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BISIMULATION METRICS FOR CONTINUOUS MARKOV
DECISION PROCESSES∗

NORM FERNS† , PRAKASH PANANGADEN‡ , AND DOINA PRECUP‡

Abstract. In recent years, various metrics have been developed for measuring the behavioral
similarity of states in probabilistic transition systems [J. Desharnais et al., Proceedings of CON-
CUR’99, Springer-Verlag, London, 1999, pp. 258–273; F. van Breugel and J. Worrell, Proceedings
of ICALP ’01, Springer-Verlag, London, 2001, pp. 421–432]. In the context of finite Markov deci-
sion processes (MDPs), we have built on these metrics to provide a robust quantitative analogue
of stochastic bisimulation [N. Ferns, P. Panangaden, and D. Precup, Proceedings of UAI-04, AUAI
Press, Arlington, VA, 2004, pp. 162–169] and an efficient algorithm for its calculation [N. Ferns,
P. Panangaden, and D. Precup, Proceedings of UAI-06, AUAI Press, Arlington, VA, 2006, pp. 174–
181]. In this paper, we seek to properly extend these bisimulation metrics to MDPs with continuous
state spaces. In particular, we provide the first distance-estimation scheme for metrics based on
bisimulation for continuous probabilistic transition systems. Our work, based on statistical sampling
and infinite dimensional linear programming, is a crucial first step in formally guiding real-world
planning, where tasks are usually continuous and highly stochastic in nature, e.g., robot navigation,
and often a substitution with a parametric model or crude finite approximation must be made. We
show that the optimal value function associated with a discounted infinite-horizon planning task is
continuous with respect to metric distances. Thus, our metrics allow one to reason about the quality
of solution obtained by replacing one model with another. Alternatively, they may potentially be
used directly for state aggregation.
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1. Introduction. Markov decision processes (MDPs) offer a popular mathe-
matical tool for planning and learning in the presence of uncertainty [7]. They are
a standard formalism for describing multistage decision making in probabilistic en-
vironments where the objective of the decision making is to maximize a cumulative
measure of long-term performance, called the return. Dynamic programming algo-
rithms (e.g., value iteration, policy iteration [53]) allow one to compute the optimal
expected return for any state, as well as the way of behaving, or policy, that generates
this return. However, in many practical situations the state space of an MDP may be
too large, possibly continuous, for the standard algorithms to apply. Similarly, MDPs
with a high degree of stochasticity, i.e., when there are many possible outcome states
for probabilistic state transitions, can be much more problematic to solve than those
that are nearly deterministic [43]. Therefore, one usually turns to model approxima-
tion to find a simpler relevant model. The hope is that this can be done in such a
manner so as to construct an “essentially equivalent” MDP with significantly reduced
complexity, thereby allowing the use of classical solution methods while at the same
time providing a guarantee that solutions to the reduced MDP can be extended to
the original.

∗Received by the editors August 9, 2010; accepted for publication (in revised form) August 31,
2011; published electronically December 20, 2011. This work was supported by the FQRNT and by
NSERC. An earlier version of this work appears in [25].

http://www.siam.org/journals/sicomp/40-6/80484.html
†6/1 Astolat Street, 2031 Randwick, NSW, Australia (norm.ferns@normferns.com).
‡School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada (prakash@

sc.mcgill.ca, dprecup@cs.mcgill.ca). The work of these authors was supported by NSERC and by the
Office of Naval Research.

1662



BISIMULATION METRICS FOR CONTINUOUS MDPs 1663

Recent MDP research on defining equivalence relations on MDPs [11, 32] is built
on the notion of strong probabilistic bisimulation from concurrency theory. Proba-
bilistic bisimulation was introduced by [41] based on bisimulation for nondeterministic
systems due to [50] and [44]. Henceforth when we say “bisimulation” we will mean
strong probabilistic bisimulation.

In a probabilistic setting, bisimulation can be described as an equivalence relation
that relates two states precisely when they have the same probability of transitioning
to classes of equivalent states. The extension of bisimulation to transition systems
with rewards was carried out in the context of MDPs by [32] and in the context of
performance evaluation by [3]. In both cases, the motivation is to use the equivalence
relation to aggregate the states and get smaller state spaces. The basic notion of
bisimulation is modified only slightly by the introduction of rewards.

However, it has been well established that the use of exact equivalences in quan-
titative systems is problematic. A notion of equivalence is two-valued: two states are
either equivalent or they are not. For example, a small perturbation of the transi-
tion probabilities of a probabilistic transition system can make two equivalent states
no longer equivalent. In short, any kind of equivalence is unstable—too sensitive to
perturbations in the numerical values of the parameters of the model.

A natural remedy is to use pseudometrics. A pseudometric is almost the same as a
metric, except that two distinct points can be at zero distance. Given a pseudometric,
we define an equivalence relation by saying that two points are equivalent if they are at
zero distance; this is called the kernel of the pseudometric. We will just say “metric”
henceforth. Metrics are natural quantitative analogues of equivalence relations. The
triangle inequality, for example, can be interpreted as a quantitative generalization
of transitivity: if states x1 and x2, and x2 and x3, are close in distance, then so too
must be states x1 and x3. The metrics on which we focus here specify the degree
to which objects of interest behave similarly; usually we would like the kernel to be
bisimilarity, the largest bisimulation relation.

Much of this work has been done in a very general setting, using the labeled
Markov process (LMP) model [5, 15, 49]. Previously defined metrics [16, 59, 18, 17]
are quantitative generalizations of bisimulation; they assign distance zero to states
that are bisimilar, distance one to states that are easily distinguishable, and an inter-
mediate distance to those in between.

Van Breugel and Worrell [59] showed how, in a simplified setting of finite state
space LMPs, metric distances could be calculated in polynomial time. This work,
along with that of others [18], was then adapted to finite MDPs [27]. The current
authors used fixed-point theory to construct metrics, each of which had bisimilarity
as its kernel, was sensitive to perturbations in MDP parameters, and provided bounds
on the optimal values of states. We showed how to compute the metrics up to any
prescribed degree of accuracy and then used them to directly aggregate sample finite
MDPs. We subsequently discovered a more efficient method for estimating metrics
based on statistical sampling and network optimization [26].

In this paper, we present a significant generalization of these previous results to
MDPs with continuous state spaces. The linear programming arguments we used in
our previous work no longer apply, and we have to use measure theory and duality
theory on continuous state spaces. The mathematical theory is interesting in its own
right. Although continuous MDPs are of great interest for practical applications, e.g.,
in the areas of automated control and robotics, the existing methods for measuring
distances between states, for the purpose of state aggregation as well as other ap-
proximation methods, are still largely heuristic. As a result, it is hard to provide
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guaranteed error bounds between the correct and the approximate value function. It
is also difficult to determine the impact that structural changes in the approximation
technique would have on the quality on the approximation. The metrics we define in
this paper allow the definition of error bounds for value functions. These bounds can
be used as a tool in the analysis of existing approximation schemes.

An earlier version of this work appears in [25]. The existence of the metrics
and some continuity results in a continuous setting were originally presented in less
polished form in [28]; here we unify and strengthen those results. Specifically, the
main contributions of this work are as follows:

(i) We extend an approach to bisimulation metrics for finite state probabilistic
transition systems due to [59], based on linear programming, to bisimulation met-
rics for continuous state space MDPs using infinite dimensional linear programming
(Theorem 3.12). This is a refinement of previous work [28].

(ii) We prove Lipschitz continuity of the optimal value function with respect to
our bisimulation metrics for continuous state space MDPs (Theorem 3.20). This is a
refinement of previous work [28].

(iii) Our key result is to extend the metric approximation scheme, developed
in [26] for finite MDPs, to a continuous setting (compact metric spaces).

The rest of the paper is organized as follows. In section 2, we present a review
of the theory of finite MDPs as it pertains to the standard reinforcement learning
paradigm, bisimulation, and bisimulation metrics. We also provide a brief survey of
mathematics for continuous spaces to set down the notation and results relevant for
subsequent sections. Section 3 shifts the discussion to MDPs with infinite state spaces,
introducing issues of measurability and continuous analogues of concepts introduced in
section 2. We use properties of the Kantorovich functional, an infinite linear program
that can be used to define a metric on probability measures, to arrive at our first major
result; existence of bisimulation metrics, along with several continuity properties.
We establish an important reinforcement-learning bound and a simple calculation,
illustrating the use of metric reasoning. In section 4 we provide a brief mathematical
background of empirical processes, including a crucial Glivenko–Cantelli theorem.
In sections 5 and 6 we then present our central result, an approximation scheme
for estimating distances for MDPs whose state spaces are compact metric spaces. We
attempt to bound the running time and estimation error of this approximation scheme
in section 7. Finally, in section 8 we conclude with a summary of our results, related
work, and directions for further research.

2. Background. In this section we first review the basics of finite MDPs with
respect to reinforcement learning, bisimulation, and bisimulation metrics. We assume
the reader is familiar with basic discrete mathematics, including discrete probability
theory and finite metric spaces. Next we set down in some detail fundamental math-
ematical results for continuous spaces relevant for subsequent sections. Some of the
issues that arise there are quite subtle; thus, we clearly set down the notation and
results to be used to avoid any ambiguity.

2.1. Reinforcement learning. We define reinforcement learning to be that
branch of artificial intelligence that deals with an agent learning through interaction
with its environment in order to achieve a goal. The intuition behind reinforcement
learning is that of learning by trial and error. By contrast, in supervised learning an
external supervisor provides examples of desired behavior from which an agent can
learn, much as a student learns from a teacher.
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AGENT

ENVIRONMENT

STATE st, st+1, . . .

REWARD rt , rt+1 , . . .

ACTION at, at+1, . . .

Fig. 2.1. Agent-environment interaction.

Applications of reinforcement learning include optimal control in robotics [40],
meal provisioning [34], scheduling, brain modeling, game playing, and more.

The interaction of an agent with its environment in reinforcement learning can
be formally described by the MDP framework below: consider the sequential decision
model represented in Figure 2.1, depicting the interaction between a decision-maker,
or agent, and its environment. We assume that time is discrete, and that at each
discrete time step t ∈ {0, 1, 2, . . . , T }, the agent perceives the current state of the
environment st from the set of all states S. We refer to T as the horizon and note
that it may be either finite or infinite. On the basis of its state observation the agent
selects an action at from the set of actions allowable in st, Ast . As a consequence, the
following occurs immediately in the next time step: the agent receives a numerical
signal rt+1 from the environment and the environment evolves to a new state st+1

according to a probability distribution induced by st and at. The agent perceives
state st+1, and the interaction between agent and environment continues in this man-
ner either indefinitely or until some specified termination point has been reached, in
accordance with the length of the horizon. Here, we think of rt+1 as a means of
providing the agent with a reward or a punishment as a direct consequence of its own
actions, thereby enabling it to learn which action-selection strategies are good and
which are bad via its own behavior.

We further suppose that the following conditions are true of the stochastic nature
of the environment: state transition probabilities obey the Markov property,

Pr(st+1 = s|s0, a0, s1, a1, . . . , st, at) = Pr(st+1 = s|st, at),

and are stationary; that is, independent of time:

for every t ∈ T, Pr(st+1 = s′|st = s, at = a) = P a
ss′

The state and action spaces together with the transition probabilities and nu-
merical rewards specified above comprise a discrete-time MDP. Formally, we have the
following.

Definition 2.1. A finite MDP is a quadruple

(S, {As|s ∈ S}, {P (·|s, a)|s ∈ S, a ∈ As}, {r(s, a)|s ∈ S, a ∈ As}),
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ŷ = 0.01
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{a,1.0} {a,1.0}
{a, 0.95} {a, 0.05}

{a, 0.975} {a, 0.025}

Fig. 2.2. State transition diagram for a simple finite MDP.

where
• S is a finite set of states;
• A = ∪s∈SAs is a finite set of actions;
• for every s ∈ S,As is the set of actions allowable in state s;
• for every s ∈ S and a ∈ As, P (·|s, a) : S → [0, 1] is a stationary Markovian
probability transition function; that is, for every s′ ∈ S, P (s′|s, a) is the
probability of transitioning from state s to state s′ under action a and will be
denoted by P a

ss′ ; and
• for every s ∈ S and a ∈ As, r(s, a) is the immediate reward associated with
choosing action a in state s and will be denoted by ras .

We frequently take As = A, that is, all actions are allowable in all states, and write
a finite MDF as (S,A, P, r).

A finite MDP can also be specified via a state-transition diagram; Figure 2.2, for
example, depicts a finite MDP with four states and one action.

A Markov decision problem consists of an MDP together with some optimality
criterion concerning the strategies that an agent uses to pick actions. The particular
Markov decision problem we will be concerned with is known as the infinite-horizon
expected discounted return reinforcement-learning task.

An action selection strategy, or policy, is essentially a mapping from states to
actions; i.e., a policy dictates what action should be chosen for each state. More
generally, one allows for policies that are stochastic, history dependent, and even
nonstationary. Here we will restrict our attention to randomized stationary Markov
policies. Formally, a policy is a mapping π : S × A → [0, 1] such that π(s, ·) is a
probability distribution on A for each s ∈ S.

The optimality criterion of the Markov decision problems is concerned with find-
ing a policy that maximizes the sum of the sequence of numerical rewards obtained
through the agent’s interaction with its environment. The most common optimality
criterion, the infinite-horizon total discounted reward task, involves finding a pol-
icy π that maximizes, for every state s ∈ S, limT→∞ E

π[Rt|st = s] where Rt =∑T−(t+1)
k=0 γkrt+k+1 for some γ ∈ [0, 1) and E

π is the expectation taken with respect
to the system dynamics following policy π. Such a maximizing policy is said to be
optimal. Another optimality criterion is the average reward criterion, wherein one
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seeks to maximize for every state the cumulative sum of rewards averaged over the
length of the horizon.

The total discounted reward criterion involves geometrically discounting the re-
ward sequence. The intuition is that rewards obtained in the future are less valuable
than rewards received immediately, an idea prevalent in economic theory; here the
discount factor can be interpreted as a kind of interest rate. Another point of view
comes from population modeling, where the discount factor γ can be viewed as the
probability of an individual surviving to the next stage (and the process dies off with
probability 1 − γ). Alternatively, we may simply view it as a mathematical tool to
ensure convergence. In any case, the discounted reward model possesses many nice
properties such as a simplified mathematics in comparison to other proposed optimal-
ity criteria and existence of stationary optimal policies [53]. For this reason, it is the
dominant criterion used for reinforcement-learning tasks, and we concentrate on it in
this work.

The expression limT→∞ E
π [Rt|st = s] that we seek to maximize in the infinite-

horizon discounted model is known as the value of a state s under a policy π and is
denoted V π(s). For finite MDPs, rewards are necessarily uniformly bounded; hence,
the limit always exists and we may rewrite V π(s) as Eπ[

∑∞
k=0 γ

krt+k+1]. The induced
map on states, V π, is called the state-value function (or simply value function) for
π. Much research is concerned with estimating these value functions, as they contain
key information towards determining an optimal policy.

In terms of value functions, a policy π∗ is optimal if and only if V π∗
(s) ≥ V π(s)

for every s ∈ S and policy π. As previously mentioned, an important fact about
infinite-horizon discounted models for finite MDPs is that an optimal policy always
exists.

Given policy π, one can use the Markov property to derive, for any s ∈ S,

(2.1) V π(s) =
∑
a∈As

π(s, a)

(
ras + γ

∑
s′∈S

P a
ss′V

π(s′)

)
.

The linear equations in (2.1) are known as the Bellman equations for policy π, and
V π is their unique solution. Note that while the value function for a given policy is
unique, there may be many policies corresponding to the same value function.

The optimal value function V ∗, corresponding to an optimal policy π∗, satisfies
a more specialized family of fixed-point equations,

(2.2) V ∗(s) = max
a∈As

(
ras + γ

∑
s′∈S

P a
ss′V

∗(s′)

)
for each s ∈ S,

of which it is the unique solution (see sections 6.1 and 6.2 of [53]). These are known
as the Bellman optimality equations.

It is worth remarking that the existence and uniqueness of the solutions in these
Bellman equations can be obtained from the Banach fixed-point theorem by applying
the appropriate contraction mapping over the space of bounded real-valued functions
on S equipped with the metric induced by the uniform norm (see Theorem 2.26 in
subsection 2.4.4).

The Bellman equations are an important tool for reasoning about value functions
and policies. They allow us to represent a value function as a limit of a sequence of
iterates, which in turn can be used as the basis for dynamic programming algorithms
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for value function computation. Once more as a consequence of the Banach fixed-point
theorem, one obtains the following.

Theorem 2.2 (policy evaluation). Given a randomized stationary policy π on a
finite MDP (S,A, P, r), define

• V π
0 (s) = 0 for every s ∈ S, and

• V π
i+1(s) =

∑
a∈As

π(s, a)(ras + γ
∑

s′∈S P a
ss′V

π
i (s′)) for every i ∈ N and s ∈ S.

Then (V π
i )i∈N converges to V π uniformly.

Theorem 2.3 (value iteration). Given a finite MDP (S,A, P, r), define
• V0(s) = 0 for every s ∈ S, and
• Vi+1(s) = maxa∈As (r

a
s + γ

∑
s′∈S P a

ss′Vi(s
′)) for every i ∈ N and s ∈ S.

Then (Vi)i∈N converges to V ∗ uniformly.
These results allow one to compute value functions up to any prescribed degree of

accuracy. For example, if one is given a positive ε, then iterating until the maximum

difference between consecutive iterates is ε(1−γ)
2γ guarantees that the current iterate

differs from the true value function by at most ε [53].
One can thus use value functions in order to compute optimal policies. For ex-

ample, once one has performed value iteration, one can then determine an optimal
policy by choosing for each state the action that maximizes its optimal value in the
Bellman optimality equation, i.e.,

π(s, a)← argmax
a∈A

(
ras + γ

∑
s′∈S

P a
ss′V

∗(s′)

)
.

In practice, however, the optimal policy may stabilize for a given optimal value iterate
long before the optimal value function itself has converged; in this case, the remaining
iterations would serve only to waste time. As an alternative, one can instead iterate
over policies. Given an arbitrary policy π, one can use policy evaluation to compute
V π and thereby obtain a measure of its quality. One can then attempt to improve π
to π′ by setting

π′(s, a)← argmax
a∈A

(
ras + γ

∑
s′∈S

P a
ss′V

π(s′)

)
;

this is known as policy improvement. If there is no improvement, that is, the policy
is stable, then the policy is optimal; otherwise, one may continue to iterate in this
manner. This is known as policy iteration: starting from an initial policy, one repeat-
edly performs policy evaluation and policy improvement until a stable optimal policy
is achieved.

These dynamic programming algorithms constitute a standard MDP solution
method; many alternative solution methods are based on them while aiming to im-
prove computational efficiency. The problem with dynamic programming algorithms
is that they are subject to the curse of dimensionality : a linear increase in state-space
dimension leads to an exponential increase in running time. In general, such methods
are impractical when dealing with large state spaces.

One typical method for overcoming such problems is state aggregation: one clus-
ters together groups of states in some manner and defines a smaller MDP over the
set of clusters. The hope is that one can recover a solution to the original MDP by
solving the reduced model. However, clustering together states with different reward
and probability parameters can be detrimental. We are thus led to the problem of
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how one should cluster states so as to recover good solutions; more generally, how
does one best assess the quality of a state aggregation? The solution we propose is to
use bisimulation metrics.

2.2. Discrete bisimulation metrics. Let (S,A, {P a
ss′ |s, s′ ∈ S, a ∈ A}, {ras |s ∈

S, a ∈ A}) be a given finite MDP. When should two states be placed in the same
cluster of a state aggregation? Equivalently, what is the best state equivalence for
MDP model reduction?

Givan, Dean, and Greig [32] investigated several notions of MDP state equivalence
for MDP model minimization: action-sequence equivalence, optimal value equivalence,
and bisimulation. Two states are deemed action-sequence equivalent if, for any fixed
finite sequence of actions, their distributions over reward sequences are the same. Here
let us remark that for any state, a fixed finite sequence of actions of length n induces
a probability distribution over reward sequences of size n by means of the MDP’s
system dynamics. As [32] notes, the problem with action-sequence equivalence is that
it may equate states with different optimal values. To overcome such a limitation,
the authors of [32] consider optimal value equivalence, wherein states are deemed
equivalent if they have the same optimal value. Here again, however, problems arise:
states deemed equivalent under optimal value equivalence may have markedly different
MDP dynamics; in particular, they may have different optimal actions under an
optimal policy and so are unsuitable for clustering. The authors of [32] go on to
argue that bisimulation, a refinement of the first two equivalences, is the best state
equivalence for model minimization.

Bisimulation has its origins in the theory of concurrent processes [50]. Milner [44]
utilized strong bisimulation as a notion of process equivalence for his calculus of
communicating systems (CCS), a language used to reason about concurrent processes.
Bisimulation in this context can informally be seen as a type of matching relation;
i.e., processes p and q are related if and only if for every a-labeled transition that
process p can make to process p′, process q can make an a-labeled transition to some
process q′ related to p′, and vice versa. A remarkable theorem shows that bisimulation
equivalence on processes can be characterized by a modal logic known as Hennessy–
Milner logic [36]; two processes are bisimilar if and only if they satisfy precisely the
same formulas.

Remarkably, there was a precursor to the notion of bisimulation already avail-
able in the theory of Markov chains; this was called lumpability [38]. It did not use
the fixed-point formulation and did not make any connection with logic but, as its
name suggests, it had the germ of the idea of probabilistic bisimulation well before
bisimulation appeared in concurrency theory. Larsen and Skou [41] extended the no-
tion of bisimulation to a probabilistic framework. Their probabilistic bisimulation was
developed as an equivalence notion for labeled Markov chains (LMCs). They define
probabilistic bisimulation in terms of a maximal matching relation and establish a
logical characterization result using a probabilistic modal logic. The definition of
bisimulation in [32] is a simple extension of probabilistic bisimulation.

Definition 2.4. Let (S,A, P, r) be a finite MDP. A stochastic bisimulation
relation R is an equivalence relation on S that satisfies the following property:

sRs′ ⇐⇒ for each a ∈ A, (ras = ras′ and for each C ∈ S/R, P a
s (C) = P a

s′(C)),

where P a
s (C) =

∑
c∈C P a

sc.
We say states s and s′ are bisimilar, written s ∼ s′, if and only if sRs′ for some

stochastic bisimulation relation R.
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Fig. 2.3. MDP demonstrating that bisimilarity is too brittle.

In other words, bisimilarity is the largest bisimulation relation on S; roughly
speaking, two states s and s′ are bisimilar if and only if for every transition that s
makes to a class of states, s′ can make the same transition with the same probability
and achieve the same immediate reward, and vice versa.

Bisimilarity was originally formulated by Park using fixed-point theory, and this
formulation was popularized in [45]. This has been also done for probabilistic bisim-
ilarity [58, 18] and for finite MDPs [24]. Note that the existence of a greatest fixed
point in the definition below is guaranteed by an elementary theorem which asserts
that a monotone function on a complete lattice has a greatest fixed point (see Theo-
rem 2.25).

Definition 2.5. Let (S,A, P, r) be a finite MDP, and let Rel be the complete
lattice of binary relations on S. Define F : Rel→ Rel by

sF(R)s′ ⇐⇒ for every a ∈ A, (ras = ras′ and for each C ∈ S/Rrst, P
a
s (C) = P a

s′(C)),

where Rrst is the reflexive, symmetric, transitive closure of R. Then s and s′ are
bisimilar if and only if s ∼ s′ where ∼ is the greatest fixed point of F .

In the finite case, the operatorF can be used to compute the bisimilarity partition:
starting from an initial equivalence relation, the universal relation S × S, iteratively
apply F until a fixed point is reached. As each application of F either adds cluster-
states or results in a fixed point, and there are only finitely many states, this procedure
must stop.

Unfortunately, as an exact equivalence, bisimilarity suffers from issues of instabil-
ity; that is, slight numerical differences in the MDP parameters, {ras : s ∈ S, a ∈ A}
and {P a

ss′ : s, s
′ ∈ S, a ∈ A}, can lead to very different bisimilarity partitions. Con-

sider the sample MDP in Figure 2.3 with four states labeled x, x̂, y, and ŷ and one
action labeled a. Suppose raŷ = 0. Then all states share the same immediate reward
and transition among themselves with probability one. So all states are bisimilar. On
the other hand, if raŷ > 0, then ŷ is the only state in its bisimulation class since it
is the only one with a positive reward. Moreover, x and x̂ are bisimilar if and only
if they share the same probability of transitioning to ŷ’s bisimilarity class. Each is
bisimilar to y if and only if that probability is zero. Thus, y, x, and x̂ are not bisimilar
to ŷ, x ∼ x̂ if and only if p = p′, x ∼ y if and only if p = 1.0, and x̂ ∼ y if and only
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if p′ = 1.0. This example demonstrates that bisimilarity is simply too brittle; if rŷ is
just slightly positive, and p differs only slightly from p′, then we should expect x and
x̂ to be practically bisimilar. However, an equivalence relation is too crude to capture
this idea. To get around this, one generalizes the notion of bisimilarity equivalence
through bisimulation metrics.

Metrics can be used to give a quantitative notion of bisimulation that is sensitive
to variations in the rewards and probabilistic transitions of an MDP. In [27, 28] we
provided the following metric generalization of bisimulation for finite MDPs. Results
appear here in slightly modified form.

Theorem 2.6. Let (S,A, P, r) be a finite MDP, and let c ∈ (0, 1) be a discount
factor. Let met be the space of bounded pseudometrics on S equipped with the metric
induced by the uniform norm. Define F : met → met by

F (h)(s, s′) = max
a∈A

((1− c)|ras − ras′ |+ cTK(h)(P a
s , P

a
s′))

Then
1. F has a unique fixed point ρ∗;
2. ρ∗(s, s′) = 0 ⇐⇒ s ∼ s′; and
3. for any h0 ∈ met, ‖ρ∗ − Fn(h0)‖ ≤ cn

1−c‖F (h0)− h0‖.
Here TK(h)(P,Q) is the Kantorovich probability metric1 applied to finite distri-

butions P and Q. We will introduce it in more generality in section 2.4.6 once we
have set down some important concepts in continuous mathematics. For now, it is
sufficient to note that in the finite case, it reduces to the following linear program:

max
ui

|S|∑
i=1

(P (si)−Q(si))ui

subject to for every i, j, ui − uj ≤ h(si, sj).

It can also be specified by the dual linear program

min
λkj

|S|∑
k,j=1

λkjh(sk, sj)

subject to for every k,
∑
j

λkj = P (sk)

for every j,
∑
k

λkj = Q(sj)

for every k, j, λkj ≥ 0,

which can be rewritten as minλ Eλ[h], where λ is a joint probability function on S×S
with projections P and Q. This discrete minimization program has been interpreted
as a Hitchcock transportation problem, an instance of the minimum-cost flow network
optimization problem as shown in Figure 2.4.

Here we have |S| source nodes and |S| sink nodes. For each s ∈ S, there exists a
source node labeled with a supply of P (s) units and a sink node labeled with a demand
(or negative supply) of Q(s) units. Between each source node and each sink node,

1Frustratingly, this metric likes to hide under a variety of names: Monge–Kantorovich,
Kantorovich–Rubinstein, Hutchinson, Mallows, Wasserstein, Vasserstein, earth mover’s distance,
Fortet–Mourier, and Dudley, to name a few.
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+P (1) +P (2) +P (N)

−Q(1) −Q(2) −Q(N)

h(1, 1) h(2, 2) h(N, N)

h(1, 2) h(2, N)

Fig. 2.4. Hitchcock network transportation problem (N = |S|).

labeled, respectively, P (s) and Q(s′) for some s, s′ ∈ S, there is a transportation arc
labeled with the cost of transporting one unit from the source to sink, given here by
h(s, s′). A flow is an assignment of the number (nonnegative) of units to be shipped
along all arcs. One requires that the total flow exiting a source node be equal to
the supply of that node, and that the total flow entering a sink node be equal to the
demand at that node. One also requires that the total supply equal the total demand,
which in this case is 1. The cost of a flow along an arc is simply the cost along that
arc multiplied by the flow along that arc. The cost of the flow for the entire network
is taken to be the sum of the flows along all arcs. The goal then is to find a flow of
minimum cost.

There exist strongly polynomial algorithms for computing the minimum-cost flow
problem [47, 61]. Therefore the Kantorovich metric in the discrete case can be com-
puted in polynomial time, assuming of course that the pseudometric h is itself com-
putable.

The key property of the Kantorovich metric is that it matches distributions, that
is, assigns them distance zero only when they agree on the equivalence classes in-
duced by the kernel of the underlying pseudometric cost function (see Lemma 3.7
in section 3). Therefore, it is not surprising that it can be used to capture the no-
tion of bisimilarity, which requires that probabilistic transitions agree on bisimilarity
equivalence classes.

Let us conclude with an example of the metric distances applied to the MDP in
Figure 2.3. Using uniqueness of ρ∗ and the identity TK(ρ∗)(δx, δy) = ρ∗(x, y) along
with the fact that there is only one action, it is not hard to see that solving for ρ∗ in the
fixed-point equations amounts to solving a set of linear equations. We therefore find

ρ∗(x, x̂) = c|p− p′|raŷ , ρ∗(y, ŷ) = raŷ ,

ρ∗(x, y) = c(1− p)raŷ , ρ∗(x, ŷ) = (1 − cp)raŷ ,

ρ∗(x̂, y) = c(1− p′)raŷ , ρ∗(x̂, ŷ) = (1 − cp′)raŷ .

Consider now the MDP in Figure 2.2. Even though states x and ŷ are not bisimilar,
we see that for any c they have ρ∗-distance 0.01 − 0.0095c, which is much less than
the maximum possible distance of 1; that is, they are very close to being bisimilar.
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The most important property of the metrics is that they show that similar states
have similar optimal values, and this relation varies smoothly with similarity. For-
mally, the optimal value function is continuous with respect to the state-similarity
metrics.

Theorem 2.7 (see [27]). Let (S,A, P, r) be a finite MDP, c ∈ (0, 1) be a metric
discount factor, γ ∈ [0, 1) be a reward discount factor, and ρ∗ be the bisimulation
metric given by Theorem 2.6. Suppose γ ≤ c. Then V ∗ is 1

1−c -Lipschitz continuous
with respect to ρ∗, that is,

|V ∗(s)− V ∗(s′)| ≤ 1

1− c
ρ∗(s, s′).

We can use this result to relate the optimal values of a state and its representation
in an approximant by considering the original model and its approximant as one MDP.

2.3. Computing bisimulation metrics. We were able to compute the bisimu-
lation metric by hand for the simple MDP pictured in Figure 2.3; but what can we say
in the general case? In fact, the fixed-point nature of the metrics permits the use of a
dynamic programming algorithm in a manner analogous to the computation of the op-
timal value function: starting with the everywhere-zero metric, denoted by ⊥, we iter-
atively apply the fixed-point functional F until a desired level of accuracy is achieved.
Since, as we noted, the Kantorovich operator can be computed in strongly polynomial
time, we have an algorithm to calculate the state-similarity metrics—though one that
is subject to the same shortcomings as traditional MDP dynamic programming algo-
rithms. As only the distances are changing (and in fact converging) in the Kantorovich
operator, and this object is itself an instance of a minimum-cost flow linear program,
one immediately applicable speedup is to use cost reoptimization, that is, we can save
the optimizing solutions for each Kantorovich linear program between iterations and
use them to begin the Kantorovich linear program in the next iteration. The same
idea was used in [64] to recompute optimal network flows in the context of computing
probabilistic simulations for probabilistic automata. As in that work, we are thereby
saving on computation time at the cost of larger space requirements. This appears
slightly more promising, but can we do better? Indeed, a promising approach to quick
and efficient approximation of the distances arises from the area of statistical sampling.

Suppose P and Q are approximated using the empirical distributions Pi and Qi;
that is, we sample i points X1, X2, . . . , Xi independently according to P and define Pi

by Pi(x) =
1
i

∑i
k=1 δXk

(x). Similarly, write Qi(x) =
1
i

∑i
k=1 δYk

(x). Note that both
Pi and Qi are random variables defined over some ambient probability space. Then

(2.3) TK(h)(Pi, Qi) = min
σ

1

i

i∑
k=1

h(Xk, Yσ(k)),

where the minimum is taken over all permutations σ on i elements (see page 5 of [60]).
Now the strong law of large numbers tells us that both (Pi(x))

∞
1 and (Qi(x))

∞
1 con-

verge almost surely to P (x) and Q(x). Let us write T i
K(h)(P,Q) for TK(h)(Pi, Qi)

when the empirical distributions are fixed. Then as a consequence of the strong law
of large numbers, (T i

K(h)(P,Q))∞1 converges to TK(h)(P,Q) almost surely; moreover
replacing TK by T i

K in F yields a pseudometric,

ρ∗i (s, s
′) = max

a∈A
((1 − c)|ras − ras′ |+ cT i

K(ρ∗i )(P
a
s , P

a
s′)),

which converges almost surely to ρ∗ as i gets large [26].
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The importance of this result stems from the fact that the expression in (2.3) is an
instance of the assignment problem from network optimization. This is a specialized
network flow problem in which the underlying network is bipartite and all flow assign-
ments are either 0 or 1. In graph-theoretic terminology, this is the problem of optimal
matching in a weighted bipartite graph. Its specialized structure allows for fast, sim-
ple solution methods. For example, the Hungarian algorithm runs in worst case time
O(i3), where i is the number of samples. Still, is the resulting sampling algorithm for
estimating bisimulation distances really any better than the exact algorithms?

We have compared the Monte Carlo algorithm for a fixed number of samples, along
with the algorithms presented above, in terms of computational resources (space and
time) and use in aggregation [26]. For purposes of illustration, we present here some
of these results.

Experiments were run on MDPs given by an n× n grid world, with two actions
(move forward and rotate) and a single reward in the center of the room for n = 3,
5, and 7, and a flattened out version of the coffee robot MDP [8] in which a robot
has to get coffee for a user while having to avoid getting wet. Each state in the grid
world encodes both position and orientation of the agent; thus, the grid world MDPs
have 36, 100, and 196 states, respectively. Additionally, the actions are deterministic.
The coffee domain has 64 states and four actions, some with stochastic effects. For
each domain, we computed: 1

1−cρ
∗, the same with cost reoptimization, and 1

1−cρ
∗
i via

sampling.
Exact computation of the Kantorovich metric in the first two methods was carried

out using the MCFZIB minimum-cost flow solver [30]. An implementation of the Hun-
garian algorithm for the assignment problem was used to estimate the Kantorovich
distances in the third method.

For each MDP, 10 transitions were sampled for each state and action, and this
vector of samples was then used to estimate the empirical distribution throughout
the whole run. The distance metric was obtained by averaging the distances obtained
over 30 independent runs of this procedure.

Lastly, metrics were computed using three different values for the discount factor,
here taking the metric and value discount factors to be the same, i.e., c = γ with
γ ∈ {0.1, 0.5, 0.9}.

Table 2.1 summarizes the running times in seconds for each method with the
different discount factors. A “-” means that the algorithm failed to compute the
metric.

We also compared the amount of space used by each method. This was measured
using the massif tool of valgrind (a tool library in Linux). Table 2.2 presents the
maximum number of bytes used by each algorithm when computing the distances for
each MDP; an “*” indicates an algorithm terminated prematurely due to maximum
memory usage. In those cases where all algorithms were able to run to comple-
tion, the Monte Carlo algorithm either outperformed or performed comparably to
the exact algorithms. Moreover, we compared the quality of the estimated distances
with that of the exact distances by using each in simple aggregations schemes—and
here too results were comparable [26]. All in all, when considering the trade-off
between the computational requirements of time and space, and the quality of the
results, the Monte Carlo algorithm for calculating bisimulation distances significantly
outperforms the others. Therefore, extending this sampling algorithm is the most
promising approach to providing practical quantitative state-similarity for continuous
MDPs.



BISIMULATION METRICS FOR CONTINUOUS MDPs 1675

Table 2.1

Running times in seconds for different metric algorithms.

Kantorovich Reoptimized Stochastic
3x3 grid world

γ = 0.1 2.067 1.563 5.883
γ = 0.5 5.223 2.944 14.406
γ = 0.9 41.089 15.231 85.725

5x5 grid world
γ = 0.1 - - 44.200
γ = 0.5 - - 109.473
γ = 0.9 - - 653.645

7x7 grid world
γ = 0.1 - - 168.853
γ = 0.5 - - 419.735
γ = 0.9 - - 2625.16

Coffee robot
γ = 0.1 57.640 - 72.823
γ = 0.5 137.129 - 165.687
γ = 0.9 1024.42 - 1037.03

Table 2.2

Memory usage in bytes for different metric algorithms.

Kantorovich Reoptimized Stochastic
3x3 grid world 80Mb 180Mb 80Kb
5x5 grid world 1.8Gb∗ 1.8Gb∗ 500Kb
7x7 grid world 1.8Gb∗ 1.8Gb∗ 1.8Mb
Coffee robot 1.6Gb 1.8Gb∗ 300Kb

2.4. A mathematical review. Results will be stated without proof and can be
found in most classical texts on probability and analysis such as [55, 29, 20, 4]. The
subsections on metrics, convergence, topology, continuity, and measure theory are ele-
mentary and can be skipped by a knowledgeable reader; we include these subsections
just in case the reader wants to check our terminology. The subsection on probability
metrics is perhaps less well known.

2.4.1. Metric spaces. A metric is perhaps the simplest geometric structure
that one can impose on a space. It is essentially a distance function, that is, a means
of assigning a nonnegative numerical weight to pairs of points on a set in order to
quantify how far apart they are.

Definition 2.8. A pseudometric on a set S is a map ρ : S × S → [0,∞) such
that for every s, s′, s′′ in S,

1. s = s′ ⇒ ρ(s, s′) = 0,
2. ρ(s, s′) = ρ(s′, s),
3. ρ(s, s′′) ≤ ρ(s, s′) + ρ(s′, s′′).

If the converse of the first axiom holds as well, we say ρ is a metric.
A set S equipped with a metric (pseudometric) ρ is a metric (pseudometric)

space.
Note that the kernel of a pseudometric when viewed as a real-valued function is

an equivalence relation on S. We will denote the kernel of a pseudometric h on set S
by Rel(h).

Definition 2.9. Given a pseudometric h on a set S, the equivalence relation
Rel(h) is defined by sRel(h)s′ if and only if h(s, s′) = 0.



1676 NORM FERNS, PRAKASH PANANGADEN, AND DOINA PRECUP

A typical means of constructing a metric space is through a normed vector space,
where one already has a notion of length of a vector through the norm function.
Suppose (V, ‖ · ‖) is such a space. Then d(v, v′) := ‖v − v′‖ is easily seen to define a
metric on V.

A metric allows one to speak of the convergence of elements in a space: a sequence
converges to a limit point if the distance between that limit point and the points in
the sequence can eventually be made arbitrarily small.

Definition 2.10. A sequence of elements (xn)n∈N in a metric space (S, ρ) con-
verges to an element x in S if and only if for every positive ε there exists a natural
number N , depending on ε, such that for every n ≥ N , ρ(xn, x) < ε.

As an example, whenever we speak of a sequence of bounded real-valued functions
converging uniformly, we are implicitly invoking convergence in the space of bounded
real-valued functions equipped with the metric induced by the uniform norm, i.e.,
‖f‖ := supx∈S |f(x)|.

Sometimes it is convenient to speak of the convergence of a sequence without
having a definite candidate for its limit in mind. Suppose instead that we had consid-
ered a sequence whose pairwise distances could eventually be made arbitrarily small;
we might expect that the sequence itself should converge. Unfortunately, such is not
always the case.

Definition 2.11. A sequence (xn)n∈N in a metric space (S, ρ) is said to be
Cauchy if and only if for every positive ε there exists a natural number N depending
on ε such that for every n,m ≥ N , ρ(xn, xm) < ε.

A metric space in which every Cauchy sequence converges is said to be Cauchy-
complete or simply complete. An important example in this work consists of those
pseudometrics on a set S that are bounded, i.e., any pseudometric h on S such that
sups,s′ |h(s, s′)| <∞.

Completeness is just one of many special properties that can be attributed to a
subset of a metric space. Here we consider a few more select sets and properties they
might possess. First, given a point x in (S, ρ) and a fixed positive ε, we can consider
all those points that are within ε-distance of x. These yield the open and closed balls,
Bρ

ε (x) = {y ∈ S : ρ(x, y) < ε} and Cρ
ε (x) = {y ∈ S : ρ(x, y) ≤ ε}, respectively.

More generally, a subset E of S is said to be open if for every point e ∈ E there is
some open ball Bρ

ε (e) that is entirely contained in E. An open set containing x is
also known as an open neighborhood of x. On the other hand, a subset F of S is
said to be closed if its relative complement S\F is open. Closed subsets of a metric
space can also be characterized by the following property: F is closed if and only if
for every point x that is the limit of a convergent sequence in F\{x}, x belongs to
F ; i.e., F contains all its limit points. Formally, a point p is a limit point of the set
E if every open neighborhood of p contains some point of E other than p. This leads
us to a type of subset useful for approximating the whole space. We say a subset X
of S is dense in S if every point of S is a limit point of X or a point of X (or both).
In particular, a metric space is said to be separable if it has some countable dense
subset. In this work, we will be primarily interested in those metric spaces that are
complete and separable, allowing us to work with an at most countably infinite set of
points.

Definition 2.12. A Polish metric space is a complete, separable metric space.
From the point of view of approximating the whole space, there are two more

interesting types of sets. A subset X is said to be totally bounded if for any positive ε
it can be expressed as the union of finitely many open balls of radius ε. More generally,
a subset X is compact if for every open cover of X , that is, for every collection of
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open subsets whose union contains X , there is a finite subcover of X . It is trivial to
see that a totally bounded metric space is separable. More important, a metric space
is compact if and only if it is totally bounded and complete. In particular, a compact
metric space is Polish.

2.4.2. Topology. This section is also elementary and can be skipped.
We note that different metrics can produce the same collection of open sets on a

space, and that some properties depend only on this collection of open sets, rather
than on a given metric. The set S equipped with a given collection of open sets is
called a topological space.

Definition 2.13. A collection T of subsets of a set S forms a topology on S if
and only if

1. the empty set ∅ and the whole set S belong to T ;
2. T is closed under finite intersections; i.e., if {Ui}ni=1 is a finite collection in
T , then

⋂n
i=1 Ui ∈ T ; and

3. T is closed under arbitrary unions; i.e., if {Uα}α∈J is a collection in T for
some index set J , then

⋃
α∈J Uα ∈ T .

A set S with a topology T is known as a topological space.
If (S, T ) is a topological space, then a subset U of S is an open set of S if U

belongs to T , and a subset V of S is a closed set of S if its relative complement X−V
is open in S. Properties that refer only to the collection of open sets will be referred
to as topological. It is not hard to show that for any metric space, the collection of
open sets as defined in subsection 2.4.1 forms a topology called the metric topology.

Given two sets X and Y , we can form the Cartesian product X×Y . Naturally, if
X and Y have associated topologies, we would like to associate a topology to X × Y .
The standard method for doing so uses the coordinate or projection maps on the
product.

Definition 2.14. Given the Cartesian product X × Y of two sets X and Y , let
π1 : X × Y → X and π2 : X × Y → Y be defined by π1(x, y) = x and π2(x, y) = y.
The maps π1 and π2 are called the projections of X × Y onto its first and second
coordinates, respectively.

Definition 2.15. A subbasis S for a topology on a set X is a collection of
subsets of X whose union equals X. The topology generated by the subbasis S is the
collection T of all unions of finite intersections of elements of S.

Definition 2.16. Let X and Y be topological spaces. The product topology on
X × Y is the topology generated by the subbasis S = {π−1

1 (U)|U is open in X} ∪
{π−1

2 (V )|V is open in Y }.
In particular, if X and Y are metric spaces with metrics ρX and ρY , respectively,

then the product metric ρX×Y defined by ρX×Y ((x1, y1), (x2, y2)) = max{ρX(x1, x2),
ρY (y1, y2)} generates the product topology on X × Y .

2.4.3. Continuity. Continuity is a crucial property for our work on approximat-
ing spaces and functions on those spaces. Loosely speaking, a function is continuous
if the output of the function cannot change too abruptly with small changes in its
input.

Continuity in topological spaces is defined as follows.
Definition 2.17. A function f : (X, TX) → (Y, TY ) between topological spaces

is continuous if for each open set OY ∈ TY , the preimage f−1(OY ) ∈ TX .
Continuity is important for defining equivalence of topological spaces; two topo-

logical spaces are equivalent, or homeomorphic, if there exists a continuous bijection
between them such that its inverse is also continuous.
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Definition 2.18. A Polish space is a topological space that is homeomorphic to
a Polish metric space.

Some important results can be established under weaker continuity conditions.
One such condition is lower semicontinuity.

Definition 2.19. Let (X, T ) be a topological space, and let f : X → R ∪
{−∞,∞}. Then f is lower semicontinuous if for each half-open interval of the form
(r,∞), the preimage f−1(r,∞) ∈ T .

Continuity in metric spaces is defined as follows.
Definition 2.20. A function f : (X, ρX) → (Y, ρY ) between metric spaces is

continuous at a point x ∈ X if for every ε > 0 there is a δ > 0, depending on x and
ε, such that for every x′ ∈ X with ρX(x, x′) < δ we have ρY (f(x), f(x

′)) < ε.
We say f is continuous if it is continuous at every point of X.
If the topologies TX and TY are generated by metrics ρX and ρY , respectively,

then Defintions 2.17 and 2.20 coincide.
If the δ in Definition 2.20 can be chosen so as to depend on ε alone, i.e., indepen-

dent of the point x, then f is said to be uniformly continuous. A stronger form of
uniform continuity is Lipschitz continuity, which plays an important part in this work.

Definition 2.21. A function f(X, ρX) → (Y, ρY ) between metric spaces is
Lipschitz continuous if for some constant α, ρY (f(x), f(x

′)) ≤ αρX(x, x′) for every
x, x′ ∈ X.

Any such constant α is known as a Lipschitz constant for this mapping; the
greatest lower bound of all such Lipschitz constants is itself a Lipschitz constant,
known as the Lipschitz constant. For either case, we will sometimes write that f is
α-Lipschitz continuous.

Obviously every Lipschitz continuous function is uniformly continuous, and every
uniformly continuous function is continuous, but the converse is not generally true
in either case. For compact metric spaces, however, the situation is much more well
behaved. Here, every continuous function is indeed uniformly continuous. Moreover,
if f is real-valued, then it has a minimum value and a maximum value, each of which
is attained.

Continuity in metric spaces can alternatively be characterized in terms of conver-
gent sequences: f is continuous if, for every convergent sequence (xn)n∈N in X with
limit x, the sequence (f(xn))n∈N is convergent with limit f(x). One can analogously
define a sequential version of lower semicontinuity.

Definition 2.22. A function f : (X, ρ) → R ∪ {−∞,∞} on a metric space is
sequentially lower semicontinuous if, for any sequence (xn)n∈N converging to x in X,
lim infn→∞ f(xn) ≥ f(x).

Again, if the topology T on a space X is generated by the metric ρ, then Defini-
tions 2.19 and 2.22 coincide. We will make more use of the sequential definitions of
continuity.

One can analogously define f to be upper semicontinuous by requiring lim supn→∞
f(xn) ≤ f(x). It is easily seen that a real-valued function is continuous if and only
if it is both lower semicontinuous and upper semicontinuous. The intuition behind
these definitions is that semicontinuous functions allow for abrupt (discontinuous)
jumps in one vertical direction; this can be seen through the prototypical examples
of semicontinuous functions: the indicator function of an open set is always lower
semicontinuous, while the indicator function of a closed set is always upper semi-
continuous. In this work, we will be particularly interested in lower semicontinuous
functions due to several important properties; for example, the pointwise supremum
of an arbitrary collection of uniformly bounded lower semicontinuous functions on a
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metric space is itself lower semicontinuous, and a lower semicontinuous function on a
compact space attains its minimum. The statement of the following theorem can be
found as part a) of Theorem B.5 in [53] and by noting that f is lower semicontinuous
if and only if −f is upper semicontinuous.

Theorem 2.23. Let X be a Polish metric space, Y a compact subset of a Polish
metric space, and f : X × Y → R a lower semicontinuous function. Then g : X → R

defined by g(x) = miny∈Y f(x, y) is lower semicontinuous on X.
Sometimes we need to speak of continuity of a family of functions such that they

collectively have equal variation over a given neighborhood.
Definition 2.24. A family of functions F between metric spaces (X, ρX) and

(Y, ρY ) is equicontinuous at a point x ∈ X if for every ε > 0 there is a δ > 0,
depending on x and ε, such that for every x′ ∈ X with ρX(x, x′) < δ and for every
f ∈ F , we have ρY (f(x), f(x

′)) < ε.

2.4.4. Fixed-point theory. Fixed-point theory plays a major role in this paper.
Here we recall some basic definitions and a theorem from fixed-point theory on lattices,
which can be found in any basic text [63].

Let (L,�) be a partial order. If it has least upper bounds and greatest lower
bounds of arbitrary subsets of elements, then it is said to be a complete lattice. A
function f : L→ L is said to be monotone if x � x′ implies f(x) � f(x′). A point x
in L is said to be a prefixed point if f(x) � x, a postfixed point if x � f(x), and a fixed
point if x = f(x). The importance of these definitions arises in the following theorem.

Theorem 2.25 (Knaster–Tarski fixed-point theorem). Let L be a complete lat-
tice, and suppose f : L → L is monotone. Then f has a least fixed point, which is
also its least prefixed point, and f has a greatest fixed point, which is also its greatest
postfixed point.

This is an elementary theorem sometimes called the Knaster–Tarski theorem in
the literature. In fact the full-fledged Knaster–Tarski theorem is a much stronger
statement to the effect that the collection of fixed points is itself a complete lattice.

A more common fixed point theorem comes from the theory of metric spaces and
has the advantage of being constructive in nature; its proof can be found in most
basic texts in analysis, e.g., [55].

Theorem 2.26 (Banach fixed-point theorem). Suppose (X, d) is a complete
metric space and T : X → X is a contraction mapping; that is, for some c ∈ [0, 1),

d(Tx, Tx′) ≤ c · d(x, x′)

for every x, x′ in X. Then
1. T has a unique fixed point, x∗; and
2. for any x0 ∈ X, d(x∗, T nx0) ≤ cn

1−cd(Tx0, x0).
In particular, limn→∞ T nx0 = x∗.

2.4.5. Probability and measure. A rather unfortunate consequence of mov-
ing to uncountably infinite state spaces is that we can no longer specify transition
probabilities point-to-point; one needs to specify probabilities on sets of points, and
even then not all sets can be “measured” in this way.

Definition 2.27. A σ-algebra or σ-field on a set S is a collection Σ of subsets
of S satisfying the following axioms:

1. The empty set ∅ and the whole set S belong to Σ;
2. Σ is closed under complements; i.e., if E ∈ Σ then S\E ∈ Σ; and
3. Σ is closed under countable unions; i.e., if (Ei)

∞
i=1 is a sequence in Σ, then⋃∞

1 Ei ∈ Σ.
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The members of Σ are known as the measurable sets. The pair (S,Σ) is known
as a measurable space. Given a topological space (S, T ), there is a unique smallest
σ-algebra B(T ) that contains all of the open sets; this is known as the Borel σ-algebra.
Its members are said to be Borel measurable sets.

More generally, if E is any collection of subsets of a set S, there is a unique
σ-algebraM(E) containing E . It is called the σ-algebra generated by E .

Given two spaces X and Y with associated σ-algebras, we can again form the
Cartesian product X × Y and associate to it a σ-algebra.

Definition 2.28. Let (X,ΣX) and (Y,ΣY ) be measurable spaces, and let π1 and
π2 be the coordinate maps defined in Definition 2.14. The product σ-algebra ΣX⊗ΣY

on X×Y is the σ-algebra generated by the set E = {π−1
1 (E)|E ∈ ΣX}∪{π−1

2 (F )|F ∈
ΣY }.

Now suppose that X and Y are two topological spaces. There are two ways of
defining a σ-algebra on X × Y : as the Borel σ-algebra generated by the product
topology, and as the product σ-algebra on X and Y , each equipped with its Borel
σ-algebra. In general, these need not be equal. However, in the case of separable
metric spaces, they are.

Proposition 2.29. Let X and Y be metric spaces, and let X × Y be equipped
with the product metric. If X and Y are separable, then the product σ-algebra on
X × Y is equal to the Borel σ-algebra of X × Y .

Definition 2.30. Given a measurable space (S,Σ), a measure is a set function
μ : Σ→ [0,∞] such that

1. μ(∅) = 0; and
2. for any pairwise disjoint sequence of sets (Ei)

∞
i=1 in Σ, μ(

⋃∞
1 Ei) = Σ∞

1 μ(Ei).
If μ take values in [0, 1], then it is a subprobability measure; if in addition μ(S) = 1,
then it is a probability measure. The triple (S,Σ, μ) is known as a measure space
(respectively, subprobability space, probability space).

Sometimes we need to assign weights of a probabilistic type to all subsets of a
space, at the cost of losing some of the nice properties of a probability measure; such
is frequently the case in the theory of empirical processes, where one cannot guarantee
that all of the sets one may encounter in practice will be measurable.

Definition 2.31. An outer probability measure on a set S is a set function
φ : 2S → [0, 1] satisfying

1. φ(∅) = 0;
2. E ⊂ F implies φ(E) ≤ φ(F ); and
3. for any sequence (Ei)

∞
i=1 of subsets of S, φ(

⋃∞
1 Ei) ≤ Σ∞

1 φ(Ei).
Every probability measure can be extended to an outer probability measure, and

conversely, every outer probability measure can be used to construct a σ-algebra on
which it is a probability measure. Note as well that any set of outer probability zero
has complement with outer probability one.

Definition 2.32. A probability measure on a metric space is tight, or inner
regular, if it can be approximated from within by compact sets; that is, μ is tight if for
every Borel measurable set E, μ(E) = supK μ(K) where the supremum is taken over
all compact subsets K contained in E.

Theorem 2.33 (Ulam’s tightness theorem). Every probability measure on a
Polish metric space is tight.

Measures can be extended to act on functions through the process of integration.
We will assume that the reader is familiar with the basic ideas of integration, if not
the details, as the details are involved and add nothing to the exposition here. Suffice
it to say that, just as only certain subsets can be measured, so too can only certain
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functions be integrated. Formally, a function f between measurable spaces (X,ΣX)
and (Y,ΣY ) is said to be measurable if the preimage of every ΣY -measurable set
is ΣX -measurable, i.e., {f−1(E) : E ∈ ΣY } ⊆ ΣX . A real-valued function f on a
measurable space (S,Σ) is measurable or, in the language of probability theory, a
random variable if it is measurable as just defined, where R is equipped with its usual
Borel σ-field. The prototypical measurable functions are the simple functions : finite
linear combinations of indicator functions on measurable sets. Real-valued measurable
functions can be approximated in a nice way by simple functions.

Theorem 2.34 (page 47 of [29]). Let (S,Σ) be a measurable space. If f : S →
[0,∞] is measurable, then there is a sequence (φn)n∈N of simple functions such that
0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f , (φn)n∈N converges to f pointwise, and (φn)n∈N converges to
f uniformly on any set on which f is bounded.

If S is a metric space and Σ its Borel σ-field, then every continuous function on
S is measurable. Given a sequence of measurable functions, its pointwise supremum,
infimum, and limit (when it exists) are all measurable. Lastly, if the integral of the
absolute value of a measurable function f with respect to a measure μ exists and
is finite, then f is said to be integrable. The collection of all such f for a given μ
is denoted by L1(μ) (here it is standard to identify functions that differ on a set of
μ-measure zero).

Let us now consider convergence of probability measures on a metric space. Since
probability measures are essentially just set functions, it is natural to attempt to
analyze their convergence properties through pointwise convergence, that is, to say
that a sequence of probability measures (μn)n∈N converges to probability measure μ
if (μn(E))n∈N converges to μ(E) for every measurable set E. However, such a conver-
gence is too strong: consider the Dirac measure δx, which assigns a value of 1 if and
only if a given measurable set contains the point x and 0 otherwise. Take [0, 1] with
its Borel σ-algebra and consider the sequence of Dirac measures on { 1n : n ∈ N}. It
would be quite natural to expect, if not demand, that this sequence converges to the
Dirac measure at zero. However, taking the Borel measurable singleton {0} in the
definition of pointwise convergence would yield limn→∞ δ 1

n
({0}) = 0 = δ0({0}) = 1,

which is clearly not the case. It is not hard to show here that pointwise conver-
gence over the measurable sets is equivalent to pointwise convergence over bounded
measurable functions, that is, convergence of (μn(f))n∈N to μ(f) for every bounded
measurable function f . Therefore, one way of weakening convergence is to consider a
similar pointwise convergence, but over a smaller class of functions. Formally, we say
that {μn} converges weakly to μ if (μn(f))n∈N converges to μ(f) for every bounded
continuous real-valued function f . It is clear that the Dirac measures on { 1n : n ∈ N}
do indeed converge weakly to the Dirac measure at 0.

Theorem 2.35 (see [51]). Let X be a separable metric space and (μn)n∈N be
any sequence of measures on X. Let A0 ⊆ C(X) be a family of functions which is
equicontinuous at every point x ∈ X and uniformly bounded; that is, for some constant
M , |f(x)| ≤M for every x ∈ X and f ∈ A0. Then μn ⇒ μ if and only if

lim
n→∞ sup

f∈A0

∣∣∣∣∫ fdμn −
∫

fdμ

∣∣∣∣ = 0.

2.4.6. Probability metrics. There are numerous ways of defining a notion of
distance between probability measures on a given space [31]. Two typical ones are the
total variation distance, capturing strong convergence of probability measures, and
the Kullback–Leibler divergence, capturing certain information-theoretic properties of
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Fig. 2.5. Kantorovich optimal mass transportation problem.

the measures. Note that the Kullback–Leibler divergence fails to satisfy the symmetry
and triangle inequality axioms for a metric. As previously mentioned, however, the
particular probability metric of which we make use is known as the Kantorovich met-
ric. Its use in defining metrics for bisimulation was first demonstrated by van Breugel
and Worrell [58]. We present it here in greater generality; all results are taken from
the books by Rachev and Rueschendorf [54] and Villani [60], unless otherwise stated.

Definition 2.36. Let S be a Polish metric space, h a bounded pseudometric on
S that is lower semicontinuous on S × S with respect to the product topology, and
Lip(h) the set of all bounded functions f : S → R that are measurable with respect to
the Borel σ-algebra on S and that satisfy the Lipschitz condition f(x)−f(y) ≤ h(x, y)
for every x, y ∈ S. Let P and Q be probability measures on S. Then the Kantorovich
distance TK(h) is defined by

TK(h)(P,Q) = sup
f∈Lip(h)

(P (f)−Q(f)).

The Kantorovich metric arose in the study of optimal mass transportation. The
following description is due to Villani [60]: assume we are given a pile of sand and a
hole, occupying measurable spaces (X,ΣX) and (Y,ΣY ), each representing a copy of
(S,Σ) (Figure 2.5). The pile of sand and the hole obviously have the same volume,
and the mass of the pile is assumed to be normalized to 1. Let P and Q be measures
on X and Y , respectively, such that whenever A ∈ ΣX and B ∈ ΣY , P [A] measures
how much sand occupies A, and Q[B] measures how much sand can be piled into B.
Suppose further that we have some measurable cost function h : X × Y → R, where
h(x, y) tells us how much it costs to transfer one unit of mass from a point x ∈ X to
a point y ∈ Y . Here we consider h satisfying the conditions of Definition 2.36. The
goal is to determine a plan for transferring all of the mass from X to Y while keeping
the cost at a minimum. Such a transfer plan is modeled by a probability measure λ
on (X × Y,ΣX ⊗ ΣY ), where dλ(x, y) measures how much mass is transferred from
location x to y. Of course, for the plan to be valid we require that λ[A × Y ] = P [A]
and λ[X×B] = Q[B] for every measurable A and B. A plan satisfying this condition
is said to have marginals P and Q, and we denote the collection of all such plans by
Λ(P,Q).
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Definition 2.37. Let S, P , and Q be as in Definition 2.36. Then Λ(P,Q)
consists of all measures on the product space S × S with marginals P and Q.

We can now restate the goal formally as

minimize h(λ) over λ ∈ Λ(P,Q).

This is actually an instance of an infinite linear program. Fortunately, under very
general circumstances, it has a solution and admits a dual formulation.

Let us first note that measures in Λ(P,Q) can equivalently be characterized as
those λ satisfying

P (φ) +Q(ψ) = λ(φ + ψ)

for every (φ, ψ) ∈ L1(P ) × L1(Q), where φ + ψ refers to the map that takes (x, y)
to φ(x) + ψ(y). As a consequence of this characterization we have the following
inequality:

(2.4) sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) ≤ TK(h)(P,Q) ≤ inf
λ∈Λ(P,Q)

h(λ),

where Lip(h,Cb(S)) is given in the following notation.
Definition 2.38. A function f : S → [0, ‖h‖] on a topological space S belongs

to Lip(h,Cb(S)) if and only if it is continuous and bounded on S (in fact, bounded by
‖h‖) and 1-Lipschitz continuous with respect to h.

Note that h need not generate the topology on S, and so Lipschitz continuity
with respect to h does not immediately imply continuity on S.

The leftmost and rightmost terms in inequality (2.4) are examples of infinite linear
programs in duality. It is a highly nontrivial result that there is no duality gap in this
case (see, for example, Theorem 1.3 and the proof of Theorem 1.14 in [60]).

Theorem 2.39 (Kantorovich–Rubinstein duality theorem). Assume the condi-
tions of Definitions 2.36, 2.37, and 2.38. Then there is no duality gap in (2.4), that
is,

(2.5) TK(h)(P,Q) = sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

h(λ).

Note that for any point masses δx, δy, we have TK(h)(δx, δy) = h(x, y) since
δ(x,y) is the only measure with marginals δx and δy. As a result, we obtain that
any bounded lower semicontinuous pseudometric h can be expressed as h(x, y) =
supf∈F (f(x)− f(y)) for some family of continuous functions F (we used this property
at the end of subsection 2.2 to compute the state-similarity metric by hand for a very
simple finite MDP).

Suppose P and Q are finite sums of Dirac measures assigning equal mass to
each of n points, respectively, i.e., P = 1

n

∑n
k=1 δXk

and Q = 1
n

∑n
k=1 δYk

for points
X1, X2, . . . , Xn and Y1, Y2, . . . , Yn in S. Then the Kantorovich metric simplifies ac-
cording to

TK(h)(P,Q) = min
σ

1

n

n∑
k=1

h(Xk, Yσ(k)),

where the minimum is taken over all permutations σ on n elements. This is particu-
larly useful for measuring the distance between empirical measures.

The Kantorovich metric also admits a characterization in terms of the coupling
of random variables. We may write TK(h)(P,Q) = min(X,Y ) E[h(X,Y )] where the
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expectation is taken with respect to the joint distribution of (X,Y ) and the minimum
is taken with respect to all pairs of random variables (X,Y ) such that the marginal
distribution of X is P and the marginal distribution of Y is Q.

3. Bisimulation metrics for continuous MDPs. The first thing we have to
deal with in moving to infinite state spaces2 is the issue of measurability; simply
put, we can no longer specify probabilities point-to-point. One needs to look at the
probabilities of sets of states, and even then, not all sets can be measured in this
way. Formally, we have a potentially uncountably infinite state space, S, equipped
with a σ-algebra of measurable sets, Σ. We may think of Σ as providing some sort of
“information resolution”; that is, the only pertinent sets of states are those that are
measurable (and we ignore the rest). Following along these lines, we need to ensure
that the reward and probability functions satisfy certain measurability conditions,
that is, that they behave well with respect to measurable sets. Formally, we have the
following.

Definition 3.1. An MDP is a tuple (S,Σ, A, P, r), where (S,Σ) is a measurable
space, A is a finite set of actions, r : S × A → R is a measurable reward function,
and P : S ×A× Σ→ [0, 1] is a labeled stochastic transition kernel; i.e.,

• for every a ∈ A and s ∈ S, P (s, a, ·) : Σ→ [0, 1] is a probability measure; and
• for every a ∈ A and X ∈ Σ, P (·, a,X) : S → [0, 1] is a measurable function.

We will use the following notation: for a ∈ A and s ∈ S, P a
s denotes P (s, a, ·)

and ras denotes r(s, a). Given measure P and integrable function f , we denote the
integral of f with respect to P by P (f).

We also make the following assumptions:
1. S is a Polish space equipped with its Borel σ-algebra, Σ;
2. the image of r is contained in [0, 1];
3. for each a ∈ A, r(·, a) is continuous on S;
4. for each a ∈ A, P a

s is (weakly) continuous as a function of s, that is, if sn
tends to s in S, then for every bounded continuous function f : S → R,
P a
sn(f) tends to P a

s (f).
Our presentation of bisimilarity here amounts to little more than a mild extension

through the addition of rewards to the definition of bisimilarity given by the work
in [17] on labeled Markov processes (LMPs).

Let R be an equivalence relation on S. We now have two notions of “visibility”
on S: the measurable sets, as determined by the σ-algebra on S, and the sets built
up from the equivalence classes of R. Naturally, we are interested in those sets that
are visible under both criteria—measurability and equivalence. Let us formalize these
concepts.

Definition 3.2. Given a relation R on a set S, a subset X of S is said to be
R-closed if and only if the collection of all those elements of S that are reachable by
R from X, R(X) = {s′ ∈ S|∃s ∈ X, sRs′}, is itself contained in X.

Definition 3.3. Given a relation R on a measurable space (S,Σ), we write Σ(R)
for the set of those Σ-measurable sets that are also R-closed, {X ∈ Σ|R(X) ⊆ X}.

When R is an equivalence relation, then to say that a set X is R-closed is equiv-
alent to saying that X is a union of R-equivalence classes. In this case Σ(R) consists
of those measurables that can be partitioned into R-equivalence classes.

2We will still assume finitely many actions; what to do when this is not the case is beyond the
scope of this work.
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Definition 3.4. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Defi-
nition 3.1. An equivalence relation R on S is a bisimulation relation if and only if it
satisfies

sRs′ ⇔ for every a ∈ A, ras = ras′ and for every X ∈ Σ(R), P a
s (X) = P a

s′(X).

Bisimilarity is the largest of the bisimulation relations.
Note that it is not immediately clear that bisimilarity itself is a bisimulation

relation (transitivity is not obvious); that this is indeed the case will be shown in
the proof of Theorem 3.10 through a fixed point characterization of bisimilarity. By
contrast, [17] prove transitivity through a logical characterization of bisimilarity.

As in Theorem 2.6, we will develop a metric analogue of bisimilarity over a certain
space of pseudometrics on S; here, however, continuity and measurability conditions
come into play.

Definition 3.5. Let S be a Polish space. Then we define met to be the set of
bounded pseudometrics on S equipped with the metric induced by the uniform norm.
We define lscm to be the set of bounded pseudometrics on S that are lower semicon-
tinuous on S × S endowed with the product topology.

Here we remark that since S is a separable metric space then by Proposition 2.29
the Borel σ-algebra on S × S is the same as the product σ-algebra. Hence, we note
that lower semicontinuous pseudometrics in lscm are product measurable with respect
to the unique σ-algebra on S × S. Moreover, we have the following.

Proposition 3.6. The spaces met and lscm are complete metric spaces when
endowed with the metric induced by the uniform norm.

Proposition 3.6 follows immediately by first noting that the set of bounded real-
valued functions on S × S with the uniform norm metric is a complete metric space,
and that met and lscm are closed subsets of this space.

Thus, once more we have a rich structure on our space of pseudometrics, admitting
the use of important fixed-point theorems, provided we construct an appropriate map
on lscm. Doing so requires the use of a suitable probability metric; in light of the
definition of bisimilarity, the importance of using the Kantorovich distance is made
evident in the following lemma. Insofar as we know, this is an original result.

Lemma 3.7. Let h ∈ lscm as defined in Definition 3.5, and let Rel(h) be the
kernel of h as in Definition 2.9. Then TK(h)(P,Q) = 0 if and only if P (X) = Q(X),
for every X ∈ Σ(Rel(h)).

Proof. ⇐ Fix ε > 0 and let f ∈ Lip(h) such that TK(h)(P,Q) < P (f)−Q(f)+ ε.
Without loss of generality f ≥ 0. Choose ψ a simple approximation (see Theo-
rem 2.34) to f so that TK(h)(P,Q) < P (ψ) − Q(ψ) + 2ε. Let ψ(S) = {c1, . . . , ck},
where the ci are distinct, Ei = ψ−1({ci}), and R = Rel(h). Then each Ei is R-closed,
for if y ∈ R(Ei) then there is some x ∈ Ei such that h(x, y) = 0. So f(x) = f(y)
and therefore, ψ(x) = ψ(y). Thus y ∈ Ei. So by assumption P (ψ) − Q(ψ) =∑

ciP (Ei)−
∑

ciQ(Ei) = 0. Thus, TK(h)(P,Q) = 0.
⇒ Let X ∈ Σ(R). Let Y ⊆ X be compact. Define f(x) = infy∈Y h(x, y). Since a

lower semicontinuous function has a minimum on a compact set, we may write f(x) =
miny∈Y h(x, y). In fact, f is itself lower semicontinuous by Theorem 2.23. Since f
is measurable, R(Y ) = f−1({0}) ∈ Σ(R). By Theorem 2.33 and since S is a Polish
metric space, P is tight, and hence P (X) = supP (Y ) where the supremum is taken
over all compact Y ⊆ X . However, Y ⊆ X implies Y ⊆ R(Y ) ⊆ R(X) = X . Since
R(Y ) is measurable, we have P (X) = supP (R(Y )). Similarly, Q(X) = supQ(R(Y )).
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Define gn = max(0, 1 − nf) for n ∈ N. Then the sequence (gn)n∈N decreases to the
indicator function on R(Y ). Also, for each n ∈ N, gn/n ∈ Lip(h). So by assumption,
P (gn/n) = Q(gn/n) for every n ∈ N. Multiplying by n and taking the limit as n
tends to infinity gives P (R(Y )) = Q(R(Y )).

The next result, which is original, essentially tells us that given the continuity
assumptions on the MDP parameters, the limit of a sequence of pairs of bisimilar
states is itself a pair of bisimilar states. First we need the following definitions.

Definition 3.8. Let S be a Polish space. Then we define Equ to be the set of
equivalance relations on S equipped with subset ordering. We define CloE to be the
set of equivalence relations on S that are closed subsets of S × S endowed with the
product topology.

Proposition 3.9. The sets Equ and CloE are complete lattices when equipped
with the subset ordering.

Clearly when we equip each set with the subset ordering, we obtain partial orders.
The greatest lower bound of a set of equivalence relations is simply their intersection.
Moreover, an arbitrary intersection of closed sets is closed. Hence, both spaces are
complete lattices. Note that existence of least upper bounds follows from that of
greatest lower bounds: least upper bounds are obtained as greatest lower bounds on
the set of upper bounds.

Theorem 3.10. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Defi-
nition 3.1. Then bisimilarity is a closed subset of S × S.

Proof. Define F : Equ→ Equ by

sF(R)s′ ⇔ for every a ∈ A, ras = ras′ and for every X ∈ Σ(R), P a
s (X) = P a

s′(X).

Then the greatest fixed point of F is bisimilarity.
That F(E) is an equivalence relation for a given E is obvious. That F has any

fixed points at all is a consequence of the Knaster–Tarski theorem, Theorem 2.25.
Next, simply note that the fixed points of F are precisely the bisimulation relations.
So the greatest fixed point is contained in bisimilarity, and since every bisimulation
relation is contained in the greatest fixed point, so is bisimilarity.

We first claim that F maps CloE to CloE. To see that F(E) is closed, let
(xn, yn)n∈N be a sequence in F(E) converging to some pair of states (x, y). Let
a ∈ A. By the definition of F(E), raxn

= rayn
for every n. Since the reward function

is continuous, taking the limit as n tends to infinity yields rax = ray . Next, let ρE be
the discrete pseudometric assigning distance 1 to two points if and only if they are
not related by E. Since E is closed, ρE is lower semicontinuous. So the Kantorovich
metric, TK(ρE), is well defined. Now we can invoke the leftmost equality in (2.5) to
obtain that the map (s, s′) �→ TK(ρE)(P

a
s , P

a
s′ ) is lower semicontinuous, for since P a

s

is continuous with respect to the topology of weak convergence, P a
s (f) is continuous

in the usual sense for every bounded continuous f in Lip(ρE). So P a
s (f) − P a

s′(f)
is continuous on S × S, and hence, lower semicontinuous. Finally, taking the supre-
mum over every f yields that the map taking a pair of states to its Kantorovich
distance with respect to ρE is lower semicontinuous. Let X be an E-closed measur-
able set. Then by definition of F(E), P a

xn
(X) = P a

yn
(X), which by Lemma 3.7 means

TK(ρE)(P
a
xn
, P a

yn
) = 0 for every n. Since TK(ρE)(P

a
s , P

a
s′) is lower semicontinuous,

TK(ρE)(P
a
x , P

a
y ) = 0. Again using Lemma 3.7, P a

x (X) = P a
y (X). So (x, y) belongs to

F(E), that is, F(E) is closed.
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Now let ∼CloE
be the least upper bound of bisimilarity in CloE. By monotonicity,

we have ∼ = F(∼) ⊆ F(∼CloE
). So ∼CloE

⊆ F(∼CloE
), that is, ∼CloE

is a postfixed
point of F ; but then ∼CloE

⊆ ∼, the latter being the greatest postfixed point.
Therefore, ∼ = ∼CloE

, that is, bisimilarity is closed.
Definition 3.11. A pseudometric ρ on the states of an MDP is a bisimulation

metric if it satisfies ρ(s, s′) = 0 ⇐⇒ s ∼ s′.
All of the preceding theory comes together in the following crucial result. It is

worth noting that our presentation is a significant extension of the work carried out
by [58, 59] in their work on bisimulation metrics for LMPs.

Theorem 3.12. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions in
Definition 3.1, c ∈ (0, 1) be a metric discount factor, and lscm be as in Definition 3.5.
Define F : lscm → lscm by

F (h)(s, s′) = max
a∈A

((1 − c)|ras − ras′ |+ cTK(h)(P a
s , P

a
s′)).

Then
1. F has a unique fixed point ρ∗ : S × S → [0, 1];
2. ρ∗ is a bisimulation metric;
3. for any h0 ∈ lscm, limn→∞ Fn(h0) = ρ∗;
4. ρ∗ is continuous on S × S;
5. ρ∗ is continuous in r and P ; and
6. ρ∗ scales with rewards, that is, if MDP M ′ = (S,Σ, A, P, k · r) for some

k ∈ [0, 1], then ρ∗M ′ = k · ρ∗M .

3.1. Proof of Theorem 3.12. The rest of this subsection will be dedicated
to proving Theorem 3.12; however, let us first make a few remarks. The first three
properties of the theorem tell us that a quantitative notion of bisimilarity exists, and
that it can be approximated. The continuity results tell us that we only need to know
the metric on a dense subset, and that distances are insensitive to perturbations in
the MDP parameters. The last property is not surprising and reflects the fact that
the actual numbers are not as important as the qualitative structure arising from the
metric. The topological or even uniform structures—see, for example, [20]—yield the
same distinguishing information with respect to bisimilarity; our specific choice of
pseudometric here is influenced by Theorem 3.20.

Lemma 3.13. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Defi-
nition 3.1, c ∈ (0, 1) be a metric discount factor, and F be as in the statement of
Theorem 3.12. Then F has a unique fixed point ρ∗ : S × S → [0, 1] such that for any
h0 ∈ lscm,

‖ρ∗ − Fn(h0)‖ ≤
cn

1− c
‖F (h0)− h0‖.

Proof. We first need to ensure that F maps lscm to lscm. Let h be a member of
lscm. As in the proof of Theorem 3.10, we first note that for each action a ∈ A, the
map taking (s, s′) to TK(h)(P a

s , P
a
s′) is lower semicontinuous, as is the map taking

(s, s′) to |ras − ras′ |. It follows that F (h) is lower semicontinuous, since the sum of
lower semicontinuous functions is lower semicontinuous and the maximum of lower
semicontinuous functions is again lower semicontinuous.

Thus we obtain the result as a simple application of the Banach fixed-point the-
orem, Theorem 2.26, since lscm is a complete metric space (Proposition 3.6). Here
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we use the dual minimization form of TK(·), as given in (2.5). Note that for every
h, h′ ∈ lscm, and for every s, s′ ∈ S,

F (h)(s, s′)− F (h′)(s, s′) ≤ cmax
a∈A

(TK(h)(P a
s , P

a
s′ )− TK(h′)(P a

s , P
a
s′))

≤ cmax
a∈A

(TK(h− h′ + h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′))

≤ cmax
a∈A

(TK(‖h− h′‖+ h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′))

≤ cmax
a∈A

(‖h− h′‖+ TK(h′)(P a
s , P

a
s′)− TK(h′)(P a

s , P
a
s′))

≤ c‖h− h′‖.

In the third inequality, we have used monotonicity of the minimization form of
TK(·)(P a

s , P
a
s′ ) with respect to the cost function.

Thus, ‖F (h)−F (h′)‖ ≤ c‖h− h′‖, so that F is a contraction mapping and has a
unique fixed point ρ∗.

Note that for any s, s′ ∈ S,

ρ∗(s, s′) = F (ρ∗)(s, s′) = max
a∈A

((1− c)|ras − ras′ |+ cTK(ρ∗)(P a
s , P

a
s′))

≤ max
a∈A

((1− c) · 1 + cTK(‖ρ∗‖)(P a
s , P

a
s′))

≤ max
a∈A

((1− c) + c‖ρ∗‖)

≤ (1 − c) + c‖ρ∗‖,

whence it follows that ‖ρ∗‖ ≤ (1− c) + c‖ρ∗‖, and we conclude ‖ρ∗‖ ≤ 1.
The following is an original continuity result.
Lemma 3.14. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Defini-

tion 3.1, and let ρ∗ be the pseudometric given by Lemma 3.13 with metric discount
factor c ∈ (0, 1). Then ρ∗ is a continuous function on S × S.

Proof. Since the set of bounded continuous pseudometrics on S is a closed sub-
set of lscm, we need only show that F maps it to itself. So let ρ be a bounded
continuous pseudometric on S. Let a ∈ A. Then continuity of r on S implies
|rax − ray | is continuous on S × S. For the continuity of TK(ρ)(P a

x , P
a
y ), we ap-

peal to Theorem 2.35. This theorem implies that TK(ρ) metrizes the topology of
weak convergence, provided Lip(ρ, Cb(S)) is equicontinuous and uniformly bounded.
Here we are using the leftmost equality in Theorem 2.39. Since ρ is bounded,
Lip(ρ, Cb(S)) is uniformly bounded, as each member f of Lip(ρ, Cb(S)) maps to
the interval [0, ‖ρ‖]. As for equicontinuity at a point x, let ε > 0. Continuity of
the function ρ(x, ·) implies that there is a neighborhood Nx of x such that for ev-
ery y in Nx, ρ(x, y) = |ρ(x, y) − ρ(x, x)| < ε. Then for any f ∈ Lip(ρ, Cb(S)),
|f(x)− f(y)| ≤ ρ(x, y) < ε. Thus, Lip(ρ, Cb(S))) is equicontinuous. Since

|TK(ρ)(P a
x , P

a
y )− TK(ρ)(P a

xn
, P a

yn
)| ≤ TK(ρ)(P a

x , P
a
xn
) + TK(ρ)(P a

y , P
a
yn
),

we have that for any (xn, yn)n∈N converging to (x, y), TK(ρ)(P a
xn

, P a
yn
) converges to

TK(ρ)(P a
x , P

a
y ). Thus, continuity of F (ρ) is immediate.
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As an immediate consequence of Lemma 3.14, we have the following.
Corollary 3.15. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Def-

inition 3.1, and let ρ∗ be the pseudometric given by Lemma 3.13 with metric discount
factor c ∈ (0, 1). Then the topology induced by ρ∗ on S is coarser than the original.

Next we show that we have indeed quantitatively captured bisimilarity. The proof
of this result is original.

Lemma 3.16. Let (S,Σ, A, P, r) be an MDP satisfying the conditions of Defini-
tion 3.1, and let ρ∗ be the pseudometric given by Lemma 3.13 with metric discount
factor c ∈ (0, 1). Then ρ∗ is a bisimulation metric

Proof. It follows from Lemma 3.7 that for any h in lscm, Rel(F (h)) = F(Rel(h)).
Thus, Rel(ρ∗) = F(Rel(ρ∗)) is a fixed point and so is contained in bisimilarity. For
the other direction, we consider the discrete bisimilarity pseudometric that assigns
distance 1 to pairs of nonbisimilar states; call it ρ. Since bisimilarity is closed (Theo-
rem 3.10), ρ is lower semicontinuous. So ∼ = F(∼) = F(Rel(ρ)) = Rel(F (ρ)), which
implies F (ρ) ≤ ρ. Since F is monotone, iterating F and taking limits yields ρ∗ ≤ ρ,
whence it follows that Rel(ρ∗) contains bisimilarity.

Before moving on, let us give meaning to the iterates {Fn(⊥) : n ∈ N}. Define
inductively ∼0= S × S and ∼n+1= F(∼n). Finally, let ∼ω= ∩n ∼n represent the
limit of this sequence.

The best way to view this is once more in terms of “information resolution.” At
first, we know nothing; this is represented by the relation that equates all states,
∼0. Applying F corresponds to a one-step lookahead refinement, and similarly for
n steps. Our intuition naturally tells us that in the limit, we should have a “strong
matching,” that is, bisimilarity; however, it is not immediately clear that this is
so. Not surprisingly, a proof once more makes itself evident through the use of
metrics.

Simply note that by induction, Rel(Fn(⊥)) =∼n (here, we are once again using
the fact that Rel(F (h)) = F(Rel(h))). Since it is easily seen that ∩nRel(Fn(⊥)) =
Rel(supn F

n(⊥)) and supn F
n(⊥) = ρ∗, we have ∼ω= Rel(ρ∗), which is bisimilarity.

Thus, the nth iterate corresponds to an n-step approximation to bisimilarity. Let
us note that we now have three equivalent formulations of bisimilarity, making this
more in line with the traditional presentation of bisimilarity for labeled nondetermin-
istic transition systems: as a maximal relation, as a greatest fixed point, and as an
intersection of an infinite family of equivalence relations [44].

Lemma 3.17. Let M = (S,Σ, A, P, r) and M ′ = (S,Σ, A, P, r′) be two MDPs
satisfying the conditions of Definition 3.1, and let ρ∗M and ρ∗M ′ be their respective
pseudometrics given by Lemma 3.13 with common metric discount factor c ∈ (0, 1).
If r′ = k · r for some scalar k > 0, then ρ∗M ′ = k · ρ∗M .

Proof. It is not hard to see that k · ρ∗M is a solution to the fixed-point equation
for M ′; thus, the result follows by uniqueness.

The following original result shows that, by contrast with bisimilarity, the bisim-
ilarity distances vary smoothly with the MDP parameters.

Lemma 3.18. Let M = (S,Σ, A, r, P ) and M̂ = (S,Σ, A, r̂, Q) be two MDPs with
common state and action spaces and satisfying the conditions of Definition 3.1. Let ρ
and ρ̂ be the corresponding bisimulation metrics given by Lemma 3.13 with discount
factor c ∈ (0, 1). Then

‖ρ− ρ̂‖ ≤ 2‖r − r̂‖+ 2c

(1 − c)
sup
a,s

TV (P a
s , Q

a
s),
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where TV is the total variation probability metric, as defined by

TV (P,Q) = sup
X∈Σ
|P (X)−Q(X)|.

Proof. Let d be the discrete pseudometric that assigns distance 1 to all pairs
of nonequal states. Using the triangle inequality along with the fact that Lip(h) is
contained in Lip(d) for h ∈ {ρ, ρ̂}, we first obtain

TK(h)(P a
x , P

a
y )− TK(h)(Qa

x, Q
a
y) ≤ TK(h)(P a

x , Q
a
x) + TK(h)(P a

y , Q
a
y)

≤ TK(d)(P a
x , Q

a
x) + TK(d)(P a

y , Q
a
y)

≤ TV (P a
x , Q

a
x) + TV (P a

y , Q
a
y).

(3.1)

Here we have used the fact that TK(d) = TV [60]. Next, using monotonicity of TK(·)
with respect to the cost function, we have

TK(ρ)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y ) = TK(ρ− ρ̂+ ρ̂)(P a

x , P
a
y )− TK(ρ̂)(P a

x , P
a
y )

≤ TK(‖ρ− ρ̂‖+ ρ̂)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )

= inf
λ∈Λ(Pa

x ,Pa
y )

∫
S×S

(‖ρ− ρ̂‖+ ρ̂)dλ − TK(ρ̂)(P a
x , P

a
y )

= inf
λ∈Λ(Pa

x ,Pa
y )

(
‖ρ− ρ̂‖+

∫
S×S

ρ̂dλ

)
− TK(ρ̂)(P a

x , P
a
y )

= ‖ρ− ρ̂‖+ TK(ρ̂)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )

≤ ‖ρ− ρ̂‖.

(3.2)

Finally,

ρ(x, y)− ρ̂(x, y)

≤ max
a∈A

((1 − c)|rax − ray |+ cTK(ρ)(P a
x , P

a
y ))−max

a∈A
((1− c)|r̂ax − r̂ay |+ cTK(ρ̂)(Qa

x, Q
a
y))

≤ max
a∈A

((1 − c)(|rax − ray | − |r̂ax − r̂ay |) + c(TK(ρ)(P a
x , P

a
y )− TK(ρ̂)(Qa

x, Q
a
y)))

≤ max
a∈A

((1 − c)(|(rax − ray)− (r̂ax − r̂ay)|)

+ c(TK(ρ)(P a
x , P

a
y )− TK(ρ̂)(P a

x , P
a
y )) + c(TK(ρ̂)(P a

x , P
a
y )− TK(ρ̂)(Qa

x, Q
a
y)))

≤ max
a∈A

((1 − c)(|rax − r̂ax|+ |ray − r̂ay |) + c‖ρ− ρ̂‖+ 2c sup
s

TV (P a
s , Q

a
s))

≤ max
a∈A

(
2(1− c)‖ra − r̂a‖+ c‖ρ− ρ̂‖+ 2c sup

s
TV (P a

s , Q
a
s)

)
≤ 2(1− c)‖r − r̂‖+ c‖ρ− ρ̂‖+ 2c sup

a,s
TV (P a

s , Q
a
s).
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Now suppose we are given an MDP and that another MDP is alleged to be a good
approximation. We would ideally like to measure the distance between a state in the
original model and its equivalent state in the approximation using a bisimulation
metric. The next results tells us that we can do so in a well-defined manner.

Theorem 3.19. Let M1 = (S1,Σ1, A, r1, P1) and M1 = (S2,Σ2, A, r2, P2) be two
MDPs that satisfy the conditions of Definition 3.1. Suppose S1 and S2 are disjoint.
Define the disjoint union of M1 and M2 to be M = (S,Σ, A, r, P ), where

• S = S1 � S2 is the disjoint union of S1 and S2,
• Σ is the Borel σ-algebra on S,
• r : S ×A→ [0, 1] is defined by r(x, a) = ri(x, a) if x ∈ Si for i = 1, 2, and
• P : S ×A×Σ→ [0, 1] is defined by P (x, a,B) = Pi(x, a,B ∩Si) if x ∈ Si for
i = 1, 2.

Then M is an MDP satisfying the conditions of Definition 3.1. Moreover, if ρ∗M1
,

ρ∗M2
, and ρ∗M are the bisimulation metrics guaranteed by Lemma 3.13 with metric

discount factor c ∈ (0, 1), then the restriction ρ∗M �Mi= ρ∗Mi
for i = 1, 2.

Proof. Let d1 and d2 be metrics inducing the respective topologies of S1 and S2

as Polish spaces. Endow S with the metric d defined by d(x, y) = di(x, y) if x, y ∈ Si

and 1 otherwise. Then it is not hard to see that (S, d) is a Polish metric space, and
S is Polish. So it makes sense to speak of its Borel σ-algebra Σ.

Let (xn)n∈N be a convergent sequence in S converging to some point x ∈ S. By
Definition 2.10, we can choose N ∈ N such that for each n ≥ N , d(xn, x) < 1

2 . So
(xn)n≥N and x must belong solely to either S1 or S2, and continuity of r and P follows
immediately from the sequential version of continuity in each of the spaces S1 and S2.
Let us outline the argument for P .

First, note that P is a well-defined stochastic transition kernel; this follows from
P1 and P2 being stochastic transition kernels. Let (xn)n∈N be a sequence in S con-
verging to a point x ∈ S. Without loss of generality, we can assume that these belong
entirely to S1. Let f be a bounded continuous function on S. Its restriction f �S1

is easily seen to be a bounded continuous function on S1 (again, use the sequential
version of continuity). Then

∫
S

fdP a
xn

=

∫
S1

f �S1 dP a
1,xn

+

∫
S2

f �S2 dP a
2,xn

=

∫
S1

f �S1 dP a
1,xn

+ 0 =

∫
S1

f �S1 dP a
1,xn

.

Similarly,
∫
S
fdP a

x =
∫
S1

f �S1 dP a
1,x. Hence,

lim
n→∞

∫
S

fdP a
xn

= lim
n→∞

∫
S1

f �S1 dP a
1,xn

=

∫
S1

f �S1 dP a
1,x =

∫
S

fdP a
x .

Therefore M satisfies the conditions of Definition 3.1. By Theorem 3.12, bisimulation
metrics ρ∗M1

, ρ∗M2
, and ρ∗M exist and are unique. Let us show that ρ∗M �M1= ρ∗M1

.
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First let x, y ∈ S1. Then

TK(ρ∗M )(P a
x , P

a
y ) = sup

f∈Lip(ρ∗
M )

(∫
S

fdP a
x −

∫
S

fdP a
y

)

= sup
f∈Lip(ρ∗

M )

(∫
S1

f �S1 dP a
1,x +

∫
S2

f �S2 dP a
1,x

−
∫
S1

f �S1 dP a
1,y −

∫
S2

f �S2 dP a
1,y

)

= sup
f∈Lip(ρ∗

M )

(∫
S1

f �S1 dP a
1,x + 0−

∫
S1

f �S1 dP a
1,y − 0

)
= sup

f∈Lip(ρ∗
M )

(∫
S1

f �S1 dP a
1,x −

∫
S1

f �S1 dP a
1,y

)
≤ TK(ρ∗M �M1)(P

a
1,x, P

a
1,y).

Now fix ε > 0. Then there exists an f ∈ Lip(ρ∗M �M1) such that

TK(ρ∗M �M1)(P
a
1,x, P

a
1,y)− ε <

∫
S1

fdP a
1,x −

∫
S1

fdP a
1,y.

Define g : S → R by g(z) = infs∈S1(f(s)+ρ∗M (z, s)). Then g ∈ Lip(ρ∗M) and g �S1= f .
Note by Lemma 3.14 that since g is Lipschitz continuous with respect to ρ∗M , then g
is in fact continuous on S with its given topology, and hence is measurable. Next,

TK(ρ∗M �M1)(P
a
1,x, P

a
1,y)− ε <

∫
S1

fdP a
1,x −

∫
S1

fdP a
1,y

=

∫
S1

g �S1 dP a
1,x + 0−

∫
S1

g �S1 dP a
1,y − 0

=

∫
S1

g �S1 dP a
1,x +

∫
S2

g �S2 dP a
1,x

−
∫
S1

g �S1 dP a
1,y −

∫
S2

g �S2 dP a
1,y

=

∫
S

gdP a
x −

∫
S

gdP a
y

≤ TK(ρ∗M )(P a
x , P

a
y ).

Since ε is arbitrary, we conclude that TK(ρ∗M )(P a
x , P

a
y ) = TK(ρ∗M �M1)(P

a
1,x, P

a
1,y).

Therefore, for any s, s′ ∈ S1,

ρ∗M (s, s′) = max
a∈A

((1 − c)|ras − ras′ |+ cTK(ρ∗M )(P a
s , P

a
s′))

= max
a∈A

((1 − c)|ra1,s − ra1,s′ |+ cTK(ρ∗M �M1)(P
a
1,s, P

a
1,s′))

= FM (ρ∗M �M1)(s, s
′),

where FM1 is the fixed-point operator for ρ∗M1
. Thus, it follows that FM1 (ρ

∗
M �M1) =

ρ∗M �M1 . By uniqueness, we conclude ρ∗M �M1= ρ∗M1
.

Thus, existence of the state-similarity metrics for a continuous MDP is estab-
lished, along with several important properties. However, as in the finite case, per-
haps the most important property of the metrics is showing that similar states have
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similar optimal values, and that this relation varies smoothly with similarity. We
must emphasize that in contrast with the work on LMPs, where the underlying moti-
vation has been to analyze the validity of testing properties expressed in a modal logic
on similar systems, a primary focus here is on analyzing the validity of computing
optimal values (and hence, optimal policies) on similar MDPs.

3.2. Value function bounds. In moving to continuous state spaces, we must
address the validity of the continuous analogue of the optimality equations:

V ∗(s) = max
a∈A

(ras + γP a
s (V

∗)) for each s ∈ S.

In general, such a V ∗ need not exist. Even if it does, there may not be a well-behaved,
that is to say, measurable, policy that is captured by it. Fortunately, there are several
mild restrictions under which this is not the case; in fact, Theorem 6.2.12 of [53]
states that the optimality equations are valid provided the state space is Polish and
the reward function is uniformly bounded, as is indeed the case here. Just as before,
the optimal value function V ∗ can be expressed as the limit of a sequence of iterates
V n; we can use these to show that the optimal value function is continuous with
respect to the state-similarity metrics.

Theorem 3.20. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions of
Definition 3.1, ρ∗ be the pseudometric given by Theorem 3.12 with metric discount
factor c ∈ (0, 1), and V ∗ be the optimal value function for M with discount factor
γ ∈ [0, 1). Suppose γ ≤ c. Then V ∗ is Lipschitz continuous with respect to ρ∗ with
Lipschitz constant 1

1−c , i.e.,

|V ∗(s)− V ∗(s′)| ≤ 1

1− c
ρ∗(s, s′).

Proof. Each iterate V n is continuous, and so each |V n(s) − V n(s′)| belongs to
lscm. The result now follows by induction and taking limits.

We can use this result to relate the optimal values of a state and its representation
in an approximant by considering the original model and its approximant as one MDP.
More directly, we can use the distances themselves for aggregation with error bounds.
Let us consider a simple illustration, first presented in [28], of metric-based reasoning:
let S = [0, 1] with the usual Borel σ-algebra, A = {a, b}, ras = 1 − s, rbs = s, P a

s be
uniform on S, and P b

s the point mass at s. Clearly, these MDP parameters satisfy
the required assumptions.

Given any c ∈ (0, 1), we claim ρ∗(x, y) = |x − y|. Define h by h(x, y) = |x − y|,
and note that TK(h)(P a

x , P
a
y ) = 0 and TK(h)(P b

x , P
b
y ) = h(x, y). Thus, F (h)(x, y) =

max((1−c)|x−y|+c ·0, (1−c)|x−y|+c ·h(x, y)) = (1−c)h(x, y)+c ·h(x, y) = h(x, y).
By uniqueness, ρ∗ = h as was to be shown.

Now consider the following approximation. Given ε > 0, choose n large enough
so that 1

n < (1 − c)ε. Partition S as Bk = [ kn ,
k+1
n ), Bn−1 = [n−1

n , 1], for k =
0, 1, 2, . . . , n− 2. Note that the diameter of each Bk with respect to ρ∗, diamρ∗ Bk, is
1
n < (1 − c)ε. The n partitions will be the states of a finite MDP approximant. We
obtain the rest of the parameters by averaging over the states in a partition. Thus,
raBk

= 1− 2k+1
2n , rbBk

= 2k+1
2n , P a

Bk,Bl
= 1

n , and P b
Bk,Bl

= 1 if k = l and 0 otherwise.
Assume γ is given and choose c = γ. Note that for every x, y in Bk,

|V ∗(x)− V ∗(y)| ≤ 1

1− c
diamρ∗ Bk ≤ ε.
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Thus, we would expect that by averaging, and solving the finite MDP, V ∗(Bk) should
differ by at most ε from V ∗(x) for any x ∈ Bk. In fact, in this case the value functions
of the original MDP and of the finite approximant can be computed directly and we
can verify this. For x ∈ S, Bk, we find

V ∗(x) =

{
1− x+ γ

2(1−γ) if 0 ≤ x < 1
2 ,

x
1−γ if 1

2 ≤ x ≤ 1,

V ∗(Bk) =

{
1− 2k+1

2n + γ
2(1−γ) if 0 ≤ k < n−1

2 ,
2k+1
2n

1−γ if n−1
2 ≤ k ≤ n− 1.

Therefore, for x ∈ Bk,

|V ∗(x)− V ∗(Bk)| ≤
1

1− γ

∣∣∣∣x− 2k + 1

2n

∣∣∣∣ ≤ 1

1− c
diamρ∗ Bk ≤ ε.

In fact, we can somewhat generalize this result.
Theorem 3.21. Let M = (S,Σ, A, r, p) be an MDP satisfying the conditions of

Definition 3.1. Let μ be a measure on S, and let P be a finite partition of S such
that each equivalence in P has positive μ-measure. Let [−] : S → P be the map that
takes s ∈ S to its equivalence class in P. Define the μ-average finite MDP MP by
(P , A, r, P ), where

raB =
1

μ(B)

∫
x∈B

raxdμ(x) and P a
BB′ =

1

μ(B)

∫
x∈B

P a
x (B

′)dμ(x).

Let ρ∗M	MP be the bisimulation metric for the disjoint union of M and MP with metric
discount factor c ∈ (0, 1) as given by Theorem 3.19. Let V ∗

M and V ∗
P be the optimal

value functions for M and MP , respectively, with discount factor γ ∈ [0, 1). Suppose
γ ≤ c. Then for every s ∈ S,

(3.3)

(1− c) · |V ∗
M (s)− V ∗

MP ([s])| ≤ ρ∗M	MP (s, [s]) ≤
1

1− c
sup
y∈s

1

μ([y])

∫
x∈[y]

ρ∗M (y, x)dμ(x).

In other words, we can bound the distance between a state and its equivalence
class by the maximum average distance between a state and all the other states in its
equivalence class.

Proof. First, note that since P is a finite set, we can endow it with the discrete
metric assigning distance 1 to all pairs of nonequal states to make it a Polish space.
Then MP trivially satisfies the conditions of Definition 3.1. So by Theorem 3.19
the disjoint union of M and MP exists, as does the bisimulation metric ρ∗M	MP .
Therefore, the left-hand equality in (3.3) follows from Theorem 3.20. Here we note
that the value function is defined over the disjoint union MDP, but agrees on values
restricted to the individual MDPs, just as is the case for the bisimulation metrics.
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For the right-hand equality, let s ∈ S and a ∈ A. Let ε > 0. Then there exists an
f in Lip(ρ∗M	MP ) such that

TK(ρ∗M	MP )(P
a
s , P

a
[s])− ε <

∫
S	P

fdP a
s −

∫
S	P

fdP a
[s]

=

∫
x∈S

f(x)dP a
s (x) −

∫
B∈P

f(B)dP a
[s](B)

=

∫
x∈S

f(x)dP a
s (x) −

∑
B∈P

f(B)P a
[s](B)

=

∫
x∈S

f(x)dP a
s (x) −

1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
z (x)

)
dμ(z)

+
1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
z (x)

)
dμ(z)

−
∑
B∈P

f(B)
1

μ([s])

∫
z∈[s]

P a
z (B)dμ(z)

=
1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
s (x)−

∫
x∈S

f(x)dP a
z (x)

)
dμ(z)

+
1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
z (x)−

∑
B∈P

f(B)P a
z (B)

)
dμ(z)

≤ 1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z)

+
1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
z (x)−

∑
B∈P

∫
x∈B

f(B)dP a
z (x)

)
dμ(z)

≤ 1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z)

+
1

μ([s])

∫
z∈[s]

(∫
x∈S

f(x)dP a
z (x) −

∫
x∈S

f([x])dP a
z (x)

)
dμ(z)

≤ 1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z)

+
1

μ([s])

∫
z∈[s]

∫
x∈S

(f(x)− f([x]))dP a
z (x)dμ(z)

≤ 1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z)

+
1

μ([s])

∫
z∈[s]

∫
x∈S

ρ∗M	MP (x, [x])dP
a
z (x)dμ(z)

≤ 1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z) + sup

x∈S
ρ∗M	MP (x, [x]).
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Then

ρ∗M	MP (s, [s])

= max
a∈A

((1− c)|ras − ra[s]|+ cTK(ρ∗M	MP )(P
a
s , P

a
[s]))

≤ max
a∈A

(
(1 − c)

1

μ([s])

∫
z∈[s]

|ras − raz |dμ(z)

+ c

(
1

μ([s])

∫
z∈[s]

TK(ρ∗M )(P a
s , P

a
z )dμ(z) + sup

x∈S
ρ∗M	MP (x, [x])

))

≤ 1

μ([s])

∫
z∈[s]

max
a∈A

((1 − c)|ras − raz |+ cTK(ρ∗M )(P a
s , P

a
z ))dμ(z)

+ c · sup
x∈S

ρ∗M	MP (x, [x])

≤ 1

μ([s])

∫
z∈[s]

ρ∗M (s, z)dμ(z) + c · sup
x∈S

ρ∗M	MP (x, [x])

Taking the supremum on both sides with respect to s, we find

sup
s∈S

ρ∗M	MP (s, [s]) ≤
1

1− c
sup
s∈s

1

μ([s])

∫
z∈[s]

ρ∗M (s, z)dμ(z).

4. More mathematical review. When dealing with infinite state spaces in
practice, we still need to find some finite structure with which to work; therefore,
we restrict our attention here to those MDPs whose state spaces are compact met-
ric spaces. As we will be sampling in such spaces, we will also need some results
on empirical processes. We present here some mathematical definitions and results
for empirical processes valid on compact metric spaces. These can be found in [29]
and [19].

4.1. A compactness theorem.
Theorem 4.1 (Arzelà–Ascoli). Let X be a compact Hausdorff space, and let

C(X) be the space of continuous complex-valued functions on X. If F is an equicon-
tinuous, pointwise bounded subset of C(X), then F is totally bounded in the uniform
metric, and the closure of F in C(X) is compact.

4.2. Weak convergence and empirical processes.
Definition 4.2. Let n ∈ N, and let (Ω,A,P) be an ambient probability space

over which we sample n points {X1, X2, . . . , Xn} with values in (S,Σ) independently
and with identical distribution μ; that is, each Xi is a measurable map from (Ω,A,P)
to (S,Σ) such that P({ω ∈ Ω : Xi(ω) ∈ E}) = P(X−1

i (E)) = μ(E) for every E in Σ.
Define the nth empirical probability measure μn of μ to be the average of the Dirac
measures at each Xi; that is, μn := 1

n

∑n
i=1 δXi .

Each μn is in effect a random measure; that is, for each ω ∈ Ω, μn(ω) :=
1
n

∑n
i=1 δXi(ω) is a probability measure. Does this sequence of random probability

measures (μn)n∈N converge?
Definition 4.3. Let (Yn)n∈N be a sequence of random variables, and let Y be a

random variable. Then (Yn)n∈N converges to Y in probability if, for every ε > 0,

lim
n→∞P({ω ∈ Ω : |Yn(ω)− Y (ω)| ≥ ε}) = 0,
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and almost surely if

P({ω ∈ Ω : lim
n→∞Yn(ω) = Y (ω)}) = 1.

The weak law of large numbers (resp., strong law of large numbers) tells us
that for each real-valued bounded continuous f , the sequence of random variables
(μn(f))n∈N = ( 1n

∑n
i=1 f(Xi))n∈N converges to μ(f) in P-probability (P-almost surely).

If the convergence was uniform over the set F of all bounded continuous functions,
that is, if supf∈F |μn(f)−μ(f)| converged to zero , then it would follow that the em-
pirical measures themselves converged weakly. This turns out to be a useful property
in itself. Let us note that the maps ω �→ supf∈F |μn(ω)(f)−μ(f)| need not be measur-
able since they involve taking a supremum over the possibly uncountable collection F .
Thus, we will need to use the outer probability P

∗ when speaking of their convergence.
Definition 4.4. Let F be a class of integrable functions for probability measure μ.

Then F is a weak Glivenko–Cantelli class for μ if supf∈F |μn(f)−μ(f)| converges to
zero in P

∗-outer probability. It is a strong Glivenko–Cantelli class for μ if convergence
is P

∗-almost sure.
Definition 4.5. If F is a Glivenko–Cantelli class for every probability measure

on (S,Σ), then it is said to be a universal Glivenko–Cantelli class. Lastly, if the rate
of P∗-convergence can be made to be uniform over all μ, that is, if for every positive ε
there exists a natural number N depending only on ε such that for every μ and every
n ≥ N , P∗(supf∈F |μn(f) − μ(f)| > ε) < ε, then F is said to be a a strong uniform
Glivenko–Cantelli class.

An equivalent formulation says that F is a strong uniform Glivenko–Cantelli class
if and only if

for every ε > 0, lim
i→∞

sup
μ

P
∗
(
sup
m≥i

sup
f∈F
|μ(f)− μm(f)| > ε

)
= 0,

where the outermost supremum is taken over all probability measures on the state
space.

The following definitions are needed to set up a Glivenko–Cantelli theorem, which
will be used to establish that a certain class of functions, Lip(ρ∗, Cb(S)), is a strong
uniform Glivenko–Cantelli class when S is a compact metric space.

Definition 4.6. A topological space is an analytic space, also known as a Suslin
space, if it is the continuous image of a Polish space under a map between Polish
spaces.

Definition 4.7. Let (Ω,A) be a measurable space and F a set. Then a real-valued
function X : (f, w) �→ X(f, w) will be called image admissible Suslin via (Y,S, T ) if
and only if (Y,S) is a Suslin measurable space, T is a function from Y onto F , and
the map (y, ω) �→ X(T (y), ω) is jointly measurable on Y × Ω.

If F is a set of functions on Ω and X(f, ω) = f(ω) is the evaluation map, then
F will be called image admissible Suslin if X is image admissible Suslin via some
(Y,S, T ) as above.

Definition 4.8. Let X be a set, x = (x1, . . . , xn) ∈ Xn for n = 1, 2, . . . , and F
be a family of real-valued functions on X. Define the pseudometric ex,∞ on F by

ex,∞(f, g) = max
1≤i≤n

|f(xi)− g(xi)| for f, g ∈ F .

Let N(ε,F , ex,∞) denote the ε-covering number of (F , ex,∞) for ε > 0. Then we
define, for n = 1, 2, . . . and ε > 0, the quantity

Hn,∞(ε,F) = sup
x∈Xn

logN(ε,F , ex,∞).
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The following is the relevant part of Theorem 6 from [21].
Theorem 4.9. Let F be a uniformly bounded family of functions on (X,Σ) that

is also image admissible Suslin. Then F is a strong uniform Glivenko–Cantelli class
if and only if

lim
n→∞Hn,∞(ε,F)/n = 0

for every ε > 0.

5. Distance approximation schemes. We saw in subsection 2.3 that among a
number of bisimulation distance-estimation schemes for finite MDPs, the most promis-
ing appeared to be a method based on sampling. Therefore, we propose to extend this
to the case of continuous MDPs. One would sample all probability mass functions,
replace each with an empirical distribution built from the resulting samples, and re-
peatedly apply the fixed-point bisimulation functional to the new MDP. Supposing
for the moment that one can enumerate and sample from a compact metric space with
full-fledged probability measures, the only problem in this procedure is the validity of
replacing the original MDP with the sampled version. In other words, if we replace
the probability measures in our MDP with empirical measures, is it still true that
the bisimulation metric on the sampled MDP will converge to the true bisimulation
metric as the number of samples increases?

Fortunately, with some minor modifications the answer is yes. In order to prove
this, we will need to make use of a uniform Glivenko–Cantelli theorem, Theorem 4.9.
Such a theorem typically characterizes uniform convergence of empiricals to means
and is ubiquitous throughout machine learning [2]. Let us first take a moment to
consider what this means in the context of the Kantorovich distances. Suppose Lip(h)
is a uniform Glivenko–Cantelli class for pseudometric h. Then the uniform Glivenko–
Cantelli property tells us that TK(h)(μ, μi) converges to zero P-almost surely for
every μ and this convergence is uniform over all μ. Ideally then, we would like at
least one of Lip(ρ∗) and Lip(ρ∗, Cb(S)) to be a uniform Glivenko–Cantelli class. The
question as to which classes constitute uniform Glivenko–Cantelli classes and under
what conditions is an important area of active research. Fortunately, we have the
following.

Lemma 5.1. Let (S, d) be a compact metric space, and let Lip(ρ∗, Cb(S)) be as
in Definition 2.38. Then Lip(ρ∗, Cb(S)) is a uniform Glivenko–Cantelli class.

Proof. We will essentially follow the proof of Proposition 12 in [21]: if we can
show that Lip(ρ∗, Cb(S)) is image admissible Suslin and that limn→∞ Hn,∞(ε, Lip(ρ∗,
Cb(S)))/n = 0 for every ε > 0, then the result will follow by Theorem 4.9.

As we saw in the proof of Lemma 3.14, Lip(ρ∗, Cb(S)) is equicontinuous at all
points. It is uniformly bounded by ‖ρ∗‖ by definition, and it is easily seen to be closed
with respect to the uniform norm metric. Therefore, by Theorem 4.1 it is a compact
space, and hence is also a Polish space and a Suslin space.

Now we have that both (S, d) and Lip(ρ∗, Cb(S)), equipped with the uniform norm
metric, are compact, and hence are separable metric spaces. Equip each with its Borel
σ-algebra, and note that by separability, the Borel σ-algebra of their product is the
product of their Borel σ-algebras. Let T be the identity mapping on Lip(ρ∗, Cb(S)).
Define X : S ×Lip(ρ∗, Cb(S))→ R to be the evaluation map, that is, X(f, s) = f(s).
Define Γ : S × Lip(ρ∗, Cb(S)) → R by Γ(f, s) = X(T (f), s) = f(s). Then since
Lip(ρ∗, Cb(S)) is equicontinuous, it follows that Γ is jointly continuous on the product
space, and hence is product measurable. Therefore, Lip(ρ∗, Cb(S)) is image admissible
Suslin.
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Finally note, that for any n = 1, 2, . . . and s ∈ Sn, es,∞ is bounded above by the
uniform norm metric. Thus, N(ε, Lip(ρ∗, Cb(S)), es,∞) ≤ N(ε, Lip(ρ∗, Cb(S)), ‖ · ‖),
the latter term being finite and independent of n for every ε > 0 as Lip(ρ∗, Cb(S)) with
the uniform norm is a compact metric space. So for every ε > 0,Hn,∞(ε, Lip(ρ∗, Cb(S)))
is uniformly bounded in n. Therefore, limn→∞ Hn,∞(ε, Lip(ρ∗, Cb(S)))/n = 0 for ev-
ery ε > 0, as was to be shown.

How does this help us? Recall that as a first step in our distance approxima-
tion scheme, we would like to replace each probability measure on the space with
an empirical measure and use Theorem 3.12 to guarantee existence of bisimulation
metrics. However, in order to use that, we require the map taking states to empir-
ical measures to be continuous—and in general this need not be the case. We may
circumvent this issue by replacing the Kantorovich operator with one that is defined
on all real-valued functions, not just the measurable ones. For a fixed i, define for
empiricals μi =

1
i

∑i
j=1 δXj and νi =

1
i

∑i
j=1 δYj and bounded-pseudometric h,

T i
K(h)(μi, νi) = min

σ

1

i

i∑
k=1

h(Xk, Yσ(k))

(note that if h is measurable, then T i
K(h)(μi, νi) = TK(h)(μi, νi)). With this in mind,

we may once more apply the Banach fixed-point theorem to obtain the following.
Proposition 5.2. Let M = (S,Σ, A, P, r) be an MDP satisfying the condi-

tions in Definition 3.1, c ∈ (0, 1) be a metric discount factor, and i ∈ N. Define
Fi : met → met by

Fi(h)(s, s
′) = max

a∈A
((1 − c)|ras − ras′ |+ cT i

K(h)(P a
i,s, P

a
i,s′ )).

Then
1. Fi has a unique fixed point ρ∗i ; and
2. for any h0 ∈ met, limn→∞(Fi)

n(h0) = ρ∗i .
Note that technically, we have a random mapping here; that is, for each ω in Ω

there is a mapping Fi(ω) from met to itself with fixed point ρ∗i (ω). So each ρ∗i is really
a (not necessarily measurable) mapping from Ω to met. Therefore, when speaking of
convergence of the family {ρ∗i }i∈N, we assume that convergence to be almost surely
or in probability with respect to P

∗. We will omit the explicit use of ω in the rest of
this work for the sake of convenience; however, the reader should make careful note
of its existence.

Thus, the proposed statistical estimates (ρ∗i )i∈N to ρ∗ exist; yet, how do we know
that they actually converge to ρ∗? It is not hard to see that

(5.1) ‖ρ∗i − ρ∗‖ ≤ 2c

1− c
sup

a∈A,s∈S
TK(ρ∗)(P a

i,s, P
a
s ).

Simply note that

|ρ∗i (s, s′)− ρ∗(s, s′)| ≤ cmax
a∈A
|T i

K(ρ∗i )(P
a
i,s, P

a
i,s′ )− TK(ρ∗)(P a

s , P
a
s′)|

≤ cmax
a∈A
|T i

K(ρ∗i )(P
a
i,s, P

a
i,s′ )− T i

K(ρ∗)(P a
i,s, P

a
i,s′)|

+ cmax
a∈A
|TK(ρ∗)(P a

i,s, P
a
i,s′)− TK(ρ∗)(P a

s , P
a
s′)|

≤ c‖ρ∗i − ρ∗‖+ cmax
a∈A

(TK(ρ∗)(P a
i,s, P

a
s ) + TK(ρ∗)(P a

i,s′ , P
a
s′))

≤ c‖ρ∗i − ρ∗‖+ 2c sup
a,s

TK(ρ∗)(P a
i,s, P

a
s ),
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and the result follows. This is where the uniform Glivenko–Cantelli property comes
into play: we would like to use it to show that the quantity on the right-hand side
of inequality (5.1) tends to zero almost surely. Unfortunately, we face a problem
in the form of the supremum over the possibly uncountably infinite set S. While
the uniform Glivenko–Cantelli theorem indeed tells us that empiricals converge in
Kantorovich distance to their measure almost surely for each measure, and even over
all measures almost surely for a countable set of measures, it does not dictate that
all measures converge at the same rate uniformly almost surely. Here compactness
comes to the rescue.

Let U be a countable dense subset of S, and let d be the metric on S. Recall that
ρ∗ is continuous on S×S; in fact, since S is compact we may take ρ∗ to be uniformly
continuous. So for a fixed ε > 0, there is a δc(ε) > 0 such that for any x, y in S, if
d(x, y) < δc(ε), then ρ∗(x, y) < ε. In particular, we have

(5.2) max
a∈A

TK(ρ∗)(P a
x , P

a
y ) ≤

1

c
ρ∗(x, y) <

ε

c
.

Let [−] : S → U be a mapping such that d(s, [s]) < δc(ε) for every s in S and the
image [S] is finite; that this can be done is a consequence of U being dense in S and

S being compact. Next, if μi =
1
i

∑i
j=1 δXj , define [μi] to be 1

i

∑i
j=1 δ[Xj ]. Then for

any μi

(5.3) TK(ρ∗)(μi, [μi]) = min
σ

1

i

i∑
k=1

ρ∗(Xk, [Xσ(k)]) ≤
1

i

i∑
k=1

ρ∗(Xk, [Xk]) < ε.

Now we are ready to proceed. The idea is that we will use statistical estimates
of the probability measures as before; however, this time we will use [−] to shift S to
close-by points in U , thus restricting our calculations to the finite set [S].

Theorem 5.3. Let M = (S,Σ, A, P, r) be an MDP satisfying the conditions in
Definition 3.1, c ∈ (0, 1) be a metric discount factor, i ∈ N, and ε > 0. Further
suppose that S is a compact metric space. Define Fi,ε : met → met by

Fi,ε(h)(s, s
′) = max

a∈A
((1− c)|ra[s] − ra[s′]|+ cT i

K(h)([P a
i,[s]], [P

a
i,[s′]])).

Then
1. Fi,ε has a unique fixed point ρ∗i,ε;
2. for any h0 ∈ met, limn→∞(Fi,ε)

n(h0) = ρ∗i,ε; and
3. ρ∗i,ε converges to ρ∗ as i→∞ and ε→ 0, P-almost surely.

Proof. The first two items once more follow from the Banach fixed-point theorem.
As for the last item, let us show that

(5.4) ‖ρ∗i,ε − ρ∗‖ ≤ 1

1− c

(
2ε(2 + c) + 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u )

)
.
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As in the previous proposition, let us note that

|ρ∗i,ε(s, s′)− ρ∗(s, s′)| ≤ (1− c)max
a∈A

(|ra[s] − ra[s′]| − |ras − ras′ |)

+ cmax
a∈A
|T i

K(ρ∗i,ε)([P
a
i,[s]], [P

a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′)|

≤ max
a∈A

(1− c)|ra[s] − ras |+max
a∈A

(1− c)|ra[s′ ] − ras′ |

+ cmax
a∈A
|T i

K(ρ∗i,ε)([P
a
i,[s]], [P

a
i,[s′]])− T i

K(ρ∗)([P a
i,[s]], [P

a
i,[s′]])|

+ cmax
a∈A
|T i

K(ρ∗)([P a
i,[s]], [P

a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′ )|

≤ ρ∗(s, [s]) + ρ∗(s′, [s′])

+ c‖ρ∗i,ε − ρ∗‖

+ cmax
a∈A
|TK(ρ∗)([P a

i,[s]], [P
a
i,[s′]])− TK(ρ∗)(P a

s , P
a
s′ )|

≤ ρ∗(s, [s]) + ρ∗(s′, [s′]) + c‖ρ∗i,ε − ρ∗‖

+ cmax
a∈A

{
TK(ρ∗)([P a

i,[s]], P
a
i,[s]) + TK(ρ∗)(P a

i,[s], P
a
[s])

+ TK(ρ∗)(P a
[s], P

a
s ) + TK(ρ∗)(P a

s′ , P
a
[s′])

+ TK(ρ∗)(P a
[s′ ], P

a
i,[s′]) + TK(ρ∗)(P a

i,[s′ ], [P
a
i,[s′]])

}
≤ ε+ ε+ c‖ρ∗i,ε − ρ∗‖

+ cmax
a∈A

{
ε+ TK(ρ∗)(P a

i,[s], P
a
[s]) +

ε

c
+

ε

c

+ TK(ρ∗)(P a
[s′ ], P

a
i,[s′]) + ε

}
≤ c‖ρ∗i,ε − ρ∗‖+ 4ε+ 2cε+ 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u ),

and the bound follows immediately. Note that in the fourth inequality we used the
fact that ρ∗ is measurable to replace T i

K by TK , and in the fifth inequality we have
repeatedly made use of inequalities (5.2) and (5.3).

By the uniform Glivenko–Cantelli property, the rightmost term in inequality (5.4)
tends to zero P-almost surely (incidentally, dependent on ε); for, given a finite set U
of measures, we have for a given ε > 0,

P
∗
(
sup
m≥i

sup
μ∈U

TK(ρ∗)(μm, μ) > ε

)
= P

∗
(
sup
μ∈U

sup
m≥i

TK(ρ∗)(μm, μ) > ε

)

≤
∑
μ∈U

P
∗
(
sup
m≥i

TK(ρ∗)(μm, μ) > ε

)

≤ |U| sup
μ

P
∗
(
sup
m≥i

TK(ρ∗)(μm, μ) > ε

)
,
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whence it follows that P
∗(lim supm supμ∈U TK(ρ∗)(μm, μ) > ε) = 0. Since ε is arbi-

trary, we then have P
∗(lim supm supμ∈U TK(ρ∗)(μm, μ) �= 0) = 0. Hence, for every

ε > 0,

(5.5) lim
i→∞

‖ρ∗i,ε − ρ∗‖ ≤ 2ε(2 + c)

1− c

except for a set Nε of P-measure zero. Consider now only rational ε > 0, and let N
be the union of the collection {Nε} over all such ε. Then, save for N , inequality (5.5)
holds for every ε, and N has P-measure zero. So letting ε tend to zero in the same
inequality, we find that ρi,ε converges to ρ∗, as was to be shown.

Let us note that this then is the crucial result: it tells us that we may approximate
ρ∗ through (Fn

i,ε)(⊥), that is, through sampling, discretization, and finite iteration,
and that we need only compute this latter quantity on [S]. More to the point, we may
choose [S] ⊆ U to be finite, since the δ(ε)-balls of U form an open cover of compact
S. We now have the seeds of an algorithm.

6. Towards an algorithm: Representation and choice. We will assume we
are provided with an “effective” representation of the state space S in terms of an
enumeration of a countable dense subset U of S; we will additionally require that a
specific metric d on S be specified as part of the input as a computable function on
U × U . The set of actions is simply a finite set A, and the reward function will be
represented as an A-indexed family of computable functions from U to [0, 1]. All that
remains is to specify the transition probabilities.

How does one represent a probability measure on a continuous space? In the
discrete setting, one of two approaches traditionally suffices: either probabilities can
be specified point-to-point in a probability matrix, or one restricts attention to a
parameterized class of probability mass functions. This latter approach also applies
to Euclidean spaces, where one typically works with probability density functions.
Although one may argue that both approaches can be suitably extended in the setting
of a compact metric space (the interested reader is directed to the works of [22]
and [62]) we will focus on the approach taken by [6].

Let us suppose that (S, d) is supplied with a canonical probability measure μ. We
may then represent transition kernels inducing nonatomic probability measures by an
A-indexed family of product measurable probability density functions, fa : S × S →
[0,∞), such P a

s (M) =
∫
M

fa(s, ·)dμ. We will further suppose that μ(U) = 1 and,
for each a, fa is continuous in the first coordinate and bounded by a μ-integrable
function in the second; it then follows from the dominated convergence theorem that
P a
s is (weakly) continuous in s, and finally, that we need only specify each fa on U×U .

We summarize with the following.
Definition 6.1. A given continuous MDP (S,Σ, A, P, r) with compact metric

space (S, d) will be represented by the sextuple (U, d, μ,A, P, r), where,
• U is an enumeration of a countable dense subset of S;
• the metric d is computable on U × U ;
• μ is a canonical sampling measure on S satisfying μ(U) = 1; and
• P a

s is represented by
� an atomic measure, given by a finite sum of point masses subject to the
continuity constraint; or
� a nonatomic measure, given by a probability density function fa : U ×
U → [0,∞) continuous in the first coordinate, and bounded uniformly
by a μ-integrable function in the second coordinate;

• r is a computable function from U ×A to [0, 1] and continuous on U .
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Lastly, we will assume that for a fixed positive rational ε we can enumerate a
finite database X ⊆ U such that the ε-balls centered at the points of X cover the
entire space. Such an X is called an ε-covering. If X instead satisfies that all of its
points are at least ε apart, then it is called an ε

2 -packing. The ideal situation would
be one in which we can find an X that satisfies both properties; such an X is called
an ε-net.

If a means of enumerating an ε-net for a given problem does not make itself
obvious, then, as noted by [10], an ε-net X can be constructed by the following greedy
algorithm, essentially devised by [33] as an approximation algorithm for finding the
smallest ε such that there is an ε-covering with k members for a given k: given input
ε > 0 and maximum allowable ε-net size k, pick s ∈ U arbitrarily, and set X := {s}.
Then repeat the following: pick an s ∈ U −X that maximizes d(s,X) = min{d(s, x) :
x ∈ X}. If d(s,X) < ε or |X | ≥ k, then stop; otherwise, set X := X ∪ {s}, and
continue. Then X is an ε′-net for some ε′ ≤ ε provided k is large enough; specifically,
ε′ := d(s,X − {s}), where s was the last state to be added to X . If U is finite with
size n = |U |, then this approximation algorithm has worst case running time O(kn)
with ε′ within two times the optimal value.

The only problem in immediately applying this algorithm to the general case of a
countably infinite U is in finding the element s in U that maximizes d(s,X). We can
get around this by sampling according to μ: as suggested in [6], replace the maximum
with the essential-supremum with respect to μ and approximate this via sampling
according to μ and maximizing over the samples, which converges to the essential-
supremum in probability. The resulting heuristic should provide an ample covering of
U with high probability in time O(kI), where I is the maximum number of samples
used in estimating the essential-suprema provided an adequate number of samples is
used. We provide no bound on the number of samples required here; we only note
that there are methods for estimating an ε-net.

Our algorithm then is as follows: given a positive rational ε, enumerate a δc(ε)
cover X . Define [s] to be the nearest neighbor of s in X according to d. Sample the
probability distributions induced by X and use [−] to restrict them to X . Finally,
perform the iteration algorithm on X , as in the finite case. Figure 6.1 provides
pseudocode for estimating distances to within an iteration error of δ for a given ε and
ε-net X .

Theorem 6.2. As in Definition 6.1, let (U, d, μ,A, P, r) be the representation of a
given continuous MDP (S,Σ, A, P, r), where P is represented by the family of density
functions {fa : U × U → [0,∞)}a∈A. Let c ∈ (0, 1) be a metric discount factor, ε > 0
be a discretization parameter, δ be an iteration error, and i be the number of samples
to be used in sampling P . Let X ⊆ U be a finite database that is an ε-cover of S.
Then the algorithm given by the pseudocode in Figure 6.1 computes an approximation
ρ : X ×X → [0, 1] to the bisimulation metric ρ∗ given by Theorem 3.12 in worst case
running time O( ln δ

ln cmn2i3) and with error bounded above by

δ +
2ε(2 + c)

1− c
+

2c

1− c
max

a∈A,x∈X
TK(ρ∗)(P a

i,x, P
a
x ).

The next section is dedicated to verifying the bounds on the running time and
the approximation error, and trying to further provide error estimation guarantees.
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INPUT: finite database X ⊆ U, finite action set A, number of samples i,
reward function r : U × A→ [0, 1], distance function d : U × U → [0,∞),
density functions {fa : U × U → [0,∞)}a∈A, sampling measure μ,
iteration error δ

OUTPUT: distance function ρ : X ×X → [0, 1]

METHODS:
NN(z, d,X) returns nearest neighbor of z in X according to d.
SAMPLE(μ, f) returns element of U sampled independently according to

probability measure induced by μ and density f.
HUNGARIAN ALG(ρ, �x, �y) returns value of minimum-cost assignment for

assignment problem with cost ρ and i-vectors �x and �y from X.

ALGORITHM:
(INITIALIZATION)

For s, s′ = 1 to |X| do
ρ(s, s′)← 0
For a = 1 to |A| do

For j = 1 to i do

z ←SAMPLE(μ, fa(s, ·))
Pa(s, j)←NN(z,X, d)

(MAIN LOOP)

For j = 1 to � ln δ
ln c
� do

For s, s′ = 1 to |X| do
For a = 1 to |A| do

TKa(s, s
′)←HUNGARIAN ALG(ρ, Pa(s, ·), Pa(s

′, ·))
For s, s′ = 1 to |X| do

ρ(s, s′)← maxa((1− c)|r(s, a)− r(s′, a)|+ cTKa(s, s
′))

Fig. 6.1. Pseudocode for estimating bisimulation distances.

7. Estimation error. Let us analyze the error of our approximation algorithm
for the 1-bounded bisimulation metric ρ∗. Recall that we are approximating ρ∗ by
Fn
i,ε(⊥) for large i and n, and small ε. So the approximation error is given by

‖(Fi,ε)
n(⊥)− ρ∗‖ ≤ ‖(Fi,ε)

n(⊥)− ρ∗i,ε‖+ ‖ρ∗i,ε − ρ∗‖ ≤ cn

1− c
‖Fi,ε(⊥)‖+ ‖ρ∗i,ε − ρ∗‖

≤ cn

1− c
(1− c) +

1

1− c

(
2ε(2 + c) + 2c max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u )

)
≤ cn +

2ε(2 + c)

1− c
+

2c

1− c
max

a∈A,u∈[S]
TK(ρ∗)(P a

i,u, P
a
u ).

Let ε∼, ε[−], and let εP denote cn, 2ε(2+c)
1−c , and 2c

1−c maxa∈A,u∈[S] TK(ρ∗)(P a
i,u, P

a
u );

these are, respectively, the bisimilarity, discretization, and sampling errors. In the
next subsections, we will try to bound these to within some prescribed degree of
accuracy.

7.1. Bisimulation error. Bounding the error due to approximating bisimilarity
in n steps is simple enough. Suppose we want this error to be less than δ for some
δ > 0. Choose n = � ln δ

ln c �; then ε∼ = cn ≤ c
ln δ
ln c = eln δ = δ. So we need only iterate

for � ln δ
ln c � steps.
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7.2. Discretization error. In some sense, bounding the discretization error is
hopeless—we need to know how ρ∗ varies with d, and, in general, this is information
that we just do not have. However, there is some hope; recall that what we need is
some way of specifying a δc(ε) so that d(x, y) < δc(ε) implies ρ∗(x, y) < ε. Suppose
we can bound ρ∗ from above by a continuous metric m; define the modified metric
dm to be max(d,m). Then, as d ≤ dm and dm is continuous with respect to d, we
have that dm and d are equivalent metrics; that is, they induce the same topology on
S. Therefore, we could use dm in place of d and simply take δc(ε) to be ε; but how
do we find m? More to the point—as ρ∗ is itself a candidate—how do we find an m
that is easier to compute than ρ∗?

We propose here a heuristic for computing such an m. We cannot hope to bound
the discretization error in computing m owing to the reasons mentioned above; how-
ever, we hope to shift the focus of the discretization error onto how r and P vary with
d. In other words, if we discretize the state space using an ε-net with respect to dm,

then we will be able to set ε[−] =
2ε(2+c)
1−c + εm where εm, the estimation error for dm,

hopefully varies much more closely with d than does ρ∗.
Let ctsm ⊆ lscm denote the space of bounded continuous pseudometrics on S.

Define R ∈ ctsm and the operator T : ctsm → ctsm by

R(x, y) = max
a∈A
|rax − ray | and T (h)(x, y) = max

a∈A
(P a

x ⊗ P a
y )(h),

where μ⊗ν is the product measure of μ and ν. The fact that T (h) is symmetric follows
from the Fubini–Tonelli theorem (see, for example, [29]), which allows one to change
the order of integration in an iterated integral. The fact that T (h) is continuous
for h in ctsm follows from the fact that for separable metric spaces the limit of the
product of weakly converging measures is the product of the limits of those measures:
if μn ⇒ μ and νn ⇒ ν, then μn ⊗ νn ⇒ μ ⊗ ν [4]. We immediately have that for
any h ∈ ctsm, F (h) ≤ (1 − c)R + cT (h), where F is the fixed-point operator for ρ∗.
Finally, we define

m := (1 − c)

∞∑
k=0

ckT k(R).

Note that by comparison with the geometric series (1 − c)
∑∞

k=0 c
k, m converges

absolutely everywhere. Moreover, as the sequence of partial sums belong to ctsm and
converges uniformly to m, m too belongs to ctsm. Now for any x, y, and a, the
monotone convergence theorem tells us that

(P a
x ⊗P a

y )(m) = (P a
x ⊗P a

y )

(
(1− c)

∞∑
k=0

ckT k(R)

)
= (1− c)

∞∑
k=0

ck(P a
x ⊗ P a

y )(T
k(R)).

Hence, taking the maximum over all actions yields T (m) ≤ (1− c)
∑∞

k=0 c
kT k+1(R).

Thus, F (m) ≤ (1− c)R+ cT (m) ≤ (1− c)R+ c(1− c)
∑∞

k=0 c
kT k+1(R) = m, whence

it follows that ρ∗ ≤ m.
Let us assume that we can compute (P a

x ⊗ P a
y )(h) for any computable h, for

example, through numerical integration, sampling, etc. Then we can compute m
for any pair of states by iterating T until cn is less than some prescribed degree
of accuracy and computing the nth partial sum. This, of course, introduces the
additional estimation error εm. Finally, dm can be computed as the maximum of m
and d and can even be taken to be 1-bounded since m is bounded by 1. For example,
we may replace d with the compatible 1-bounded metrics d

1+d or min(1, d).
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7.3. Sampling error. Let us first note that, strictly speaking, the expression
denoted by εP is not solely the error due to sampling, for it is dependent on the
measures indexed by [S]; i.e., it measures error due to discretization as well. In
addition, though this term does tend to zero almost surely, it will be easier in practice
to bound its convergence in probability. Let us suppose we want εP to be less than or
equal to Δ with probability at least 1−α for some small positive constants Δ and α.
Note that

P
∗(εP > Δ) = P

∗
(

max
a∈A,u∈[S]

TK(ρ∗)(P a
i,u, P

a
u ) >

1− c

2c
Δ

)
≤ |A||[S]| sup

a∈A,u∈[S]

P
∗
(
TK(ρ∗)(P a

i,u, P
a
u ) >

1− c

2c
Δ

)
.

Thus, it will suffice to find a uniform Glivenko–Cantelli convergence bound for

(7.1) sup
u∈[S]

P
∗
(
TK(ρ∗)(P a

i,u, P
a
u ) >

1− c

2c
Δ

)
≤ α

|A||[S]| .

The lower bound on the number of samples required to achieve the specified level
of accuracy with the specified probability is known as the sample complexity. A
large number of bounds exist in terms of various notions of dimension: Vapnik–
Chervonenkis-dimension, the fat-shattering dimension, covering numbers [2]; in gen-
eral, a specific bound will depend on the structure of the metric space in question.
As such, we are not able to provide specific bounds for the sample complexity in full
generality. However, as an example, the following asymptotic lower bound for (7.1)
can be obtained from Theorem 3.6 of [1]:

i = O

(
1

ε2

(
β ln2

β

ε
+ ln

1

η

))
,

where ε = 1−c
2c Δ, η = α

|A||[S]| , and β is the fat-shattering dimension of Lip(ρ∗, Cb(S))

with scale ε
24 : for a given class F of [0, 1]-valued functions on S and a given positive real

number γ, one says S′ ⊆ S is γ-shattered by F if there exists a function s : S′ → [0, 1]
such that for every S′′ ⊆ S′ there exists some fS′′ ∈ F that satisfies, for every
x ∈ S′\S′′, fS′′(x) ≤ s(x) − γ, and for every x ∈ S′′, fS′′(x) ≥ s(x) + γ. The
fat-shattering dimension of F at scale γ is the maximum cardinality of a γ-shattered
set.

7.4. Computational complexity. Precise computational complexity results
are difficult to come by owing to the application of this work to general metric spaces.
The particular performance will depend on the structure of a given space—and this
in turn can be represented by a number of proposed measures of metric space di-
mension [10]. However, the previous sections do give an idea of the space and time
requirements in computing distances to a given level of accuracy with a given prob-
ability. A quick glance will tell us that it would be very expensive to attempt to
compute distances to within a very small degree of error with high probability—but
this is none too surprising. Previous work [59] has shown that computing the bisimu-
lation distances for a given finite probabilistic system in tabular form can be done in
polynomial time. In practice we fix the number of samples in our sampling procedure
and sacrifice accuracy for improved running times; that is, for a fixed number of sam-
ples i and a given discretization [−], let n be the number of discretized states in [S],
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and let m be the number of actions; then computing the state-similarity distances to
within a bisimilarity error of δ requires time O( ln δ

ln cmn2i3). In order to see this, let
us refer to the pseudocode in Figure 6.1: in the initialization phase, for every discrete
state and for every action, a sample is obtained, and a nearest neighbor search is per-
formed, i times. Let us assume that sampling takes constant time; then this requires
O(nmi(O(1)+n)) or O(mn2i) steps. In the algorithm’s main loop, we iterate the fol-
lowing procedure for � ln δ

ln c � steps: for every pair of states and for every action, perform
the Hungarian algorithm on their induced empirical probability distributions, taking
O(i3) steps for each pair and leading to a total of O(n2mi3) steps. Then for every
pair of states, a maximization must be performed over the m actions, requiring a total
of O(n2m) steps. So the main loop requires O( ln δ

ln c (mn2i3 + mn2)) or O( ln δ
ln cmn2i3)

steps. The entire algorithm then requires O(mn2i)+O( ln δ
ln cmn2i3) = O( ln δ

ln cmn2i3)
steps. Future algorithmic efficiency, however, will require the imposition of several
structural/representational conditions and learning just how to exploit these.

8. Conclusions. In this paper we have established a robust quantitative ana-
logue of bisimilarity for MDPs with continuous state spaces in the form of a continu-
ous pseudometric on the system states. More important, we have developed a novel
distance-estimation scheme for MDPs with compact metric state spaces, which we
believe permits for the first time metric-based reasoning for continuous probabilistic
systems in practice.

The ability to estimate bisimulation distances for a wide class of continuous sys-
tems provides an invaluable tool for finding solutions to a similarly wide class of
problems. One can compare the performance of several candidate state aggregation
schemes in practice, or one can use the distances themselves to aggregate; in either
case the distances provide meaningful error bounds on the quality of the models.
Equally important, they provide tight error bounds on the quality of solutions ob-
tained from finite approximations through the continuity bounds we’ve obtained on
the optimal value function.

8.1. Related work. This work has its roots in the work of Desharnais et al. [17]
and van Breugel and Worrell [59]. The work of [16, 17], and mainly the thesis of [14],
developed bisimulation metrics for a probabilistic transition model similar to the
MDP, namely, the LMP [5].

Definition 8.1. An LMP is a quadruple

(S,Σ, A, {τa|a ∈ A}),
where

• S is an analytic set of states;
• Σ is the Borel σ-field on S;
• A is a finite set of actions;
• for every a ∈ A, τa : S × Σ → [0, 1] is a stationary subprobability transition
kernel:
� for every X ∈ Σ, τa(·, X) is a measurable function; and
� for every s ∈ S, τa(s, ·) is a subprobability measure.

An LMP can best be thought of here as a continuous state-space MDP, with the
difference being that it allows for subprobability measures and lacks rewards. It is
worth noting that the authors of [14, 16, 17] develop their theory in the slightly more
general setting of analytic spaces.

One may define bisimilarity for an LMP as follows. Recall Definition 3.2. A
bisimulation relation is an equivalence relation R on S that satisfies the following
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property:

sRs′ ⇐⇒ for every a ∈ A and R-closed X ∈ Σ, τa(s,X) = τa(s
′, X).

We say two states are bisimilar if and only if they are related by some bisimulation
relation.

One may also define bisimilarity for LMPs in terms of a modal logic: two states are
bisimilar if and only if they satisfy exactly the same formulas in some fixed logic [5, 14].
This forms the basis for the metrics of [14, 16, 17], which are defined in terms of real-
valued logical expressions. The intuition in moving to metrics is that the bisimilarity
of two states is directly related to the complexity of the simplest formula that can
distinguish them; the “more bisimilar” two states are, the harder it should be to find a
distinguishing formula; hence, such a formula should be necessarily “big.” Of course,
to formalize this one needs to find some quantitative analogue of logical formulas and
satisfaction. One idea of how to do this in the context of a probabilistic framework
comes from [39]:

Classical logic Generalization
Truth values 0,1 Interval [0,1]

Propositional function Measurable function
State Measure

The satisfaction relation |= Integration
∫

The idea is that just as the satisfaction relation maps states and propositional formulas
to truth values, integration maps measures and measurable functions to extended
truth values—values in the closed unit interval [0, 1]. On the basis of these ideas, [14]
developed a class of logical functional expressions that could be evaluated on the state
space of a given LMP to obtain values in the unit interval. A family of bisimulation
metrics is then constructed by calculating the difference of these quantities for a fixed
pair of states across all formulas. Formally, let c ∈ (0, 1], and let Fc be a family of
functional expressions whose syntax is given by the following grammar:

f := 1|min(f, f)|〈a〉f |f � q|�f�q,

where a and q range over A and rationals in [0, 1], respectively. These functional
expressions are evaluated on S as follows:

1(s) = 1,

min(f1, f2)(s) = min(f1(s), f2(s)),

(〈a〉f)(s) = c

∫
S

f(x)τa(s, dx),

(f � q)(s) = max(f(s)− q, 0),

�f�q(s) = min(f(s), q).

Lastly, define dc : S × S → [0, 1] by

dc(s, s′) = sup
f∈Fc

|f(s)− f(s′)|.

Theorem 8.2 (see [14]). For every c in (0, 1], dc is a 1-bounded bisimulation
metric.

In the finite case and with c < 1, Desharnais et al. [16] were able to construct
a decision procedure for computing the metrics to any desired accuracy; one simply
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replaces Fc in the definition above with a specially chosen finite subset of functions.
However, in the general case no algorithm was provided, and it remained unclear
whether or not d1 was computable.

Later on, van Breugel and Worrell [58, 59] worked with a slightly modified version
of these metrics in a categorical setting; they used fixed-point theory in conjunction
with the Kantorovich probably metric to define metrics on LMPs. They were able
to show that the metrics induced by the logical characterization of bisimilarity and
provided by Desharnais et al. [16] coincided with their own fixed-point metrics. Par-
ticularly important was their application of the Kantorovich operator and subsequent
use of network linear programming to develop the first polynomial-time decision pro-
cedure for the metrics in the finite case. In recent years, van Breugel, Sharma, and
Worrell [57] developed both a theoretical framework and a decision procedure for fi-
nite LMP metrics without discounting, that is, for c = 1. Still, no work has been
carried out on estimating distances for general LMPs with continuous state spaces.

In the context of MDPs, a number of methods have been proposed for analyzing
state-similarity. Li, Walsh, and Littman [42], for example, survey a number of state
aggregation techniques for finite MDPs in an attempt to unify the theory of state ab-
straction: these include aggregation of states based on bisimulation, homomorphisms,
value equivalence, and policy equivalence, to name a few. Müller [46] gave an early
sensitivity analysis result in a spirit very similar to our own; he considers abstract
MDPs (with full measurable state and action spaces) in which only the stochastic
transition kernels differ. He then demonstrates continuity of a sort for the optimal
value function with respect to several integral probability metrics. However, these
results are purely of a mathematical nature—no algorithm is provided or even sug-
gested. Goubault-Larrecq [35] introduces a hemimetric (such a function satisfies all
properties of a pseudometric save for symmetry) for simulation in prevision transi-
tion systems, a generalization of probabilistic transitions systems. There the setting
is again continuous state spaces, and the author presents a similar value function
continuity result (Proposition 4 of [35]) to Theorem 3.20 under continuity conditions
similar to those found in Definition 3.1.

In the realm of finite MDPs, several works have analyzed the error in perturbing
the parameters of a given MDP. Dean, Givan, and Leach [12] consider bounded-
parameter MDPs, in which reward and probability parameters are specified by inter-
vals of closed reals, and define ε-homogeneity: a loosening of bisimulation such that all
states in the same equivalence class have reward parameters and probability parame-
ters, with each differing by at most ε. In the paper of Even-Dar and Mansour [23], this
work was expanded upon by considering different norms on the probability parame-
ter in the definition of ε-homogeneity and providing performance results specifically
showing that the quality of an ε-homogeneous partition depended heavily on the norm
in use. More recently, Ortner [48] has expanded upon the notion of ε-homogeneity in
terms of adequate pseudometrics and used these results to analyze finite MDPs under
an average reward optimality criterion.

8.2. Future work. There are many interesting directions possible for future in-
vestigation. Chief among these is the question of whether or not the results appearing
in this work remain valid with less stringent or alternative conditions on the Markov
decision problem parameters. Let us make a few quick remarks on this matter: first,
the work of Desharnais [14] for LMPs provides ample evidence that existence of our
metrics should remain valid in at least analytic spaces. Following along the lines of
Müller [46], we may replace uniform boundedness of rewards with boundedness in
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terms of a bounding “weight” function, which controls the rate at which the functions
grow—this essentially amounts to replacing all uniform norms by weighted uniform
norms in the proofs of this work. Promising work on Kantorovich duality [13] may
allow us to show that the mapping of states to the Kantorovich distance of their in-
duced distributions in Theorem 3.12 is a measurable mapping, thereby allowing us to
remove continuity conditions on the reward and probability parameters, at least in
existence proofs.

There are problem instances where each time step is equally important and dis-
counting is unsuitable; in these cases an average reward optimality criterion [53] is
preferable for finding optimal polices for a given MDP. We conjecture that limc→1 ρ

∗

may yield a bisimulation metric suitable for analyzing average reward Markov decision
problems.

We could also consider applying our work to extensions of bisimilarity. Deshar-
nais et al. [18], for example, utilize weak bisimulation instead of bisimulation when
developing a quantitative notion of state-similarity for a finite probabilistic transition
system: essentially, states are deemed equivalent if they match over a sequence of
transitions, rather than precisely at every step.

An immediate concern is that the algorithm proposed in this work was tested
merely to illustrate its validity; a more extensive investigation will be carried out at
a later stage. In practice, however, MDPs are rarely represented explicitly; instead,
researchers usually work with factored representations [9], wherein the state space is
represented by a family of state variables. Each MDP parameter is then compactly
represented in terms of these variables, for example, through use of dynamic Bayes
nets or multiterminal binary decision diagrams, yielding a compact representation
of an MDP. If metric calculation can be adapted to work solely with the factored
representation, and it is our strong belief that this is the case, then one would expect
a great savings in the performance of such state-similarity algorithms.

Another natural extension is to apply this work to partially observable MDPs
(POMDPs) [37]. A POMDP basically consists of an MDP in which the actual state
of the system is hidden; instead one has a visible set of observations and a probabilistic
observation function. A finite POMDP is a sextuple

(S,A, {ras |s ∈ S, a ∈ A}, {P a
ss′ |s, s′ ∈ S, a ∈ A},Ω, {Oa

so|s,∈ S, o ∈ O, a ∈ A}),

where
• (S,A, {ras |s ∈ S, a ∈ A}, {P a

ss′ |s, s′ ∈ S, a ∈ A}) is a finite MDP;
• Ω is a finite set of observations; and
• for every s ∈ S, o ∈ Ω, and a ∈ A, Oa

so is the probability of observing
observation o after a transition to state s under action a.

Each POMDP induces a continuous state-space MDP from which a solution may be
recovered. This continuous MDP, the belief state MDP, is given by

(B, A, {rab |b ∈ B, a ∈ A}, {P a
bb′ |b, b′ ∈ B, a ∈ A}),

where
• B is the set of belief states on S, where a belief state b is defined to be a
probability distribution on S;
• A is the same set of actions;
• for each b ∈ B, a ∈ A,

rab =
∑
s∈S

ras b(s);
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• for each b, b′ ∈ B, a ∈ A,

P a
bb′ =

∑
o∈Ω

Pr(b′|a, b, o)
∑
s′∈S

Oa
s′o

∑
s∈S

P a
ss′b(s),

where Pr(b′|a, b, o) = 1 if b′ = b(a,b,o) and 0 otherwise, and

b(a,b,o)(s
′) =

Oa
s′o
∑

s∈S P a
ss′b(s)

Pr(o|a, b) ,

with the denominator being calculated as a normalizing constant.
Optimal policies for the belief state MDP are optimal policies for the original POMDP.
In this sense, our results for continuous MDPs would immediately apply; however, a
more direct solution would be preferable.

The most evident use of our metrics is in analyzing state aggregations; however,
the original motivation for a quantitative notion of bisimilarity was to study perfor-
mance properties of a system, specified in terms of a modal logic [16, 14]. In fact,
the original LMP metrics were defined in terms of a real-valued modal logic that
captured properties of the system’s states. Though we have not covered the logical
approach for the continuous case in this work, it should easily be carried over with
only slight modification. Thus, our metrics have a potential use in reasoning about
logical properties of continuous MDPs too.

There has also been some preliminary work on knowledge transfer of policies
in MDPs [52]. The basic idea is that if two MDPs have small overall bisimulation
distance, then how close a policy is to optimality in one model bounds how close it is
to optimality in the other.

Theorem 8.3 (see [52]). Suppose Mi = (Si, A, {rai,s|s ∈ S, a ∈ A}, {P a
i,ss′ |s, s′ ∈

S, a ∈ A}) are two finite MDPs for i = 1, 2, and suppose further there is a mapping
[−] : S1 → S2 specifying for each state in M1 its representative state in M2. Any policy
π2 defined on M2 naturally defines a policy π1on M1 given by π1(s, a) = π2([s], a),
and in this way one can transfer policy π2 from M2 to M1. Let γ and c be value
and metric discount factors in (0, 1), respectively, with γ ≤ c. Let V ∗

1 and V ∗
2 be

the optimal value functions for M1 and M2, respectively. Let ρ∗ be the bisimulation
metric defined on the disjoint union of M1 and M2. Then

‖V π1 − V ∗
1 ‖ ≤ 2max

s∈S1

ρ∗(s, [s]) +
1 + c

1− c
‖V π2 − V ∗

2 ‖.

One could potentially solve a class of MDPs by using the solution to a base MDP,
to which they are all similar, and modifying that policy accordingly.

Finally, it is natural to consider two extensions: models with continuous time and
continuous action spaces. This, in conjunction with the current work on continuous
state spaces, is the subject of ongoing work.
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