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Member, IEEE , Sabine Süsstrunk, Senior Member, IEEE , Stephen Lin, Member, IEEE ,

and Michael S. Brown, Member, IEEE

Abstract—We present a study of the in-camera image processing through an extensive analysis of more than 10,000 images
from over 30 cameras. The goal of this work is to investigate if image values can be transformed to physically meaningful values,
and if so, when and how this can be done. From our analysis, we found a major limitation of the imaging model employed in
conventional radiometric calibration methods and propose a new in-camera imaging model that fits well with today’s cameras.
With the new model, we present associated calibration procedures that allow us to convert sRGB images back to their original
CCD RAW responses in a manner that is significantly more accurate than any existing methods. Additionally, we show how this
new imaging model can be used to build an image correction application that converts an sRGB input image captured with the
wrong camera settings to an sRGB output image that would have been recorded under the correct settings of a specific camera.

Index Terms—Radiometric calibration, in-camera image processing, gamut mapping, white balance.
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1 INTRODUCTION

M ANY computer vision algorithms assume that cam-
eras are accurate light measuring devices which

capture images that are directly related to the actual scene
radiance. Representative algorithms include photometric
stereo, shape from shading, color constancy, intrinsic image
computation, and high dynamic range imaging. Digital
cameras, however, are much more than light measuring
devices; the imaging pipelines used in digital cameras are
well known to be nonlinear. Moreover, the primary goal of
many cameras is to create visually pleasing pictures rather
than capturing accurate physical descriptions of the scene.

In this paper, we present a study of the in-camera
image processing through an extensive analysis of an image
database collected by capturing images of scenes under
different conditions with over 30 commercial cameras. The
ultimate goal is to investigate if image values can be trans-
formed to physically meaningful values and if so, when and
how this can be done. From our analysis, we found a glaring
limitation in the conventional imaging model employed
to determine the nonlinearities in the imaging pipeline
(i.e. radiometric calibration). In particular, the conventional
radiometric models assume that the irradiance (RAW) to
image intensity (sRGB) transformation is attributed to a
single nonlinear tone-mapping step. However, this tone-
mapping step alone is inadequate to describe saturated col-
ors. As a result, such color values are often mis-interpreted
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by the conventional radiometric calibration methods.
In our analysis, we found that the color mapping compo-

nent which includes gamut mapping [1] has been missing
in previous models of imaging pipeline. In this paper,
we describe how to introduce this step into the imaging
pipeline, together with calibration procedures to estimate
the associated parameters for a given camera model. This
allows us to model the full transformation from RAW to
sRGB with much more accuracy than demonstrated by prior
radiometric calibration techniques.

In addition, we demonstrate how our new imaging
pipeline model can be used to develop a system that
converts an sRGB input image captured with the wrong
settings to an sRGB output image that would have been
recorded under different and correct camera settings. In
essence, our model allows us not only to undo the onboard
image processing, but also to refinish an image in a camera-
specific manner, producing a result that would appear
almost identical to the sRGB output that the camera would
have produced with the new settings. For example, given a
JPEG image (sRGB) taken with a Canon EOS-1D under a
certain white balance and picture style1, we can reproduce
this photograph as it would appear from the same camera
but with a different white balance and picture style. To our
knowledge, this is the first system capable of providing such
camera-specific refinishing abilities. Moreover, with minor
modifications to our approach, we can even allow the user
to produce a photograph using another camera’s settings.

Preliminary findings reported in this paper appeared in

1. Picture style refers to the photofinishing feature of Canon cameras
to produce optimized pictures under specific scenes, such as portrait
and landscape. Other camera manufacturers offer similar photofinishing
styles, e.g. Nikon’s “Image Optimizer” and Sony’s “Creative Style”. For
simplicity, we collectively refer to these functions as picture style.
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[2]. This prior work provides the initial analysis of the
missing gamut mapping step in the in-camera imaging
pipeline. In addition to presenting the new application, this
paper extends the work in [2] in several ways. We present
a more detailed imaging model that factors the in-camera
color transformation into different operations which need
to be separately considered for flexible modeling. We also
present a more robust technique for radial basis function
computation to accurately model the gamut mapping in
cameras. We also expand the applicability of color gamut
mapping calibration, from only cameras that provide RAW
images as in [2] to any camera at all, including point-
and-shoot models that are popular among consumers, and
we also introduce a method to transform colors between
different cameras under arbitrary settings.

The remainder of the paper is organized as follows: we
first discuss related work in Section 2. We then explain
how our database was collected and describe significant
observations from this database in Section 3. We introduce
a new in-camera imaging model in Section 4 and the asso-
ciated calibration procedures in Section 5. An application
of our new framework is developed in Section 6 and the
experimental results are shown in Section 7. We conclude
with a discussion about our findings and future work in
Section 8.

2 PRELIMINARIES AND RELATED WORK

Radiometric calibration is an area in computer vision in
which the goal is to compute the camera response function
(f ) that maps the amount of light collected by each CCD
pixel (irradiance e) to pixel intensities (I) in the output
image:

Ix = f(ex), (1)

where x is the pixel location. Eq. 1 can be extended to deal
with color as follows [3]: Irx

Igx

Ibx

 =

 fr(erx)
fg(egx)
fb(ebx)

 , (2)

ex =

 erx

egx

ebx

 = TEx. (3)

T is a 3 × 3 transformation that captures both the transfor-
mation from the camera’s color space (Ex) to sRGB (ex)
and white balancing.

The radiometric mapping f is almost always nonlinear
due to the design factors built into digital cameras for
a variety of reasons, including compressing the dynamic
range of the imaged scene (tone-mapping), accounting for
nonlinearities in display systems (gamma correction), mim-
icking the response of films, or to create aesthetic effects
[4], [5]. When the response function f is known, the image
intensities can be inverted back to relative scene radiance
values enabling physics-based photometric analysis of the
scene.

2.1 Radiometric Calibration
Conventional radiometric calibration algorithms rely on
multiple images of a scene taken with different exposures.
Assuming constant radiance, which implies constant illu-
mination, a change in intensity is explained by a change in
exposure. Given a pair of images with an exposure ratio
of k′, the response function f is computed by solving
the following equation from intensity values (I , I ′) at
corresponding points:

f−1(I ′x)
f−1(Ix)

= k′. (4)

The main difference among various calibration methods
is the model used to represent the response function. The
existing models for a radiometric response function include
the gamma curve [6], polynomial [7], non-parametric [8],
and PCA based model [9]. Other than the work in [10]
where the color was explained as having the same response
function for all the channels but with different exposure
level per channel, most methods do not deal with color and
compute the response function independently per channel.

While different radiometric calibration methods vary
in either how the response function is modeled and/or
computed, all methods share a common view that it is a
fixed property of a given camera model. In fact, this view
was exploited to compute the radiometric response function
by applying statistical analysis on images downloaded from
the web in [11]. One exception is the work in [12] where
the response function was modeled differently per image
using a probabilistic approach. Another exception is the
recent work in [3] where the goal was to provide an
analysis of the factors that contribute to the color output
of a camera for internet color vision. They proposed a 24-
parameter model to explain the imaging pipeline and the
parameters are iteratively computed using available RAW
data. Through their analysis, they suggest that the color
rendering function f is scene-dependent. They go further to
suggest that fixed nonlinearities per channel/camera as used
in traditional radiometric calibration are often inadequate.

Before moving forward, it is important to clarify the issue
of scene dependency of the in-camera imaging process.
If the process is scene dependent as mentioned in [3],
traditional radiometric calibration would be inadequate and
the only option would be to use single-image based radio-
metric calibration methods [13], [5]. While the single image
calibration algorithms are conceptually the best choice, they
are sometimes unstable because they rely on edge regions,
which are sensitive to noise and may go through further
processing such as sharpening onboard the camera.

There are generally two color rendering strategies with
regards to how digital cameras convert CCD RAW re-
sponses to the final output: the photofinishing model and
the slide or photographic reproduction model [1]. In the
“photofinishing” model, the imaging pipeline varies (possi-
bly in a spatially varying manner) to produce a visually
pleasing image. The auto-mode in cameras will trigger
the photofinishing model as well as the optimizers such
as Dynamic Lighting Optimizer on the Canon EOS550D
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and D-Range Optimizer in Sony α-200. The photographic
reproduction model, on the other hand, uses fixed color
rendering. For most high-end cameras, it is possible to
set the camera in this photographic mode by turning the
camera settings to manual and turning off all settings
pertaining to photofinishing, such as Dynamic Lighting
Optimizer. For the remainder of this paper it is assumed
that the algorithms discussed are intended to work in the
photographic reproduction mode.

2.2 White Balancing and Color Transfer
White balance and color transfer are applications affected
by the imaging model of a camera. White balancing,
or computational color constancy, seeks to estimate the
illumination color of a scene and remove its effects in
the image [14]. Simply put, a white balancing algorithm
aims to make a white object look white in the image
regardless of the scene illumination. Computational color
constancy is inherently an ill-posed problem. As a result,
color constancy algorithms rely on assumptions about the
illumination and/or scene surfaces, such as the grey-world
assumption [15] and retinex theory [16]. Other recent color
constancy methods exploit geometric models of color space
[17], [18] and statistical analysis [19], [20] to recover
illumination color.

The white balancing methods described above may not
be satisfactory if they are applied directly to nonlinear
sRGB images because the image values are nonlinearly
transformed from the linear irradiance (RAW) values. By
modeling the nonlinearities in the imaging process, our
method performs white balancing in the correct domain.
Our work does not propose a white balancing algorithm
itself, but learns what a particular camera does for white
balancing and applies this later to change the white balance
of an image. Besides white balancing, our work also deals
with other color transformations that occur in cameras, e.g.
Canon’s Picture Style, which makes a picture more vivid,
neutral, or colorimetrically faithful to actual colors under
standard daylight conditions.

Another topic related to this paper is color transfer, in
which the colors of an image are modified to match the
color characteristics of another [21]. Color transfer has
been used for various purposes, which include adjusting
color to enhance the harmony among the colors of a pho-
tograph [22], transferring the look of a model photograph
through tone management [23], transferring illumination
using webcam data [24], interactive appearance editing by
model-based navigation [25], and transferring the color of
an image to enhance a desired color theme [26]. Our work
may be viewed as a form of color transfer, but differs from
conventional color transfer techniques in that it specifically
aims to model the color transformations of a given camera
under different settings and apply them for the purpose of
color correction.

3 DATA COLLECTION AND OBSERVATION
For the analysis, we collected more than 10,000 images
from 31 cameras ranging from DSLR cameras to point-

and-shoot cameras. Images were taken in manual mode
under different settings including white balance, aperture,
and shutter speed. The images were also collected under
different lighting conditions: indoor lighting and/or outdoor
cloudy condition. Images are captured three times under
the same condition to check the shutter speed consistency.
RAW images are also saved if the camera supports RAW
and the RAW files are rendered using the software dcraw2.
We additionally use the database in [3] which includes
over 1000 images from 35 cameras. Cameras from most
of the major manufacturers are included as shown in
Fig. 6. Though the cameras used for data collection are not
uniformly distributed among manufacturers, they reflect the
reality of certain manufacturers being more popular than
others.

For cameras with RAW support, both sRGB and RAW
data are recorded. The target objects for our dataset are
two Macbeth ColorChecker charts, specifically a 24-patch
chart and a 140-patch chart. There are several reasons
why these color charts were used for our analysis. First,
since the patches are arranged in a regular grid pattern,
we can automatically extract colors from different patches
with simple registration. Also, measurements from different
pixels within a patch can be averaged to reduce the impact
of image noise on the analysis. Finally, these color charts
include a broad spectrum of colors and different levels
of gray, which facilitate radiometric calibration and color
analysis.

Using the conventional radiometric model, pairs of in-
tensity measurements at corresponding patches in two
differently exposed images constitute all the necessary
information to recover the radiometric response function
of a camera [9]. These pairs can be arranged into a plot
that represents the brightness transfer function (BTF [10]),
which can be formulated from Eq. 4 as

I ′x = τk(Ix) = f(k′f−1(Ix)), (5)

where τk is the BTF, f is the response function, and
k′ is the exposure ratio. The BTF describes how image
intensity changes with respect to an exposure change under
a given response function. If the response function is a fixed
property of a camera and the model in Eq. 1 is valid, the
BTF should be the same for all pairs of images that share
the same exposure ratio regardless of other camera settings
and lighting conditions. Notice that even if we consider the
color transformation in Eq. 3, the BTFs should still remain
the same for the same exposure ratio as long as the color
transformation remains unchanged between images, i.e.:

f−1(I ′cx)
f−1(Icx)

= k′
t′cEx

tcEx
= k′ if tc = t′c. (6)

In the above equation, tc is a row of the color transforma-
tion T that corresponds to the color channel c.

To validate the model in Eq. 1 and the assumption that
the response f is a fixed property of a camera, we compare

2. http://www.cybercom.net/∼dcoffin/dcraw/. We used the command
dcraw -v -D -4 -T.
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Fig. 1: Brightness transfer functions for Nikon D50 and Canon EOS-1D. Each plot includes several BTFs with different exposure
ratios (1.25 and 2.0), different lighting environments (©: outdoors, 4: indoors), and different white balance settings (cloudy and
fluorescent). The key observation from these plots is that the BTFs of sRGB images with the same exposure ratio exhibit a consistent
form aside from outliers and small shifts. For better viewing, please zoom the electronic PDF.

the BTFs of different cameras under different settings.
Representative examples from two cameras are shown in
Fig. 1 for clarity. In the figure, each point represents the
change in brightness for a given patch between the image
pair.

Through our analysis of the database, we made several
key observations, which can also be observed in Fig. 1.
The BTFs of a given camera and exposure ratio exhibit a
consistent shape up to slight shifts and a small number of
measurement outliers. BTFs recorded in the green channel
are generally more stable than in the other channels and
have a smaller amount of outliers. Also, the appearance of
shifts and outliers tends to increase with larger exposure
ratios.

The shifts can be explained with the inconsistency of the
shutter speed. In our experiments, we control the exposure
by changing the shutter speed3, and it is well known that
the shutter speeds of cameras may be imprecise [27]. In
particular, we have found that shutter speeds of cameras
with high shutter-usage count tend to be less accurate, as
observed from measurement inconsistency over repeated
image captures under the same setting. We should note that
we can rule out the illumination change as a cause because
of our illumination monitoring and the consistent BTFs
measured by other cameras under the same conditions. As
these shifts also exist in raw image BTFs, onboard camera
processing can also be ruled out.

We found that some outliers, though having intensity

3. We use shutter speed to control exposure because changing the
aperture could result in spatial variation of irradiance due to vignetting
and depth-of-focus.

Canon EOS 1D Nikon D50

Fig. 2: Positions of color points in the sRGB chromaticity gamut.
Inliers (filled with black) are surrounded by outliers (filled with
white). Outliers (as observed in Fig. 1) are color points with high
saturation levels, and lie close to the boundary of the sRGB gamut.

values well within the dynamic range of the given color
channel, have a 0 or 255 intensity value in at least one of
the other channels. These clipped values at the ends of the
dynamic range do not accurately represent the true scene
irradiance. One significant reason for outliers observed is
that when a camera’s color range extends beyond that of the
sRGB gamut, gamut mapping is needed to convert colors
from outside the sRGB gamut to within the gamut for the
purpose of sRGB representation [1], [28], [29]. As seen
in Fig. 2, we can observe the vast majority of outliers in
our dataset have high color saturation levels and lie close
to the boundary of the sRGB color gamut. This gamut
mapping essentially produces a change in color for points
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Fig. 3: Overview of the new imaging model of Eq. 7 and its application. The parameters of the imaging process for different cameras
and settings including the white balance and the picture style are calibrated using training images (Section 5). An sRGB image under
a certain setting can be transformed to RAW through reverse imaging, and then to another sRGB image under a different setting
through forward imaging using the corresponding parameters (Section 6).

outside the sRGB gamut, and if out-of-gamut colors are
shifted in different ways between different exposures, the
color transformation becomes different (T 6= T′ in Eq. 6)
between the two images. Thus these points become outliers
positioned off from the BTF. This effect of gamut mapping
becomes more significant with larger exposure ratios, since
the out-of-gamut colors need a greater displacement in color
space to move into the sRGB gamut.

To summarize, the observations imply that factors such
as shutter speed inaccuracies and gamut mapping have to
be considered to compute the radiometric response function
accurately. Most importantly, the observations show that
less saturated colors can be modeled with the conventional
radiometric model (Eq. 1) and be linearized accurately.
However, it is shown that the conventional model has
an essential limitation in representing the nonlinear color
mapping in the imaging pipeline and highly saturated colors
will not be linearized accurately with the model in Eq. 1.

4 IN-CAMERA IMAGING MODEL

Based on our observation, we introduce the following
model for the imaging pipeline inside digital cameras,
which is illustrated in Fig. 3. Irx

Igx

Ibx

 =

 fr(erx)
fg(egx)
fb(ebx)

 , where

 erx

egx

ebx

 = h(TsTwEx). (7)

Ex = [Erx, Egx, Ebx]T is the irradiance, which can be
recorded as a RAW image in certain digital cameras4. In our
model, the RAW values are first white balanced by a 3×3
diagonal matrix Tw. Then the white balanced raw values,
defined in the camera’s color space, are transformed to the
linear sRGB space by a 3×3 matrix Ts. Having the linear
transformation decomposed to Tw and Ts allows more
flexibility in designing applications compared to having a
single transformation that combines both factors. Notice
that the white balance Tw could actually be applied at a
different stage to the same effect, e.g. after the color space
transformation Ts and after the function h in Equation 7.
We place white balancing as the first operator in the imag-
ing pipeline based on empirical data from our experiments:
in all cameras that we tested, the order in Eq. 7 yielded the
best results. Next, the nonlinear color gamut function h:R3

→ R3 is applied and then the final image in the nonlinear
sRGB space is computed with the camera response function
f .

A noticeable difference between the new model in Eq. 7
and the conventional model in Eq. 1 is the addition of
color transformations, especially the nonlinear color gamut
mapping function h. In digital cameras, both tone mapping
and gamut mapping are employed to transform the col-
orimetry of the source image to one that produces a visually
pleasing image on the actual reproduction medium [1]. The
tone mapping by the camera response function f aims to
compress the dynamic range of the luminance recorded
from the imaged scene. The gamut mapping (h) acts on
the color itself and brings the colors that are outside the

4. We assume that the raw value Ex is demosaicked (i.e. the color filter
array values are interpolated) and is linearly related to the actual irradiance
as shown in [3]. The RAW BTFs in Fig. 1 also show the linearity of Ex
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sRGB gamut to within the gamut. That is, when a camera’s
color range extends beyond that of the sRGB gamut, gamut
mapping converts colors outside the sRGB gamut to inside
the gamut for the purpose of sRGB representation. The
gamut mapping process is usually nonlinear with greater
transformation of more highly saturated colors near and
beyond the boundary of the gamut. In addition to color
range compression, gamut mapping may also include dif-
ferent transformations for some specific color ranges, e.g.
to make the sky more blue and to make skin tone more
vivid. By incorporating this nonlinear color mapping h in
the pipeline, our model in Eq. 7 describes the in-camera
imaging more accurately than the conventional model. Note
that in our new model, the color space transformation Ts

is fixed per camera model, the white balance parameter Tw

is fixed per white balance setting of a specific camera, and
the response function f and the color mapping h are fixed
per picture style of a camera (Fig. 3).

5 CALIBRATION

Converting a given sRGB image to its RAW representation
requires knowledge of the model parameter values in Eq. 7,
namely of f , Ts, Tw, and h. To calibrate these values,
we assume that we are given a number of training images
taken by the camera under varied settings with different ex-
posures, white balance, and picture styles. We also assume
that the RAW images associated with these training images
are provided as well. For each camera model, we compute
the color space transform Ts, a matrix Tw for each white
balance preset, and f and h per picture style.

5.1 Camera Response Function Estimation

We first compute the camera response function f from a
set of images taken with varying exposures. At first glance,
using a conventional radiometric calibration procedure does
not look feasible due to the presence of h in Eq. 7. However,
for color points (p) that satisfy h(p) = p, the following
equation holds between a pair of image intensity values
varied by the exposure ratio k:

f−1
c (Ic2)/f−1

c (Ic1) = k. (8)

Eq. 8 represents the basic principle of traditional radiomet-
ric calibration methods, and any of them can be used to
compute f . In this paper, we use the method in [4] which
is based on a PCA model of camera responses.

The key is then to find a set of points (p) that satisfy
h(p) = p. In other words, we need to find points that do not
get transformed by the gamut mapping function. Since the
main purpose of the gamut mapping is to bring the color
points outside the gamut into the inside, we assume that
colors with low saturation are not significantly transformed
by the gamut mapping. Therefore, we only use points with a
saturation value (S in HSV color space) below a threshold
(β) to compute the response function. Additionally, points
with 0 or 255 in any of the color channels are rejected as
outliers.

5.2 Color Transformation Matrix Estimation
After computing the camera response function f , we can
convert the image values to linearized sRGB values. Then
the linear color transformation matrices Tw and Ts are
computed also by using the points with low color saturation
that are not affected by the gamut mapping. The white
balance matrix Tw is a diagonal matrix defined per white
balance setting, and the color space transformation matrix
Ts, which aligns the camera’s color space with the sRGB
space, is defined per camera. We compute the Tw’s and
Ts that minimize the following error function:

M∑
i=1

N∑
j=1

∥∥T−1
s Xij −TwiEij

∥∥2
, (9)

where M is the number of white balance settings, N is
the number of color points used for estimation, Xij is the
linearized sRGB values computed from the inverse response
functions (Xij = [f−1

r (Ir,ij), f−1
g (Ig,ij), f−1

b (Ib,ij)]T ),
and Eij denotes the RAW image values (Eij =
[Er,ij , Eg,ij , Eb,ij ]T ) that correspond to Xij .

We note that few camera models such as the Canon
EOS-1D and Nikon 200D provide the white balancing
scale factors for each channel (Tw) in its image metadata
(EXIF). For those cameras, we can compute the color
space transformation Ts just by incorporating Tw from
this metadata into Eq. 9.

5.3 Color Gamut Mapping Function Estimation
With the camera response function f and the linear color
transformations of Tw and Ts computed, the last step in
our calibration procedure is to solve for the color gamut
mapping function h in Eq. 7. The gamut mapping function
is a key element in defining the color characteristics of
a camera. This nonlinear mapping can be vastly different
among cameras as shown in Fig. 4, making colors in one
camera more vivid and colors in another camera look softer.
Designing a single parametric model that can describe
the gamut mapping functions on different camera models
is challenging. We therefore opted for a nonparametric
approach to model the gamut mapping function based
on scatter point interpolation using radial basis functions
(RBFs).

Among several variants of RBFs, we adopt the follow-
ing form [30], [31] to model the inverse gamut mapping
function h−1 :

h−1(X) = p(X) +
N∑

i=1

λiφ(‖X−Xi‖) (10)

where X = [f−1
r (Ir), f−1

g (Ig), f−1
b (Ib)]T , color points Xi

are the control (or center) points of the RBF, and N is
the number of control points. The λi’s are the weights for
the basis function φ, and we chose φ(r) = r as the basis
function. For p(X), we set it as p(X) = cT X̃ where c =
[c1, c2, c3, c4]T and X̃ = [1,XT ]T .

With data from the given sRGB-RAW image pairs and
the computed matrices Tw and Ts, the corresponding
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NikonD40 Normal NikonD40 Vivid CanonEOS1Ds Standard CanonEOS1Ds Landscape
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Fig. 4: (Left) Gamut mapping functions (h) display large variations depending on the mode and the camera. The colors in the map
indicate the color displacement magnitude of the gamut mapping at a specific color (||[r, g, b]T − h([r, g, b]T )||). Interesting to note
is that our estimate of the “Landscape” mode of Canon’s picture style matches the description by Canon: “Landscape expresses hues
from green to blue more vividly than the Standard settings”. (Right) The gamut mapping function is estimated with scatter point
interpolation via radial basis functions. The rings and white arrows show the interpolated color mapping function h and the colored
dots and arrows indicate control points.

instance of a control point X′i is given by X′i = h−1(Xi) =
TsTwEi, where Ei is the RAW value of the control point.
Note that all points regardless of their saturation values are
used in this stage in contrast to the previous steps where
only points with low saturation were used to compute for
f and T’s. From a set of control point pairs (Xi,X′i), the
parameters of the RBF in Eq. 10, λ = [λ1, λ2, ..., λN ]T

and c, are computed as follows [31]:

(
D− 8NπρI P̃

P̃T 04×4

)(
λ
c

)
=
(

P′

04×3

)
, (11)

where D is an N × N matrix with Dij = ‖xi − xj‖, P̃
is an N × 4 matrix with the i-th row being X̃T

i , and P′ is
an N × 3 matrix with the i-th row as X

′T
i . The parameter

ρ balances smoothness of the RBF against fidelity to the
data.

With the computed parameters, the inverse gamut map-
ping at any point (h−1(X)) is evaluated by Eq. 10 (Fig. 4).
The overall performance of the RBF relies on the selection
of the control points. While we could use all possible points
from the training data as control points, this would be
inefficient since the evaluation time grows with the number
of control points. Additionally, a larger number of control
points could also lead to over-fitting. We instead use a
greedy algorithm similar to the one used in [31] to select
a small subset of control points from a large number of
available points that maintains the desired accuracy. The
number of control points used in this work varies from
3000 to 5000. As previously mentioned, the gamut mapping
function h is computed per camera picture style and the
training data set for each picture style contains images
taken from all the white balance settings. Having data from
different white balance settings is necessary to have the
color points well distributed throughout the color space in
the training data. In most of our experiments, we use 70
image pairs per picture style for the training: 7 different
white balance settings with 10 RAW-sRGB pairs per each
setting.

5.4 Calibrating Cameras without RAW support

Thus far, computing the color transformations Tw, Ts,
and h relied on having the associated RAW image for
each sRGB image in the training set. However, there are
many cameras that do not provide RAW images, especially
point-and-shoot cameras. Therefore, a calibration scheme
for cameras without RAW support is necessary to broaden
the applicability of our work.

For those cameras without RAW support, we use a
RAW image of the same scene from another camera as
a reference. In this case, Eq. 7 changes to: erx

egx

ebx

 = h(TsTwTcE′x). (12)

The 3×3 matrix Tc is a transformation that approximates
the transformation between the color space of two different
cameras. E′x contains the RAW values given by the other
camera. For cameras without RAW images, the different
color transformations are combined into one transformation
(Tzi

= TsTwi
Tc), which is computed as the one that

minimizes the following error:

M∑
i=1

N∑
j=1

∥∥T−1
zi

Xij −E′ij
∥∥2
. (13)

After computing the Tzi ’s, the gamut mapping function
h is computed just as explained in Section 5.3. While an
image of a camera cannot be converted back to its own
RAW image with this approach, it can still be transformed
to sRGB images with different settings as described in the
next section.

6 CAMERA SPECIFIC IMAGE TRANSFORMA-
TION

One benefit of our calibration procedure is that we inher-
ently have camera-specific photofinishing information per-
taining to different white-balance and picture style settings.
This allows us to not only revert an sRGB photo back to
RAW, but we can reapply the processing pipeline to refinish
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a photo. An excellent example of when this is useful is
when a photo has been taken under the wrong settings.

Fig. 3 illustrates the procedure for transferring colors
between different settings. Given an input image I taken
under a white balance wi and a picture style pi, a new
image I′ under a new white balance wo and a new picture
style po can be generated with k times the exposure of the
original as follows:

 I ′r
I ′g
I ′b

 =

 fr,po
(e′rx)

fg,po(e
′
gx)

fb,po
(e′bx)

 , where (14)

[
e′rx

e′gx

e′bx

]
= hpo

(
TsTwo

kT−1
wi

T−1
s h−1

pi

([
f−1

r,pi
(Irx)

f−1
g,pi

(Igx)
f−1

b,pi
(Ibx)

]))
.

6.1 Manual Mode

Frequently the wrong settings that ruin a photo are manu-
ally set by the user, in many cases by mistake. For those
images taken under a manual mode, the input settings for
white balance (wi), picture style (pi), and exposure can all
be read from the EXIF data of the input image. The user
then only has to select the exposure and the choices for
white balance and picture style among the camera presets
to correct an image. This correction procedure is intuitive
because the user chooses the output settings just as one
would do when using a camera.

We also provide a feature which enables the user to
change the white balance setting of the output in a contin-
uous manner rather than just selecting from preset options.
The white balance parameters (diagonal elements of Tw)
are associated with color temperature and thus can be or-
dered, e.g. tungsten (3200K), fluorescent (4000K), daylight
(5200K), and cloudy (6000K). The output white balance
parameters (Two

) in Eq. 14 could then be computed by
linear interpolation with respect to either a user supplied
color temperature or user scrolling between preset white
balance settings.

6.2 Auto White Balance Mode

In some cases, one may not like a photograph taken under
the camera’s auto white balance mode and wish to correct
it. The problem with auto-mode images is that it is difficult
to recover the specific settings of the camera from the EXIF
data. Therefore, we cannot determine which white balance
(wi) and picture style (pi) to use for Eq. 14. For the auto-
mode case, we rely on user assistance to convert an image
to another setting. The user can either set the input or the
output setting as he wishes and then tune the other settings
until he is satisfied with the final output image. The user can
choose any of the available picture styles for the camera and
change the white balance setting in a continuous manner
using interpolation as explained previously.

6.3 Camera-to-Camera Transfer

Thus far, we have described how to transform an image
to another image under different settings but from the
same camera. We can extend our framework to transfer
color between different cameras and their settings. One can
imagine such a feature being useful for many applications.
For example, it could be used to compare color differences
between cameras to guide a person planning to purchase a
new camera. It can also be used to align colors of images
from different cameras to create seamless mosaics and
texture maps.

While the information on sensor spectral sensitivity of
the cameras is necessary to accurately compute camera-
to-camera color transfers, we approximate the color space
transformation between the color spaces of two cameras by
a 3×3 matrix Tc. The matrix Tc is computed using two
aligned RAW images (E1,E2) of the same scene, one for
each camera:

Tc = argmin
T

∑
x

‖E2x −TE1x‖2 (15)

Then the color transfer between cameras is achieved
similar to Eq. 14:

 e′rx

e′gx

e′bx

 = hpo

(
TsTwo

TckT−1
wi

T−1
s h−1

pi
z
)
, (16)

z =

 f−1
r,pi

(Irx)
f−1

g,pi
(Igx)

f−1
b,pi

(Ibx)

 .
The transfer matrix Tc between two cameras can also

be computed via transformations to a reference camera:
Tc,1→3 = Tc,1→2Tc,2→3. Note that Tc is inherently in-
cluded in Tz in Section 5.4 and transferring color between
cameras that do not support RAW is not a problem.

7 EXPERIMENTAL RESULTS

7.1 Radiometric Response Function Estimation

We first compare the performance of the response function
estimation (Section 5.1) against the conventional approach
[4] upon which we have built our algorithm.

Fig. 5 shows an example of the outliers detected by our
algorithm and the response functions recovered by the two
methods. Note that the only difference between the two
methods is the existence of the outlier removal procedure.
There is a significant difference in the estimations and
the proposed algorithm for removing the outliers clearly
outperforms on the linearization results.

A few selected inverse response functions computed
using our algorithm for some cameras in our database are
shown in Fig. 6. Note that the responses differ from the
sRGB gamma curve commonly used for linearization in
some color vision work. For a quantitative evaluation of
the response estimation, we use the following measure per
channel to gauge the accuracy of linearization from Eq. 4:
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Fig. 5: A BTF, estimated response function, and linearization
results for the blue channel of Nikon D40 using our radiometric
calibration algorithm with outliers removed and a conventional
method [4]. With our method, the outliers are effectively removed
for more accurate calibration.

δc =

√∑N
n=1

∑
x∈A ||k′nf−1(incx)− f−1(in′cx)||2

N |A|
, (17)

where N is the number of image pairs, A is the set of
all image points, and |A| is the size of the set A. To
compute δ for each camera, we use all available sets of
images in the database for the particular camera, not just the
ones used for calibration. This is to verify that a response
function computed under a specific condition can be used to
accurately linearize images captured under different settings
such as the lighting condition and the white balance setting.

Fig. 6 plots the δ’s for all cameras in the database. We can
see that for many cameras in our database, the image can be
linearized very well with an average error of less than 1%.
Note that outliers were included for the statistics in Fig. 6.
If we exclude outliers from the computation, δ converges
almost to 0 in many cameras. So the δ in Fig. 6 is related to
the amount of outliers, or the degree of color mapping h in
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Fig. 7: Performance of mapping image values to RAW values
(Canon EOS-1D) with different techniques: using the technique
in [3] with the independent polynomial model per channel, using
f and T in Eq. 7 without h, the all-channel 3D polynomial model
in [3], and the new method with h. Using our new model, images
can be mapped back to RAW accurately.

the in-camera image processing. For the cameras with high
δ’s, the gamut mapping is applied to points well within the
sRGB gamut as opposed to other cameras where it applies
only to points close to the boundary of the gamut.

7.2 Color Mapping Function Estimation
Next, we evaluate the performance of the color mapping
function (h) estimation and the overall accuracy of the new
imaging model (Eq. 7). The 3D color mapping functions
(h) for the Nikon D40 and the Canon EOS-1D are shown as
slices in Fig. 4. The results confirm the existence of gamut
mapping in the in-camera imaging process and the need
to include the color mapping function in the radiometric
model. The performance of our new imaging model and its
calibration procedures for converting image values to RAW
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Fig. 8: Mapping images to RAW. Our method for mapping images to RAWs works well for various cameras and scenes. The white
points on the difference maps indicate pixels with a value of 255 in any of the channels which are impossible to linearize. The RMSE’s
for the new method and the conventional method from the top to the bottom are (0.006, 0.008), (0.004, 0.010), (0.003, 0.017), and
(0.003, 0.007). Notice that the errors are high in edges due to demosaicing. For Nikon cameras, the difference in performance between
the new method and the conventional method is not as big as other cameras because the effect of the gamut mapping is not as severe
as the others (see Fig. 7 (a)).

is shown in Fig. 7. In the figure, we compare the results
from four different techniques given a number of sRGB-
RAW image pairs. The first method is the implementation
of the algorithm from [3] where f is modeled as a 6th order
polynomial per channel. The second method computes the
RAW just from f and T, which are computed as described
in Section 5 without the color mapping function h. Next,
we computed f as a 3D polynomial function as described
in [3]. Finally, the last method computes RAW from Eq. 7
with the color mapping function included. As can be seen,
the image can be mapped backed to RAW accurately by
including the color mapping function in the radiometric
model and approximating the mapping function with radial
basis functions. In addition, our results show that in-camera
color manipulation introduces nonlinearities that cannot be
sufficiently modeled by a 3D polynomial function [3].

Fig. 8 shows the results of applying the calibration results
to convert images of real scenes back to RAW responses for
various scenes and cameras. The estimates of RAW images
are compared with the ground truth RAW images. Note that
the estimates are purely from the pre-calibrated values of
f , h, and T and the ground truth RAW images are used
only for evaluation purposes. Using the new model and
the calibration algorithms introduced in Section 5, we can
accurately convert the image values to RAW values even
for the highly saturated colors in the scene.

7.3 Refinishing Examples
Here we show the ability of our approach to refinish
photographs using the extracted parameter settings. For
the sake of comparisons, we compare our method with

Photoshop and a version of our method without gamut
mapping (no h in Eq. 14) in Fig. 9.

For the Photoshop results, we use the Camera RAW
utility and choose the best result either from the auto
white balancing feature or the semi-auto feature in which
we chose a point in the image to be white. As can be
seen from the error maps, our photo refinishing technique
can transfer colors between different settings accurately,
therefore provide a practical method to correct undesired
visual errors in photographs taken with the wrong camera
settings. Meanwhile, the other two methods have difficulties
dealing with the nonlinearities in the imaging process. This
is especially visible in the Canon’s Landscape mode which
is shown to have greater nonlinearity in Fig. 4. More
examples for different cameras are shown in Fig. 10, and
results for point-and-shoot cameras that do not support
RAW (Section 5.4) are shown in Fig. 11. Both cameras
used for Fig. 11 were calibrated using a RAW image from
a Canon EOS1-D, and the results closely approximate the
ground truth.

We should note that correction using Photoshop can yield
visually satisfactory results as can be seen from the second
example of Fig. 11. However, the quality of Photoshop
results is unreliable since it can vary greatly depending on
scene (e.g. distribution of color, especially white and gray
colors) and camera settings. Furthermore, we have found
that Photoshop almost never reproduces accurate camera
specific images as our technique does.

Next, we show examples of transferring colors between
cameras. In Fig. 12, three images of a scene were taken
each with different cameras, namely a Canon EOS-1D,
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Fig. 9: Comparisons of different methods for correcting input images taken under inappropriate settings (WB, picture style). Our photo
refinishing technique recovers images that are very close to the images from the cameras themselves (ground truth) while the technique
without consideration of gamut mapping h and the Photoshop method do not effectively deal with the nonlinearities in the imaging
process. The scale for the error maps is the same for all the error maps shown. The RMSE’s for the new method, the conventional
method, and the Photoshop are (a) (0.02, 0.05, 0.06) and (b) (0.02, 0.1, 0.18).

Sony α-200, and Nikon D40. All the cameras were under
fluorescent white balance and the standard picture style.
Images from these cameras exhibit differences in color,
notably the color of the face and the balloon in the middle.
The second and the third rows of Fig. 12 are the results
of transferring camera colors to the Nikon and Sony,
respectively. As can be seen, the colors from different
cameras can be transferred and matched accurately using
our framework (Section 6.3).

As the last example, we show the result of photofinishing
an image taken under auto white balance. As mentioned
earlier, when a photograph is taken under the auto mode, the
input white balance Twi is unknown and the system relies
on user provided information on the unknown parameter. In
Fig. 13, the user presumes that the image was taken under
“daylight” and the system produces images under different
white balance settings. In the end, using a slightly warmer
color temperature than daylight provides an image more
satisfying than the auto white balanced image (Fig. 13-d).

Our system is implemented in C++ and we have two
implementations for evaluating the RBF gamut mapping
function h (Eq. 10). One implementation evaluates the
RBFs of each image on the fly and takes 30 seconds on

average to compute the color transfer, which includes two
RBF evaluations, one backward (h−1) and one forward (h).
The running time of this implementation can be shortened
by using a fast RBF evaluation method as in [32]. The
other implementation is based on lookup tables which saves
computation time while increasing the amount of memory
usage. The color transfer in this paper only depends on
the color values (RGB) of each point in the image and is
therefore a deterministic process. This allows lookup tables
to be built for both the forward and the inverse process by
sampling the RAW and the sRGB color space and precom-
puting the color transfers for each of the sampled points.
With the lookup tables, photo refinishing takes less than a
second. More results, as well as the database can be found
at www.comp.nus.edu.sg/∼brown/radiometric calibration.

8 DISCUSSION AND FUTURE WORK

We have presented a study of the in-camera image process-
ing through an extensive analysis of a large image database.
One of the key contributions of this paper is identifying the
need for a color (gamut) mapping step in the in-camera im-
age processing model. The inclusion of this step covers the
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Fig. 10: More examples of our photo refinishing using images from a Sony α-200, Canon EOS-1D, and Nikon D200 (from top to
bottom). The ground truth images are actual images from the cameras themselves under the proper settings.
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Fig. 11: Photo refinishing result for a camera (Canon IXUS 860IS)
without the RAW support (see Section 5.4).

limitations present in the conventional imaging model and
calibration methods. By considering color mapping in the
imaging process, we can not only compute the radiometric
response function more accurate than previous approach,
but we can also convert a given sRGB image to RAW

using our calibration scheme. Based on the new model, we
further introduced a new framework for refinishing photos,
which enables one to correct photographs taken with wrong
settings without the associated RAW files.

For the calibration, we relied on a simple assumption
that the colors with low saturation are not affected by
the gamut mapping. With this assumption, the response
function and the linear color space transformations were
first computed by using the points filtered by a threhold
(β) on the color saturation level. While this simple approach
provided satisfying results for our rather controlled dataset
(color charts), a more robust approach based on an iterative
scheme may reduce the reliance on a hard threshold for
more general databases of images.

Note that the color gamut mapping function h may not
be invertible depending on the gamut mapping method em-
ployed by the camera. For instance, many color points will
be mapped to a single color if a camera employs a clipping
strategy. However, we rarely observed such instances in
our experiments (about 0.2% of total observations). When
such instances occurred, we chose the median value as the
control point to approximate the inverse.

While we estimate f and h separately during the calibra-
tion, one could also consider combining the two functions
into a single R3 → R3 function that directly maps white
balanced RAW values to nonlinear sRGB values. In prin-
ciple, the radial basis functions should be able to model
this, however, in our experiments we obtained better results
when we used two separate functions. Our intuition is that
this initial linearization of the RGB space by the function
f reduces the complexity of the color mapping function
h. This allows h to appear smoother and require less
control points for the scatter point interpolation. Modeling
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Fig. 12: Transferring colors between cameras. (a) Original pho-
tographs from three cameras (Canon EOS-1D, Sony α-200, and
Nikon D40) display varying colors. (b) Colors from different
cameras can be matched by using the method described in Section
6.3.
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Fig. 13: (a) Input image taken under auto white balance. (b)-
(d) The user specifies daylight as the input WB and changes the
output WB to different color temperatures. Through this process,
our system can produce an output image with warmer whites in
comparison to the input image.

f separately from h is also desirable since f can be still
computed from multiple images and used for linearization
when RAW images are not available.

Recall that the underlying assumption for this work is
that cameras are operating under the photographic repro-
duction mode, which can be achieved by capturing images
in the manual mode and turning off features for scene
dependent rendering. We did, however, show an instance
of dealing with images taken under auto white balance
with the help of user-assistance. In the future, we plan to
investigate what and how much scene dependent processing
is done in images under the photofinishing mode. The
analysis on the photofinishing mode together with the
analysis done in this paper will suggest a direction for the
internet color vision research [3], [33], [11], [24] in the
future. We also plan to extend our framework to seek a
calibration method that does not require RAW images and
to model cameras outside our calibrated database.
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[2] H. Lin, S. J. Kim, S. Süsstrunk, and M. S. Brown, “Revisiting radio-
metric calibration for color computer vision,” in Proc. International
Conference on Computer Vision, 2011.

[3] A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera
model for internet color vision,” in Proc. British Machine Vision
Conference, 2009.

[4] M. Grossberg and S. Nayar, “Modeling the space of camera response
functions,” IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 26, no. 10, pp. 1272–1282, 2004.

[5] S. Lin and L. Zhang, “Determining the radiometric response function
from a single grayscale image,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2005, pp. 66–73.

[6] S. Mann and R. Picard, “On being ’undigital’ with digital cam-
eras: Extending dynamic range by combining differently exposed
pictures,” in Proc. IS&T 46th annual conference, 1995, pp. 422–
428.

[7] T. Mitsunaga and S. Nayar, “Radiometric self-calibration,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
1999, pp. 374–380.

[8] P. Debevec and J. Malik, “Recovering high dynamic range radiance
maps from photographs,” in Proceedings of SIGGRAPH, 1997, pp.
369–378.

[9] M. Grossberg and S. Nayar, “Determining the camera response from
images: What is knowable?” IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 25, no. 11, pp. 1455–1467, 2003.

[10] S. J. Kim and M. Pollefeys, “Robust radiometric calibration and
vignetting correction,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, vol. 30, no. 4, pp. 562–576, 2008.

[11] S. Kuthirummal, A. Agarwala, D. Goldman, and S. Nayar, “Priors
for large photo collections and what they reveal about cameras,” in
Proc. European Conference on Computer Vision, 2008, pp. 74–86.

[12] C. Pal, R. Szeliski, M. Uyttendaele, and N. Jojic, “Probability models
for high dynamic range imaging,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition, 2004, pp. 173–180.

[13] S. Lin, J. Gu, S. Yamazaki, and H. Shum, “Radiometric calibration
from a single image,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2004, pp. 938–945.

[14] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational
color constancy algorithmspart i: Methodology and experiments with
synthesized data,” IEEE Transaction on Image Processing, vol. 11,
no. 9, pp. 972–984, 2002.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JAN 2012, PREPRINT 14

[15] G. Buchsbaum, “A spatial processor model for object colour per-
ception,” Journal of The Franklin Institute-engineering and Applied
Mathematics, vol. 310, pp. 1–26, 1980.

[16] E. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc.
Am, vol. 61, no. 1, pp. 1–11, 1971.

[17] D. Forsyth, “A novel algorithm for color constancy,” International
Journal of Computer Vision, vol. 5, no. 1, pp. 5–36, 1990.

[18] G. D. Finlayson and S. D. Hordley, “Improving gamut mapping color
constancy,” IEEE Transaction on Image Processing, vol. 9, no. 10,
pp. 1774–1783, 2000.

[19] D. Brainard and W. Freeman, “Bayesian color constancy,” J. Opt,.
Soc. Am, vol. 14, no. 7, pp. 1393–1411, 1997.

[20] A. Gijsenij and T. Gevers, “Color constancy using natural image
statistics,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[21] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color
transfer between images,” IEEE Comput. Graph. Appl., vol. 21, pp.
34–41, 2001.

[22] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu, “Color
harmonization,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH), vol. 25, no. 3, pp. 624–630, 2006.

[23] S. Bae, S. Paris, and F. Durand, “Two-scale tone management for
photographic look,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH), vol. 25, pp. 637–645, 2006.

[24] J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan, “Webcam clip
art: Appearance and illuminant transfer from time-lapse sequences,”
ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia),
vol. 28, no. 5, pp. 131:1–131:10, 2009.

[25] L. Shapira, A. Shamir, and D. Cohen-Or, “Image appearance explo-
ration by model-based navigation,” Comput. Graph. Forum, vol. 28,
no. 2, pp. 629–638, 2009.

[26] B. Wang, Y. Yu, T.-T. Wong, C. Chen, and Y.-Q. Xu, “Data-driven
image color theme enhancement,” ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), vol. 29, no. 6, pp. 146:1–146:10,
December 2010.

[27] P. D. Hiscocks, “Measuring camera shutter speed,” 2010,
http://www.syscompdesign.com/AppNotes/shutter-cal.pdf.

[28] ISO 22028-1:2004, “Photography and graphic technology - extended
colour encodings for digital image storage, manipulation and in-
terchange - Part 1: architecture and requirements,” International
Organization for Standardization, 2004.

[29] J. Morovic and M. R. Luo, “The fundamentals of gamut mapping: A
survey,” Journal of Imaging Science and Technology, vol. 45, no. 3,
pp. 283–290, 2001.

[30] M. D. Buhmann, Radial Basis Functions: Theory and Implementa-
tions. Cambridge University Press, 2003.

[31] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
and B. C. McCallum, “Reconstruction and representation of 3d
objects with radial basis functions,” in Proceedings of SIGGRAPH,
2001, pp. 67–76.

[32] L. Greengard and V. Rokhlin, “A fast algorithm for particle simula-
tions,” J. Comput. Phys., vol. 73, pp. 325–348, 1987.

[33] T. Haber, C. Fuchs, P. Bekaert, H.-P. Seidel, M. Goesele, and
H. Lensch, “Relighting objects from image collections,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
2008, pp. 1–8.

Seon Joo Kim received B.S. and M.S.
from Yonsei University, Seoul, Korea, in
1997 and 2001. He received Ph.D. in com-
puter science from University of North Car-
olina at Chapel Hill in 2008. He currently
holds a joint appointment as an assis-
tant professor at SUNY Korea and a re-
search scientist at CEWIT Korea. His re-
search interests include computer vision,
computer graphics/computational photogra-
phy, and HCI/visualization.

Hai Ting Lin received the B. E. degree in
computer science from the Renmin Univer-
sity of China in 2008. He is pursuing the PhD
degree at the National University of Singa-
pore. His research interests include image
processing, computer vision. He is a student
member of the IEEE.

Zheng Lu received the B.Comp degree in
Computer Science from the National Univer-
sity of Singapore in 2004. He is pursuing
the PhD degree at the National University
of Singapore. His research interests include
computer vision and image/video process-
ing. He is a student member of the IEEE.
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