SQL: Structured Query Language

HISTORY of SQL
· Proposed by E.F.Codd in his 1970 paper

· Used in System R, IBM’s research relational database in early 1970s-D.D. Chamberlin et al at IBM Research Center, San Jose, California

· Used in Oracle, released in late 1970s

· Incorporated into IBM’s SQL/DS in 1981, and DB2 in 1983

· Also used in Microsoft SQL Server, MySQL, Informix, Sybase, dBase, Paradox, r:Base, FoxPro, and others

STANDARDS

· ANSI and ISO published SQL standards in 1986, called SQL-1

· Minor revision, SQL-89

· Major revision, SQL-2,1992

· SQL-3, multi-part revision, contains SQL:1999, which included object-oriented (OO) facilities, and user defined datatypes (UDTs)

· Most vendors support standard, but have slight variations of their own
COMPONENTS of SQL

· Data definition language - DDL

· Data manipulation language - DML

· Authorization language – grant privileges to users

DDL Commands

CREATE TABLE

CREATE INDEX

ALTER TABLE

RENAME TABLE

DROP TABLE

DROP INDEX

Also – CREATE VIEW
DML commands

SELECT

UPDATE

INSERT

DELETE

UNION

MINUS

Authorization Language

GRANT CONNECT

REVOKE CONNECT

GRANT DBA

REVOKE DBA

SET TRANZACTION READ ONLY

CREATE USER

ALTER USER

DROP USER

DATA TYPES

A TEXT data type is a data type that establishes a field that can store text, or a combination of text and numbers (alphanumeric), but whose numbers are not used for calculations. Examples are phone numbers or e-mail addresses.

In general, text fields can be up to 255 characters, while memo fields can be up to 65,535 characters.

	Data Type
	Synonyms
	Storage Size

	TEXT
	TEXT, TEXT(n), CHAR, CHAR(n), ALPHANUMERIC, ALPHANUMERIC(n), STRING, STRING(n), VARCHAR, VARCHAR(n),
	Up to 255 characters, 2 bytes per character unless compressed

	MEMO
	LONGTEXT, LONGCHAR
	65,535 characters; 2.14 GB if not binary data

With the Microsoft Jet 4.0 database engine, all data for the TEXT data types are now stored in the Unicode 2-byte character representation format. It replaces the Multi-byte Character Set (MBCS) format that was used in previous versions. Although Unicode representation requires more space to store each character, columns with TEXT data types can be defined to automatically compress the data if it is possible to do so.

A NUMERIC data type establishes a field that can store numbers that can be used in calculations. Typically, what sets one NUMERIC type apart from another is the number of bytes used to store the data, which also affects the precision of the number stored in that field. Many of the Jet SQL data types have synonyms that you can use in declaring the data type. Which one you use depends on if the table will remain in a Jet database or if it will be scaled to a database server, such as Microsoft SQL Server. If it will be scaled, you should use the data type declaration that will make the transition the easiest.

Following is a table that lists the basic Jet NUMERIC data types, various synonyms, and the number of bytes allocated for each.

	Data Type
	Synonyms
	Storage Size

	TINYINT
	INTEGER1, BYTE
	1 byte

	SMALLINT
	SHORT, INTEGER2
	2 bytes

	INTEGER
	LONG, INT, INTEGER4
	4 bytes

	REAL
	SINGLE, FLOAT4, IEEESINGLE
	4 bytes

	FLOAT
	DOUBLE, FLOAT8, IEEEDOUBLE, NUMBER
	8 bytes

	DECIMAL
	NUMERIC, DEC
	17 bytes

With the DECIMAL data type, you can also set the precision and scale of the number, example DEC (10, 4). The precision is the total number of digits that the field can contain, while the scale determines how many of those digits can be to the right of the decimal point. For the precision, the default is 18 and the maximum allowed value is 28. For the scale, the default is 0 and the maximum allowed value is 28.

The CURRENCY data type is used to store numeric data that contains up to 15 digits on the left side of the decimal point, and up to 4 digits on the right. It uses 8 bytes of memory for storage, and its only synonym is MONEY.
CREATE TABLE TCURR (Field1 CURRENCY, Field2 MONEY)
The BOOLEAN data types are logical types that result in either True or False values. They use 1 byte of memory for storage, and their synonyms are BIT, LOGICAL, LOGICAL1, and YESNO. A True value is equal to 1 while a False value is equal to 0.
The BINARY data type is used to store a small amount of any type of data in its native, binary format. It uses 1 byte of memory for each character stored, and you can optionally specify the number of bytes to be allocated. If the number of bytes is not specified, it defaults to 510 bytes, which is the maximum number of bytes allowed. Its synonyms are BINARY, VARBINARY, and BINARY VARYING.
The DATETIME data type is used to store date, time, and combination date/time values for the years ranging from 100 to 9999. It uses 8 bytes of memory for storage, and its synonyms are DATE, TIME, DATETIME, and TIMESTAMP.
The COUNTER data type is used to store long integer values that automatically increment whenever a new record is inserted into a table. With the COUNTER data type, you can optionally set a seed value and an increment value. The seed value is the starting value that will be entered in the field the first time a new record is inserted into the table. The increment value is the number that is added to the last counter value to establish the next counter value. If the seed and increment values are not specified, both the seed and increment values default to 1. You can have only one COUNTER field in a table, and the synonyms are COUNTER, AUTOINCREMENT, and IDENTITY.

CREATE TABLE TCOUNTER (FieldCounter COUNTER, Field2 TEXT(10))

CREATE TABLE TAUTOINC (FieldAutoINCR AUTOINCREMENT(10,5), Field2 TEXT(10))
In the second example: the starting value is 10, and the increment is 5

The OLE OBJECT data types are used to store large binary objects such as Word documents or Excel spreadsheets. The number of bytes is not specified, and the maximum size is 2.14 gigabytes. Its synonyms are IMAGE, LONGBINARY, GENERAL, and OLEOBJECT.

CREATE TABLE TOLE (FieldIMAGE IMAGE, FieldLONGBINARY LONGBINARY, FieldGENERAL GENERAL, FieldOLEOBJ OLEOBJECT)
CONSTRAINTS
Usually we use constraints as the way to establish relationships between tables. Constraints can also be used to establish primary keys and referential integrity, and to restrict values that can be inserted into a field.
In general, constraints can be used to preserve the integrity and consistency of the data in your database.

There are two types of constraints: a single-field or field-level constraint, and a multi-field or table-level constraint. Both kinds of constraints can be used in either the CREATE TABLE or the ALTER TABLE statement.

A single-field constraint, also known as a column-level constraint, is declared with the field itself, after the field and data types have been declared. The table-level constraint is declared after all field declarations are done. It concerns one or many fields in the table. Any constraint must have a name.
CREATE TABLE WARD1 (WNbr Integer CONSTRAINT PK_Ward PRIMARY KEY,

WName Text(25),

BedsNbr Byte);
CREATE TABLE NURSING_STAFF1 (

NNbr Byte CONSTRAINT PK_NNbr PRIMARY KEY,

NName Text(25),

Grade Text(15));

CREATE TABLE CONSULTANT1 (Code Single CONSTRAINT PK_Code PRIMARY KEY,

CName Text(25),

Phone Text(12));
CREATE TABLE OPERATION1 (ONbr Number CONSTRAINT PK_ONbr PRIMARY KEY,

Type Text(10),

Descr Text(100));

CREATE TABLE PATIENT1 (PNbr Number CONSTRAINT PK_PNbr PRIMARY KEY,

PName Text(25),

Addr Text(40));
CREATE TABLE WARD_HAS_NURSING1 (NNbr Byte,

WNbr Integer,

DateWN Date,

CONSTRAINT PK_ward_Nurse PRIMARY KEY (NNbr, WNbr, DateWN),

CONSTRAINT FK_ward FOREIGN KEY (WNbr) REFERENCES WARD1(WNbr),

CONSTRAINT FK_nurse FOREIGN KEY (NNbr) REFERENCES NURSING_STAFF1(NNbr));
Constraints can also be used to restrict the allowable values for a field. You can restrict values to NOT NULL or UNIQUE, or you can define a check constraint, which is a type of business rule that can be applied to a field.
CREATE TABLE BOOKS

(

ISBN TEXT(13) CONSTRAINT PK_Books PRIMARY KEY,

TITLE TEXT(100) CONSTRAINT title_u UNIQUE,

PRICE MONEY CONSTRAINT Check_Price CHECK (Price>0)
);

ALTER TABLE

ALTER TABLE BOOKS ADD COLUMN DESCRIPT TEXT (50);

ALTER TABLE BOOKS DROP COLUMN PRICE;

ALTER TABLE BOOKS ADD COLUMN NEWPRICE CURRENCY;

ALTER TABLE BOOKS DROP CONSTRAINT FK_Books

CREATE INDEX

CREATE UNIQUE INDEX TELEPHONE ON PUBLISHERS (PublisherTel DESC, PublisherName ASC) WITH INGNORE NULL;

Create an index that will accelerate the search for the publisher telephone.

· WITH DISALLOW NULL (no null values in the index)

· UNIQUE (distinct values in the index)

· WITH INGNORE NULL (accept null values)
DROP

DROP INDEX TELEPHONE ON PUBLISHERS;

DROP TABLE PUBLISHERS;
Cascading updates and deletions

Constraints can also be used to establish referential integrity between database tables. Having referential integrity means that the data is consistent and uncorrupted. Referential integrity is established when you build a relationship between tables. In addition to establishing referential integrity, you can also ensure that the records in the referenced tables stay in sync by using cascading updates and deletes.
For example, if you delete a Ward from WARD table in HOSPITAL database the client request was that automatically all records concerning that ward should be deleted from the database. Or, if the WNbr of a ward will change we like to have it changed in all tables that contain a record with that code.

To enable cascading updates and deletions, we use the ON UPDATE CASCADE and/or ON DELETE CASCADE keywords in the CONSTRAINT clause. Note that they must be applied to the foreign key.
[image: image1.png]

Right click on the relation/Edit relation; Click on Join type
[image: image2.png]™ Iime.

TablefQuery: Related TablefQuery: K

[wero T Twaro,_vas_parient =

[Wibr = Twibr - Cencel
Join Type,

kL

o« [Enforce Referential Integrity b e
= | ¥ Cascade Update Related Fislds

¥ Cascads Delete Related Records

Relationship Type: | One-To-Hany

3 Properties 2x

@ 1; Only include rows where the joined fields from both tables are
equal,

€ 21 Inchuds ALL records from "WARD' and only thoss records from
'WARD_HAS PATIENT' where the foined fields are equal.

€ 3 Inchuds ALL records from "WARD_HAS_PATIENT"and only
thase records from WARD' where the joned filds are equal,

==

6

