, e.g., to make relations one-to-one.

D1
use

gen D2

Fig. 4. A use-generate relationship

The addition of other semiformalisms (e.g., data ow diagrams, structure
charts, object notations, pseudocode) is considered in [Pai97]. Therein, examples
of how to extract semiformal speci�cations from formal speci�cations are also
considered.

3 A Meta-Method for Formal Method Integration

Heterogeneous notations can be used in the production of a meta-method for
formal method integration. We present such a technique here. The meta-method
describes an abstract strategy for constructing relationships between procedural
steps.

The meta-method itself does not place constraints or restrictions on how the
methods are to be used when integrated. This is the task of the method engi-
neer, i.e., the user of the meta-method. The meta-method is designed to support
the method engineer in placing constraints on using methods in combination.
Whether particular methods are to be considered complementary is dependent
on the context in which they are to be used.

1. Fix a base method. Fixing a base method is step aimed at assisting method
engineers in determining roles that individual methods can play in the in-
tegrated method. A base method can suggest a set of steps (i.e., a partial
meta-model [Met94]) that is to be supported and complemented by other
(invasive) methods. A base method may support more of the software de-
velopment cycle than other methods; it may also provide those steps that a
developer may want to use the most during development.

2. Choose the invasive method(s). Invasive methods augment, are embedded,
or are interleaved with the base method. In this step, possible relationships
between the base and invasive methods are decided. The selection of invasive
methods might be done in terms of: notational convenience, e.g., for adding
operational details to ow diagrams, or for adding formality to semiformal
speci�cations; methodological convenience, e.g., for adding new sets of pro-
cedures to a base method, such as procedural re�nement to a non-re�nement
based technique; or, internal constraints dictated by requirements, manage-
ment or company policy, or regulatory bodies.

3. Construct or extend a heterogeneous basis. This is accomplished by con-
structing or adding notations from the base and invasive methods to a het-
erogeneous basis. A single formal notation from the heterogeneous basis (that

is to be used to provide a formal semantics to system speci�cations that arise
in the use of the integrated method) can be chosen and �xed at this point.

4. Generalization and relation of method steps. The method steps for the base
and invasive methods are manipulated in order to de�ne how they will work
together in combination. Either one or both of the generalization and rela-
tion manipulations can be applied. In more detail, the manipulations are as
follows.

{ Generalization. The steps of the base or invasive methods are general-
ized to use heterogeneous notations; e�ectively, notations are added to
a method, and the method steps are generalized to using the new no-
tations. An example of a generalization integration is demonstrated in
[WiZ92], where SA is combined with Larch.

{ Relation. Relation of method steps can follow generalization. Relation-
ships between the (generalized) base steps and (generalized) invasive
steps are de�ned. Examples of relationships include the following.

� Linking of method steps, by de�ning a translation between notations
of di�erent methods, e.g., as in the SAZ Project [PWM93].

� Replacement of entire steps in a base method by (generalized) steps
of an invasive method. The invariant in such a replacement is that
the steps being added must do at least the tasks of the steps they
are replacing.

� Supplementation of method steps. Speci�c steps of one method are
identi�ed and are supplemented by steps from a second method. Sup-
plementation does not change the ordering of steps, i.e., the ordering
in the integrated method is identical to that in the method being sup-
plemented. Invariance of ordering can be obtained by ensuring that
the steps being added do not overlap with steps of the supplemented
method outside of those method steps being supplemented.

� Parallel use of steps, by describing relationships that interleave the
use of two or more separate sets of method steps. An example of this
kind of relation is suggested in [LKP91].

5. Guidance to the user. Hints, examples, and suggestions on how the integrated
method can be used is provided.

The meta-method does not provide a formal (meta-) model of each method
(e.g., as is done in meta-modelling techniques like [Met94]); for this reason, we
consider the meta-method to be a \lightweight" approach to method integration.
The meta-method also requires that all notations have (or can be given) a formal
semantics, and that the method engineer eliminate syntactic ambiguity among
the notations of the methods.

In the next two sections, we use the meta-method to integrate formal and
semiformal techniques, and use these examples to discuss some of the properties
of the meta-method.

4 Integrating Formal Methods

Of the formalisms considered in the heterogeneous basis, two include methods
based on procedural re�nement; the remaining techniques are speci�cation styles
(possibly with rules for data transformation), associated with informal rules for
writing the speci�cation, and for checking for its consistency.

We integrate several formal methods (a Z `house method', Morgan's re�ne-
ment calculus, predicative programming) using the meta-method of the previous
section. We choose the Z house method as the base method, in order to make use
of its speci�cation style. The re�nement calculus and predicative programming
are selected as the invasive methods. A heterogeneous basis containing these
notations (and translations between them) was constructed in Section 2. For
each combination of used notations, the use of notations is restricted to those
mutually expressible speci�cations (i.e., when combining Z and predicates, no
miracles or havoc speci�cations are used).

In applying Step 4 of the meta-method, we �rst generalize the Z house
method speci�cation procedures (that require informal documentation of spec-
i�cation parts) to include the predicative notation and the re�nement calculus
notation. Then, we supplement the Z house method steps with proof rules (for
procedural re�nement and data transformation) from predicative programming
and the re�nement calculus. The supplementation step requires us to show how
procedural re�nement (and other proof techniques, e.g., for data transformation)
apply to heterogeneous speci�cations. We summarize how procedural re�nement
applies to heterogeneous speci�cations here; other proof techniques are discussed
in [Pai97].

The procedural re�nement rules are based on the re�nement relations from
[Heh93] and [Mor94]. Their de�nitions are summarized here for completeness.

De�nition3 [Mor94]. A speci�cation statement S is re�ned by a speci�cation
statement T (written S v T) if 8R0 � wp(S ;R0)) wp(T ;R0); where R0 is a
relation on pre- and poststate.

De�nition4 [Heh93]. A predicative speci�cation P is re�ned by a speci�ca-
tion Q if 8�; �0 � (P (Q); where � and �0 denote the prestate and poststate,
respectively.

We now outline a small collection of rules for re�nement over formal hetero-
geneous speci�cations. Further rules|and results on proof of satis�ability and
data transformation|can be found in [Pai97].

4.1 Application of re�nement

We briey summarize several rules that demonstrate how to apply the re�nement
relations (and v to operands of types other than predicate and speci�cation
statement. In the following, � is the state.

Rule 4.1 Let P and Q be predicates. If 8�; �0 � (P (Q) then P v Q.

Proof:

P v Q = 8�;R0 � (wp(P ;R0)) wp(Q ;R0))

ftranslation PredToWp from [Pai97]g

= 8�;R0 � ((8 �0 � P) R0)) (8�0 �Q) R0))

fmonotonicityg

(8�;R0 � 8�0 � ((P) R0)) (Q) R0))

fantimonotonicityg

(8�; �0 � (P (Q)

Rule 4.2 For Z schemas Sp ; Sq with invariants P and Q,

Sp v Sq = (9 �0 � P) 9�0 �Q) ^ (9�0 � P) 8�0 � (P (Q)):

Proof: By translation ZToSS , De�nition 3, and manipulation.

We can also apply the re�nement relation of the predicative notation to non-
predicate operands. We show how it applies to Z schemas and Larch interface
language operations.

Rule 4.3 For Z schemas Sp ; Sq with invariants P and Q,

(Sp (Sq) = 8�; �0 � ((9�0 �Q)) Q)) ((9�0 � P)) P)

Proof: By translations ZToSS , SSToPred , and manipulation.

Rule 4.4 Let L and M be LCL functions with identical function interfaces,
where both have modifies clause w, and where L and M have requires clauses
P and U respectively, and ensures clauses Q and V respectively. Then

L(M = 8w ;w 0 � ((P) Q)((U) V)):

A further result tells us that a speci�cation statement is always re�ned by
its predicate translation.

Rule 4.5 If S b= w : [pre; post] is a speci�cation statement and predS is its
predicate translation, then S v predS .

Proof:

S v predS = 8R0 � wp(S ;R0)) wp(predS ;R
0)

fde�nition; distributivity; PredToWp g

(8w 0;R0 � (pre ^ (post) R0))) ((pre) post)) R0);

and the last line is a theorem.

We can generalize the result of Rule 4.5: two further rules allow us to intro-
duce predicates or speci�cation statements in the process of a development.

Rule 4.6 Let P and Q be predicates, and specP and specQ their translations into
speci�cation statements (using translation PredToSS1 or PredToSS2). If P (Q
then P v specQ .

Rule 4.7 Let S and T be speci�cation statements, and predS and predT their
translations into predicates. If S v T then S v predT .

Proof of 4.7 By Rule 4.5, T v predT . If S v T , then by monotonicity of v,
S v predT .

Finally, we discover that re�nement is actually preserved over translation
from speci�cation statements to predicates.

Rule 4.8 For speci�cation statements S and T , and their predicate translations
predS and predT , (S v T)) (predS (predT).

Proof: By translation PredToSS , and since [a) (c ^ (b (d))]) [(a) b)(
(c) d)] is a tautology for all a; b; c; and d .

Other results and rules are possible; they can be obtained by generalizing or
specializing the results presented, and by using the basic translations.

4.2 Re�nement over conjunction and disjunction

We describe re�nement rules for application over conjunction and disjunction.
More rules are described in [Pai97]; see [War93] for an alternative approach to
combining speci�cation statements with Z combinators. In the following, let S ; S 0

and T be speci�cation statements, and P and Q be predicates.

Rule 4.9 If S v T then P ^ S v P ^T.

Proof:

P ^ S v P ^T = 8R0 � (wp(P ^ S ;R0)) wp(P ^T ;R0))

fPredToWp; splitting lawg

= 8R0; �0 � ((P ^ S) R0)) (P ^T) R0))

fantimonotonicityg

(8�0 � (P ^T) P ^ S)

fmonotonicity; Rule 4:7g

(S v T

Rule 4.10 Let predS and predT be the predicate speci�cation equivalents of S
and T (assuming S and T are not angelic). If 8�; �0 � (predS (predT) then
P _ S v P _ T.

Combining Rule 4.10 with Rule 4.8, we determine that:

Corollary 1 If S v T then P _ S v P _T.

Speci�cation statements that are conjoined or disjoined together can also be
re�ned by parts.

Rule 4.11 Providing that S ; S 0; and T are all expressible in predicates,

(S ^ T v S 0 ^T)(S v S 0;

(S _ T v S 0 _T)(S v S 0:

Rule 4.11 gives us a form of monotonicity over predicate combinators. The proof
is similar to that for Rule 4.9.

As is shown in [War93], re�nement over schema conjunction and disjunction
is not monotonic. However, we can combine schemas (and other speci�cations)
via predicate operators _ and ^ and re�ne them. Let Sx ; Sy ; and Sz be schemas.
Then:

Rule 4.12

(Sx ^ Sy v Sz ^ Sy)(Sx v Sz ;

(Sx _ Sy v Sz _ Sy)((Sx (Sz):

Rules for re�nement over sequential composition are given in [Pai97], as are
rules for heterogeneous development, i.e., rules for changing notation during a
development via a re�nement step. We give an example of how to use some of
these rules in Section 6.

5 Combining Formal and Semiformal Methods

Structured Analysis and Design Technique (SADT) [MaM88] was invented by
Ross in the early 1970s. It claims to allow easy representation of system char-
acteristics like control, feedback and mechanism. It contains explicit procedures
for group work, and is based on the speci�cation and elucidation of diagrams.
There is a rigorous set of rules for the construction of the diagrams. We con-
sider a basic version of the SADT method here solely in the context of software
speci�cation and design.

We apply the meta-method from Section 3 in integrating SADT with pred-
icative programming. The base method is SADT; predicative programming is
the invasive method. SADT procedures will be generalized to using predicative
notations. Speci�cally, the procedures for authoring and data modelling will be
generalized to use predicative notations. After generalization, the procedures will
be supplemented by predicative programming re�nement rules. In particular,
the SADT steps for re�nement, data modelling, authoring, and implementation
will be supplemented by predicative re�nement rules. We depict the integrated
method in Fig. 5.

In Fig. 5, ellipses represent procedure steps (and thick arrows between ellipses
represent ordering of steps), and boxes describe heterogeneous products. Arrows
from ellipses to boxes denote usage or creation of the product by the procedure
step.

In more detail, the integrated method procedure is as follows.

Interview

Author

Refinement

Data modelling

Distribution

Validation &
Criticism

ImplementationImplementation

Data model

Requirements
specification

actigrams
Heterogeneous

annotations
Heterogeneous

Approval
or Return

Fig. 5. SADT/predicative programming integrated method

1. Interview. The clients, customers, and users are interviewed so as to gather
requirements. A requirements speci�cation is written in a notation appro-
priate for the task.

ASIDE. Steps 2, 3, and 4 can occur in parallel. We write them se-
quentially here for ease of presentation. END OF ASIDE.

2. Authoring of heterogeneous speci�cations. A heterogeneous system speci�-
cation is constructed. Actigrams, datagrams, and annotations are produced
using compositions of SADT notations and predicate notations. Typically,
the predicate notation will be con�ned to the expression of annotations, but
visual depictions of predicates could be used, too.

3. Data modelling and data dictionary construction. Data is designed and mod-
elled, and a heterogeneous data dictionary (written using pseudocode, regu-
lar expressions, and predicate notations) is constructed.

4. Re�nement of heterogeneous speci�cations. The actigrams and datagrams are
re�ned hierarchically. SADT rules are used to syntactically check the steps.
Predicate partial speci�cations are re�ned using De�nition 4, and proof rules
from [Heh93].

5. Distribution. The re�ned heterogeneous speci�cation is distributed to a re-
view committee. The committee should be familiar with the SADT nota-
tions and conventions, and at least one member should be familiar with the

predicative notation, for reading processing details. The speci�cation writers
should be prepared to informally explain or document the formal parts of
the heterogeneous speci�cation, and to explain the heterogeneous basis.

6. Validation and Criticism.The speci�cation is reviewed and criticized. Syntax
is validated according to SADT rules. The syntax and satis�ability of pred-
icate speci�cations is checked. The connections between the SADT boxes
and the predicate speci�cations are validated given the precise meaning of
the composition. The SADT and predicate interfaces should be syntactically
veri�ed using the syntactic rules of SADT; predicate parts will be informally
treated as SADT annotations for the purposes of review.

7. Approval or Repair. The speci�cation is approved, or sent back to Step 2 (or
Step 4) for repair.

8. Implementation. The speci�cation is implemented in a hierarchical fashion by
standard SADT practice and by predicate re�nement, data transformation,
transliteration, and component integration. Testing of the product should
also occur.

At several steps of the method, SADT produces documentation (e.g., glossaries,
diagrams, supplements, narratives; see [MaM88]). We do not discuss the e�ects of
method integration on these products here in the interests of conserving space.
One can take the view that the predicative notation is just another form of
documentation for the SADT method, though it is documentation that can be
formally manipulated.

Some of the properties we obtain with this integrated method are as follows.

{ Restrictability: the predicate notation need be used only when required for
describing actigram annotations. Restrictability is convenient to obtain with
this integration, due to the structured style of speci�cation o�ered by the
use of SADT actigram and datagram notations.

{ Gradual introduction: predicative programming can be gradually introduced
into the SADTmethod by restricting the use of predicates to the speci�cation
and development of those system parts where the notation seems necessary,
and by applying restrictability over time.

{ Semantic gaps: the semantic gaps introduced by using a formal method in a
development are reduced due to the heterogeneous basis and restrictability.

{ Method transformation: transformations between the heterogeneous speci�-
cations of the SADT/predicate method and pure predicate or pure SADT are
possible, as are partial transformations, by the translations from Section 2
and by producing informal extraction procedures.

6 A Small Formal Example

We have only the space to present a very small example of using integrated formal
methods. For this reason, we choose to demonstrate the use of a combination of
formal methods. The example combines predicative programming [Heh93] and
the re�nement calculus [Mor94]. The intent is only to give the avour of using

multiple methods together. Further examples are presented in [Pai97]; these
examples in particular include integrations of formal and semiformal methods,
and further examples of integrating and using multiple formal methods.

The problem is as follows. We are presented with two equal-length lists of
lower-case letters (representing, typically, English words). We are to determine
if the two lists are anagrams (i.e., permutations) of each other. If they are, we
are to compute the number of position di�erences over the two lists (a position
di�erence for a character c that is in both L and M is the absolute di�erence in
indices for c in L and M . A strategy must be developed for handling multiple
occurrences of characters in lists.)

We specify the problem in two parts. The two lists are L and M . We declare
a constant list ALPH = [`a; `b; ::; `z]. The global variables are b, which is set
to true i� L and M are anagrams; and np, the number of position di�erences
between L and M . The initial speci�cation is as follows.

anagram :

if b ! numpos

[]:b ! skip

�

(The predicate : operator is dependent composition, i.e., sequencing.) anagram
is a predicate. It is de�ned as follows, using the notation of [Heh93].

anagram b= b0 = 8 j : 0; ::26 � ((cj xi : 0; ::#L � Li = ALPH (j)) =

(cj xi : 0; ::#L �Mi = ALPH (j)))

(x is the bunch quanti�er [Heh93], and cj is the bunch cardinality operator.)
numpos is a speci�cation statement that counts the number of position di�er-
ences between L and M .

numpos b= np : [np0 =
X

i : 0; ::26 �
X

j : 0; ::#N �

abs([k : 0; ::#L j L(k) = ALPH (i)]j �

[k : 0; ::#L jM (k) = ALPH (i)]j)

]

where N b= xk : 0; ::#L � L(k) = ALPH (i). Note that for multiple occurrences
of c, we always take the di�erence of the smallest unmatched indices.

The re�nement relation(is monotonic over dependent composition. There-
fore, we can re�ne anagram without a�ecting numpos or the guarded selection.
The approach to re�ning the anagram speci�cation will be to iterate through the
alphabet, and for each letter of the alphabet count the number of occurrences of
the letter in each of lists L and M . L and M are permutations i� they have the
same number of occurrences of each letter. A re�nement goes as follows. First,
de�ne P like so.

P b= ((cj xi : 0; ::#L � Li = ALPH (j)) = (cj xi : 0; ::#L �Mi = ALPH (j))

Then:

anagram (b := >: k := 0: b0 = b ^ 8 j : k ; ::26 � P (1)

The predicate at the end of the dependent composition (1) is re�ned as a selec-
tion.

(if k = 26 then skip

else k 6= 26) b0 = b ^ 8 j : k ; ::26 � P

The predicate in the else-branch can be implemented by de�ning three new
variables, s; sM ; and sL, that will be used to iterate through the lists L and M
and to keep track of the number of occurrences of the letter ALPH (k).

(var s; sL; sM : nat �

s; sL; sM := 0; 0; 0 :

k 6= 26) b0 = b ^ 8 j : k ; ::26 �Q : �

k := k + 1 : b0 = b ^ 8 j : k ; ::26 � P

where

Q b= (sL+ cj xi : s; ::#L � Li = ALPH (j)) =

(sM + cj xi : s; ::#L �Mi = ALPH (j))

Finally, the predicate marked with a � can be re�ned by a simple selection that
updates the counters.

(if s = #L then b := b ^ (sL = sM) else (

sL; sM ; s := sL + (if Ls = ALPH (k) then 1 else 0);

sM + (if Ms = ALPH (k) then 1 else 0);

s + 1 :

k 6= 26) b 0 = b ^ 8 j : k ; ::26 �Q)

The development is now complete. Notice that we have used a recursive re�ne-
ment [Heh93] in the last step above, instead of developing a loop structure.

The next step is to re�ne numpos. We can do this using v due to Rule 4.8.
The re�nement requires two loops. The outer loop will iterate over the alphabet,
while the inner loop will iterate over the lists and will calculate the lists of indices
where speci�c letters of the alphabet appear. The re�nement proceeds as follows
(omitting details due to space constraints), based on the standard development
steps outlined in [Mor94] for loops (this includes using leading and following
assignment laws).

numpos v i ; np := 0; 0;

do i 6= 26!

np : [(0 � i < 26) ^ I ; I 0]; �

i := i + 1

od

An invariant is I b= np =
P

r : 0; ::i �R, where R is:

R b=X j : 0; ::#N �

abs([k : 0; ::#L j L(k) = ALPH (r)]j � [k : 0; ::#L jM (k) = ALPH (r)]j)

A bound function is 26� i . The new speci�cation statement marked with a �
can be re�ned by adding three fresh variables and a loop over the list; these
variables are used in determining the indices for a speci�c letter of the alphabet.
The results of the list determination are subtracted, and this new result added to
np to preserve the loop invariant. We again apply the laws leading and following
assignment, and introduce the loop using the checklist from [Mor94].

v j[var j : N; A;B : seq#LN �

j ;A;B := 0; h i; h i;

do j 6= #L!

A;B : [(0 � j < #L) ^ J ; J 0;]; �

j := j + 1

od;

np := np +
X

k : 0; ::#A � abs(A(k) � B(k))

]j

The invariant J in the above loop is

J b= A = [k : 0; ::j jM (k) = ALPH (i)] ^B = [k : 0; ::j j L(k) = ALPH (i)]

The bound function is #L� j . The �nal re�nement of the speci�cation marked
with � is straightforward: a selection is added that concatenates the current
value of j to the lists A and B if the conditions in the invariants are met.

v if M (j) = ALPH (i)! A := Aa [j] �;

if L(j) = ALPH (i)! B := B a [j] �

(where a is list concatenation). If
P

is not an implemented combinator in the
programming language, then we need to re�ne the last sum (and addition to np)
in the last line of the re�nement tree. This can be done by introducing a simple
loop or recursive re�nement (which we omit here due to space constraints).
Note that such a re�nement can be done using either predicative re�nement or
weakest precondition re�nement; the preferences of the developer can be taken
into account.

By Rule 4.8 and the monotonicity of (and v over dependent composition,
the composition of the re�nements is a re�nement of the original speci�cation,
and we have implemented a solution.

7 Conclusions

We have briey described a meta-method for integrating formal methods with
other methods. We have provided two examples of using the meta-method: an
integration of several formal methods; and an integration of a program design
calculus with a structured method. The approach to integration is based on
combining notations; formal method integration is based on combining nota-
tions, and manipulating procedures of methods to accommodate and use the
new notations. Future work will encompass more and larger case studies, and
will see us consider a wider spectrum of methods in integration. We will also
look at constructing formal models of methods, in order to be able to speak
precisely about the relationships we are de�ning between them. Finally, we will
consider other approaches to giving semantics to heterogeneous speci�cations|
particularly, union approaches, where the semantics of all speci�cations can be
expressed in compositions.

Acknowledgements

Thanks to Ric Hehner, Pamela Zave, and the three anonymous referees for
their excellent suggestions and advice.

References

[Bac90] R.J.R. Back. Re�nement calculus II: parallel and reactive programs. In Step-
wise Re�nement of Distributed Systems, LNCS 430, Springer-Verlag, 1990.

[BaV89] R.J.R. Back and J. von Wright. A Lattice-Theoretical Basis for a Spec-
i�cation Language. In Mathematics of Program Construction, LNCS 375,
Springer-Verlag, 1989.

[BoH94] J. Bowen and M. Hinchey. Ten Commandments of Formal Methods. Oxford
University Computing Laboratory Technical Monograph, 1994.

[CoY90] P. Coad and E. Yourdon. Object-oriented Analysis, Prentice-Hall, 1990.
[DeM79] T. DeMarco. Structured Analysis and System Speci�cation, Yourdon Press,

1979.
[DeM82] T. DeMarco. Controlling Software Projects: Management, Measurement, and

Estimation. Yourdon Press, 1982.
[GuH93] J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Spec-

i�cation, Springer-Verlag, 1993.
[Hal96] A. Hall. Using Formal Methods to Develop an ATC Information System.

IEEE Software, March 1996.
[Ham94] J. Hammond. Producing Z Speci�cations from Object-Oriented Analysis. In

Proc. Eighth Z User Meeting, Cambridge, Springer-Verlag, 1994.
[HeM88] E.C.R. Hehner and A.J. Malton. Termination Conventions and Comparative

Semantics, Acta Informatica, 25 (1988).
[Heh93] E.C.R. Hehner. A Practical Theory of Programming, Springer-Verlag, 1993.
[Hil91] J.V. Hill. Software development methods in practice. In Proc. Sixth Annual

Conference on Computer Assurance, 1991.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes, Prentice-Hall, 1985.

[Jac95] M.A. Jackson. Software Requirements and Speci�cations, Addison-Wesley,
1995.

[Kin90] S. King. Z and the re�nement calculus. In VDM `90: VDM and Z - Formal

Methods in Software Development, Third international symposium of VDM
Europe, LNCS 428, Springer-Verlag, 1990.

[Kro93] K. Kronl�of, ed.Method Integration: Concepts and Case Studies, Wiley, 1993.
[LKP91] P. Larsen, J. van Katwijk, N. Plat, K. Pronk, and H. Toetenel. Towards

an integrated combination of SA and VDM. In Proc. Methods Integration

Workshop, Springer-Verlag, 1991.
[MaM88] D.A. Marca and C.L. McGowan. SADT { Structured Analysis and Design

Technique,McGraw-Hill, 1988.
[Met94] Project MetaPHOR Group, MetaPHOR: Metamodeling, Principles, Hyper-

text, Objects and Repositories. Technical Report TR-7, University of Jy-
vaskyla, 1994.

[Mor94] C.C. Morgan. Programming from Speci�cations, Prentice-Hall, Second Edi-
tion, 1994.

[Pai97] R.F. Paige. Formal Method Integration via Heterogeneous Notations, PhD
Dissertation, July 1997.

[PWM93] F. Polack, M. Whiston, and K.C. Mander. The SAZ Project: Integrat-
ing SSADM and Z. In Proc. FME `93: Industrial-strength Formal Methods,
LNCS 670, Springer-Verlag, 1993.

[ScR77] K. Schoman and D. Ross. Structured Analysis for requirements de�nition,
IEEE Trans. on Software Engineering, 3(1), 1977.

[SFD92] L.T. Semmens, R.B. France, and T.W. Docker. Integrated Structured Analy-
sis and Formal Speci�cation Techniques, The Computer Journal 35(6), June
1992.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual, Prentice-Hall, 1989.
[War93] N. Ward. Adding speci�cation constructors to the re�nement calculus. In

Proc. FME `93: Industrial-strength Formal Methods, LNCS 670, Springer-
Verlag, 1993.

[WiZ92] J.M. Wing and A.M. Zaremski. Unintrusive ways to integrate formal spec-
i�cations in practice. In VDM `91: Formal Software Development Methods,
Fourth International Symposium of VDM Europe, LNCS 551, Springer-
Verlag, 1992.

[WoM91] J.C.P. Woodcock and C.C. Morgan. Re�nement of state-based concurrent
systems. In VDM `90: VDM and Z - Formal Methods in Software Develop-

ment, Third International Symposium of VDM Europe, LNCS 428, Springer-
Verlag, 1990.

[YoC79] E. Yourdon and L. Constantine. Structured Design, Prentice-Hall, 1979.
[ZaJ93] P. Zave and M. Jackson. Conjunction as Composition, ACM Trans. on Soft-

ware Engineering and Methodology, 2(4), October 1993.
[ZaJ95] P. Zave and M. Jackson. Where do operations come from? An approach to

multiparadigm speci�cation, IEEE Trans. on Software Engineering, 12(7),
July 1996.

[ZaM93] P. Zave and P. Mataga. A formal speci�cation of some important 5ESS fea-
tures, Part I: Overview. AT&T Bell Laboratories Technical Memorandum,
October 1993.

