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Abstract—This paper presents a novel user-assisted approach
to reduce ink-bleed interference found in old manuscripts. The
problem is addressed by first having the user provide simple
examples of foreground ink, ink-bleed, and the manuscript’s
background. From this small amount of user-labeled data, likeli-
hoods of each pixel being foreground, ink-bleed, or background
are computed and used as the data-costs of a dual-layer Markov
Random Field (MRF) that simultaneously labels all pixels in
both the front and back side of the manuscript. This user-assisted
approach produces better results than existing algorithms without
the need for extensive parameter tuning or prior assumptions
about the ink-bleed intensity characteristics.

Our overall application framework is discussed along with
details of the features used in the data-costs, a comparison
between KNN and SVM for likelihood estimation, the dual-layer
MREF formulation with associated inter- and intra-layer costs, and
a comparison of our approach against other ink-bleed reduction
algorithms.

Index Terms—Ink-bleed Reduction, Dual Layer MRF, Docu-
ment Imaging Processing.

I. INTRODUCTION

The work presented in this paper is part of a collaborative ef-
fort with the National Archives of Singapore (NAS). The NAS
houses several hundred volumes of handwritten manuscripts
circa 1820-1860. These manuscripts are British government
ledgers originated from Singapore when it served as one of
the centers of the India-China trade. The vast majority of these
manuscripts suffer from ink-bleed that occurs when ink written
on the document penetrates through the paper to become
visible on the opposite side. Ink-bleed and ink-corrosion of old
documents are serious problems affecting archives worldwide.

The severity and characteristics of ink-bleed, also referred to
as bleed-through, is related to a variety of factors including the
ink’s chemical makeup, the paper’s physical and chemical con-
struction, the amount of ink applied and the paper’s thickness
(both spatially varying), the document’s age, and the amount of
humidity in the environment housing the documents. Figure 1-
(a) shows examples of ink-bleed exhibiting various levels
of severity and intensity characteristics from four different
documents.

The current approach used by the archives to reduce ink-
bleed is to place the document in a chemical wash that in-
discriminately removes ink from the document. This physical
restoration takes an entire month to correct a single bound
volume, requiring all pages to be unbound, washed and dried,
and then rebound. Further drawbacks include risk of damage
to the source material due to handling, potential removal of
lightly written foreground ink, and environmental hazards from
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Fig. 1. (a) Closeup of image regions from different handwritten documents,
circa 1820-1850, suffering from ink-bleed. (b) Our goal is to retain the original
foreground strokes to improve legibility.

harsh solvents. Not surprisingly, a digital solution that operates
on images of the documents is desired as an alternative.

The motivation of our work is to provide a practical
framework to reduce or remove ink-bleed in digital images.
Figure 1-(b) shows examples where ink-bleed has been re-
duced by our system. The manuscripts targeted by our work
exhibit a wide range of ink-bleed characteristics making it
difficult to develop an automated approach that can work on all
inputs. As a result, we have developed a user-assisted approach
where small amounts of training-data are used per input. While
engaging the user is a straight-forward idea, it is a significant
departure from existing approaches in related literature that
all strive for full automation. Our expedite versus automate
strategy was not only acceptable to the archivists working
with these materials, but when likelihood estimates from the
training-data were combined with our Markov Random Field
(MRF) formulation we produced outputs which were superior
to existing approaches.

In this paper, the ink-bleed reduction problem is treated as
classification where image pixels are labeled as either fore-
ground, ink-bleed, or background. This pixel labeling is aided
by a dual-layer MRF with smoothness cost designed to reduce
noise while maintaining foreground strokes in regions where
foreground and ink-bleed overlap. Our approach operates on
a wide-range of ink-bleed and does not require assumptions
about the ink-bleed intensity or extensive parameter tuning.
All necessary components needed for this application are
presented, including input pre-processing to align the front and
back image, collection of the training-data, and the dual-layer
MREF setup with associated data cost and intra- and inter-layer
smoothness cost computations.

A shorter version of this work has appeared in [1] which



focused on the dual layer MRF formulation together with a
K-Nearest Neighbor (KNN) likelihood estimation. A related
paper that discussed this framework in the context of the end
users (i.e. archivist and archive patrons) appeared in [2]. The
work in [2] focused on overall software including the user
interface and post-processing tools useful for manual cleanup.
In this journal version, we expand the work in [1] to provide
more details on the choice of features used in classification
as well as provide a comparison of KNN with support vector
machine (SVM) classification to show that a slight gain in
accuracy can be obtained with SVM. This journal version also
provides more objective experiments via real and synthetic
examples.

The remainder of this paper is organized as follows: section
IT discusses related work; section III provides an overview
of our application framework; section IV-A and section IV-B
discuss feature and classifier selection; section IV-C details
the data-cost computations and dual-layered MRF formulation;
section V presents results including comparisons against other
approaches; section VI provides a discussion and conclusion.

II. RELATED WORK

Some of the previous work addressing ink-bleed focuses
on documents with relatively little ink-bleed interference. In
such cases, the ink-bleed’s intensity is clearly less than the
foreground ink and can often be successfully reduced using
either local or global thresholding techniques (e.g. [3], [4],
[5D.

In this paper we address significantly more complex ink-
bleed that is not suitable for standard thresholding. Similar
types of complex ink-bleed are addressed in Drira et al [6],
which separates foreground from ink-bleed. This approach
works from a single RGB image whose color space is first
reduced to its first two PCA components. Ink-bleed is then
removed by iterative clustering and thresholding based on
the PCA features where the first iteration decomposes the
image into background and non-background regions, and
subsequent iterations decompose the non-background region
into foreground and ink-bleed. Work by Tonazzini et al [7]
targeted complex ink-bleed using blind signal separation via
Independent Component Analysis (ICA) which linearly de-
composes an RGB image into three signals assumed to be
foreground, background, and ink-bleed. This approach also
targeted a single RGB image. Iterative thresholding and source
separation approaches produce good results when the ink-
bleed and foreground have clearly distinguishable graylevel
intensities or RGB signatures. These techniques suffer when
the ink-bleed and foreground have similar intensities as shown
in some of the examples in Figure 1-(a). The iterative-
thresholding technique make a further assumption that the ink-
bleed grayscale intensity on one page is always lighter than
the foreground on the same page, an often invalid assumption.
Wolf [8] used an MRF framework with two hidden fields and
one observation field to separate the foreground and ink-bleed
from either RGB or grayscale images. This approach used
Gaussian functions to model the color distributions of fore-
ground, ink-bleed and background. However, we have found

that a Guassian distribution assumption does not work for
complex cases. The data term of their MRF was defined based
on the clustering results from grayscale features, resulting in
the dark ink-bleed pixels wrongly classified as background.
We note that [6], [7], [8] attempt to reduce ink-bleed via only
a single image which provides limited information.

One way to obtain more information is to use images from
both the front and back side of a document. Sharma [9] demon-
strated a successful two-image ‘show through’ reduction ap-
proach for use in xerox imaging. Show through, however,
assumes global bleeding between the front and back images
where ink-bleed typically varies spatially making ink-bleed
more difficult to model. Tonazzini et al. [10] extended their
blind-source separation approach [7] to operate on grayscale
aligned front and back images and demonstrated its effective-
ness for ink-bleed as well as show through. These approaches
assumed that the ink-bleed was lighter in intensity than the
foreground, limiting its range of input. In [11], Tonazzini
et al. further extended their work by using MRF and ICA.
Similar as in [10], [11] also assumed that the two signals are
mixed by a linear operation, which is not satisfied for the old
documents used in our work. In addition, their MRF was used
to process a single image only.

Tan et al. [12] performed ink-bleed reduction in the wavelet-
domain. These techniques first globally align the front and
back images from which an initial classification of the fore-
ground and ink-bleed strokes was made using the magnitude
of the image difference. Iterative filtering of the wavelet
coefficients is then used to dampen ink-bleed while sharpening
foreground pixels. While this technique produces good results,
six parameters must be tuned per example, including thresh-
olds for the difference-image, the amount of dampening and
sharpening of the wavelet coefficients, the number of wavelet
scale-levels, and the number of iterations. A variation of [12]
was presented by Wang et al. [13] with the assumptions that
the foreground and ink-bleed stokes all slant at 45 and 135
degrees respectively, which is not valid for many images.

Our work is distinguished from previous approaches by
its allowance for user-interaction and our dual layer MRF
formulation. This gives us several key advantages. First, almost
all previous approaches need to make prior assumptions about
the ink-bleed characteristics, namely that ink-bleed intensity is
lighter (i.e. higher intensity) than the foreground, or that the
grayscale intensity/color values of ink-bleed, foreground, and
background follow a parametric distribution, e.g. Gaussian. In
our approach, the ink-bleed characteristics are embedded in the
training data provided by the user and it does not require any
particular parametric model. This allows our approach to work
on a larger range of inputs without assumptions on intensity
profiles. Second, our approach does not require parameter
tuning making it significantly easier to use by the target
users of archives and/or archive patrons who have little to no
knowledge on image processing. Lastly, our MRF framework
helps to reduce errors and maintain foreground stroke integrity
by incorporating spatial information into solution.
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Preprocessing steps of our framework: (a) alignment and (b) markup. (a) Local displacements computed between the front and back images. A

zoomed inset shows front regions (black-crosses) matched to their corresponding locations in the back image (white-crosses). Overlapped image regions with
and without local alignment are shown with 50% opacity. ‘Ghosting’, visible from misalignment, is removed with the local alignment procedure. (b) A simple
painting interface is used for markup and ink-bleed removal. Features such as global and local zoom aid the markup.

III. FRAMEWORK OVERVIEW

In this section, we discuss our overall application frame-
work, including a brief description to our targeted users, input
pre-processing involving front and back image alignment, and
training-data collection via user markup. Details of feature
selection, data cost initilization, and our dual layer MRF are
given in section IV.

A. Application Usage

As mentioned in section I, this work is done in partnership
with the National Archive of Singapore that houses hundreds
of volumes of governmental ledgers, circa 1820-1860, suf-
fering from ink-bleed. Many of these ledgers have already
been imaged to grayscale microfilm while others are imaged
upon request. Our application is intended as a post-processing
tool to ‘cleanup’ the images to make the documents more
legible. While most users are computer-literate, they have little
to no background in computer vision or image processing. The
usage model, and need for ink-bleed reduction, can then be
considered an “as needed basis”. While anecdotal evidence
only, our discussion with other archives suggests that this
usage pattern at the NAS is quite representative of other
national archives. This makes the reliance on user-interaction
in the solution significantly more acceptable than if batch
processing was required. Figure 2-(b) shows the screen shot
of the interface of the application. Our framework first aligns
the front and back images of a document. After this, a paint-
like interface is used to label regions containing foreground,
ink-bleed, and background. From the labeled data, the final
result is computed based on our dual-layer MRF framework.

B. Image Alignment Pre-Processing

Our framework starts with images (~1Kx2K) of the front
and back side of a page. Images obtained from microfilm are
grayscale, while flatbed scans of the original materials are
RGB. The pages in these volumes are typically bound and as a

result are not completely pressed flat when imaged. This non-
planar imaging compounded with small 3D surface variations
that are typical of older documents makes it impossible to
align the front and back images with a single global transform.
While ‘flattening’ techniques can be used to remove these
3D surface variations (e.g. [14], [15], [16], [17]), such
approaches require additional 3D scanning equipment not
available in mainstream imaging setups and cannot be used on
existing microfilmed documents. As a result, a local alignment
procedure in addition to global alignment is needed.

Our approach assumes that the input images are already
coarsely aligned. If the alignment is significantly off (for each
more than 20 pixels), our software tool allows the user to
adjust the back’s images position [2]. From input images, we
first perform an initial global alignment to provide a good
starting point for the local alignment. The global alignment
procedure begins by mirroring the back image. The global
displacement is computed by finding the maximum correlation
score of the front and mirrored back image over a [—20, 20]
pixel range in the horizontal and vertical direction. For our
examples, translational alignment suffices, however, a full
affine alignment could be incorporated if rotation and minor
scale changes are an issue.

Local displacements are computed by dividing the front
image into local windows (60 x 60 for our examples). Cor-
relation is performed between each front image window with
its corresponding back location over a [—10,10] pixel range
in the horizontal and vertical direction. The location of the
maximum correlation score for each window is taken to
be the local displacement. If the maximum score is below
a minimum threshold, it is assumed that there is no local
change. Using the local displacements, thin-plate-spline (TPS)
interpolation [18] is used to warp the back page to align with
the front. Figure 2-(a) shows this local-alignment procedure.
The front and back image regions are shown overlapped with
50% opacity. Ghosting from misalignment is visible when
local alignment is not performed; this is removed after TPS
warping.
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Fig. 3. Comparison of intensity feature and ratio feature. The three columns
show a representative result using the grayscale intensity feature, ratio feature,
and ratio feature combined with the dual layer MRF. The top row shows
the results using KNN as the classifier, and the bottom row uses SVM.
The ratio feature consistently produced better results in our experiments. The
combination with the dual layer MRF further improved the results.

This alignment approach works well when the ink-bleed
interference is sufficiently strong. For inputs where ink-bleed
interference is light, this approach can produce bad results.
Currently, our framework has no mechanism to alert the
user when the alignment has failed, however, for such cases,
existing approaches that operate from a single image are
sufficient to reduce the ink-bleed.

C. Training Data Collection

Our approach requires user assistance in labeling fore-
ground, ink-bleed, and the document’s background. A simple
painting interface is used to draw color-coded strokes on the
front and back images. Features such as local region zooming
are provided to support the markup. Figure 2-(b) shows the
markup of the front image of a document pair. Note that
similar markup will be performed on the back image. Our
interface also has a split-screen mode to allow the user to see
the cursor on the front with its corresponding position on the
opposite image.

IV. CLASSIFICATION

After image alignment and user-markup, the next goal of our
framework is to label each pixel in the image as one of three
classes: Foreground, Ink-bleed and Background, which are
denoted as {F,Z, B} respectively. Our framework comprises
two stages. First, classification techniques such as K-Nearest
Neighbor (KNN) or Support Vector Machine (SVM) are used
for likelihood estimation. Second, we use a dual layer MRF
formulation to label all the pixels in which the data-cost energy
is defined as the likelihood from the KNN or SVM classifiers.
We will refer to our dual layer MRF framework with SVM
and KNN classifiers as DL-MRF-SVM and DL-MRF-KNN
respectively. The details about classification methods and dual
layer MRF are discussed in this section. We begin the section
by first discussing the feature used by our classifiers.

A. Feature Selection

Choosing a good feature is crucial in classification. Our
input are either RGB images (document scans) or grayscale
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Fig. 4. Distributions of the training data in ratio feature space. For better
illustration, we only show the distribution between 0 and 2 given the majority
of training samples are within this range. Three Gaussian functions are used
to model the distributions of the training data from three classes respectively
for visualization(Red: foreground; green: ink-bleed; blue: background.)

images (microfilm). We empirically observed that using the
full RGB color provided no advantage over using grayscale
values alone and therefore we work only with the gray
channel even for RGB images, i.e. we convert RGB images
to grayscale images before further process. Ink-bleed arises
due to interference from the ink on the opposite side of
the document at the same position. Considering that we
have aligned the pixels from the front and back images, one
choice is to use a two dimensional intensity feature {C,,, C}},
where C, and C), are the grayscale intensity values of two
corresponding pixels p and p’ from both sides of an image. We
have also found another good choice is to use the ratio of the
two grayscale intensity values at the same position (referred
to as ratio feature here), i.e., p, = c:,-

Figure 3 shows a representative result that compares
grayscale intensity feature and ratio feature when used by both
KNN and SVM classifier. While we only show a single image
here, this trend was exhibited in all of our input data.

To give some insight into why the ratio feature works well,
we show Figure. 4 that plots the distribution of ratio feature
based on the labeled training data from one image. For better
illustration, we only plot the distribution in the range [0,2]
given that the majority of data falls within this range. We
also use three individual Gaussian functions to model the
distribution of the training data from three classes respectively
(for visualization purposes only). While the samples from the
three classes share some common regions, it is clear that they
are mainly distributed at three different areas in the ratio space,
i.e., foreground data is mainly between zero and one, ink-bleed
data is mainly larger than one, and background data is mainly
around one.

We have tried numerous other features, including full RGB
and ratio of RGB values (for scanned documents), combina-
tions of grayscale intensity and ratio, difference between front
and back, and image gradient information about each pixel. In
the end, ratio of the intensity consistently produced the best
result.



The ratio feature by itself, however, is not completely
sufficient to produce an acceptable result. From the KNN
and SVM results shown in Figure 3, there are remaining
errors. For example some parts of the foreground strokes
are misclassified as background or ink-bleed, and some of
the non-foreground pixels are misclassified as foreground.
This is because the classification methods treat each pixel
independently. We will introduce a dual layer MRF framework
in Section IV-C to enhance the spatial smoothness in which
the data-cost energy is defined as the likelihood from KNN
or SVM classifiers. The results from DL-MRF-SVM and DL-
MRF-KNN are further improved as shown in Figure. 3, as
well as our other experiments.

B. Classifiers

In our approach, the first step is to use the classification
methods to generate the data-cost energy for our MRF. We
consider two well known classifiers KNN and SVM and
compare their effectiveness.

1) K-Nearest Neighbor: KNN classifies each feature vector
according to the class labels of its k nearest neighbors from
training data in feature space. The error rate of the nearest
neighbor classifier is bounded at most twice as many errors as
the optimal Bayes rule classifier [19], under the assumption
that infinite training data are available. However, in our
application, the total number of training samples from the
user annotation is limited. We have directly applied KNN
for classification based on the user labeled training data and
observed that the classification results were not satisfactory. To
overcome this problem, we first use KNN to label the entire
image with the ratio feature, where K is empirically set as the
square root of the size of the user-labeled data. For each class,
we then add the 10% most confident pixels into the training
set. This training-data enlargement procedure is also shown in
Figure 5.

Expanded
Training Samples

Backgroung (Blue)
Foreground (Red)
Ink-Bleed (Green)

User Markup

Fig. 5. The small amount of user-supplied training-data can be further
expanded using highly confident pixels labeled using an initial KNN classifier.
Original markup has been thickened for better visualization.

Based on the enlarged training set, we perform KNN to
classify all the pixels again. To speedup the classification,
we used K-means to cluster the training-data, with cluster
centers of each class represented as {p7 }/2,, {p] }|}2, and

{pB}|N_,. While choosing the optimal number of cluster

centers is an open problem, we empirically set L = M = N
as 10% of the size of the smallest training-set. For each pixel
p, we compute the Euclidean distances between p,, and all the
L + M + N cluster centers and then select the top-K closest
centers where K is set as /L + M + N. The top-K centers are
denoted as{p,,}|X_, and are further divided into three index
sets 77,77 and 72 according to their labels. The distance

between p, and the m-th cluster center p,, is computed by

2
dpm = ||pp— pm||- We also denote d? = Zmin‘”" as the mean
squared distance to the top-K centers. The likelihood of pixel
p to each class is defined as:

Sr = Z exp(—d,, /d>)
menF

Sr o= Y exp(—d,/d}) )
ment

Sy = Y exp(—dy,,/dy).
menB

2) Support Vector Machine: Another classifier applied in
our application is SVM, which has been successfully used in
many applications, such as object recognition, content-based
image retrieval and so on. SVM aims to achieve a minimal
structural risk by simultaneously minimizing the average risk
on the training set (i.e., Empirical Risk) and controlling the
model complexity. For a binary classification task, the decision
function for a test sample p has the following form:

9(p) =Y _ ik (pi, pp) — b, 2)

where p; and p,, are the ratio features of training pixel ¢ and
test pixel p, K (p;, pp) is the value of a kernel function for the
two ratio values, y; is the class label of pixel i (+1 or —1),
«; is the learned weight of the training sample ¢, and b is the
threshold parameter. The training samples with weight a; >
0 are called support vectors. The support vectors and their
corresponding weights are learned using the standard quadratic
programming optimization process or other variations.

In our implementation using libsvm [20], we use the Radial
Basis Kernel, K (z,y) = exp(—v|lz — y||?),y > 0, where
the optimal parameter v is determined by five-fold cross-
validation. To cope with three-class classification task in this
work, we adopt the one-against-rest method by training three
SVMs, in which the training data from one class and the
rest two classes are treated as positive and negative samples
respectively. Each pixel p is classified by the three SVMs using
Eq (2), resulting in three decision values: v7, vg and vf .
Based on the decision values, we can calculate the similarities
(or probabilities) Sz, St and Si by sigmoid function:

1

57 = 1 4 exp(—v])
1

51 = 1+ exp(—v}) ®)
1

Sp =

1+ exp(—v5)’



3) KNN versus SVM: For our application KNN and SVM
produced similar results, with SVM slightly outperforming
KNN. There are pros and cons for using each. As a lazy
learning algorithm, KNN has the advantage of simple im-
plementation without any training process. In addition, KNN
tends to the optimal Bayes rule classifier as the size of the
training sample increases to infinity. The main disadvantage
of KNN is that it can not be generalized too much beyond
the labeled data set, i.e., KNN can not achieve satisfactory
performance when the total number of training data is limited.
To address this problem, we therefore used KNN twice to first
expand the training data and then compute the likelihood based
on the enlarged training data.

As the state-of-the-art classification method, SVM has been
shown (theoretically and empirically) to have excellent gen-
eralization capabilities by minimizing the structural risk. But
a training process is required in SVM for model learning, in
which time-consuming cross-validation is utilized to determine
the optimal parameters (e.g., v in Radial Basis Kernel and
regularization parameter in SVM).

However, both SVM and KNN are used to classify indi-
vidual pixels with no spatial mechanism to enforce spatial
coherency. This results in small noises throughout the result.
In addition, it results in foreground strokes that often appear
broken, especially in regions where foreground and ink-bleed
overlay. To deal with these issues we introduce the following
MRF formulations.

4) Discussion about the Training Data: As shown in Fig. 2,
the user input in our system is very simple. For most of the
whole page images with resolution of ~1Kx2K, 10-15 strokes
of markup as shown in Figure 8 are enough to achieve good
results by employing either KNN or SVM. With less strokes
(e.g., five strokes) provided by the users, the results are slightly
worse for some complex examples, but still acceptable. For
more challenging cases such as the spatial varying images,
the users need to specify the diverse background pixels from
different areas (e.g., one or two strokes from each area) to
achieve better results.

C. Dual Layer Markov Random Field

After classification using only feature values, all pixels can
be formulated as a Markov Random Field (MRF) framework
for labeling using their intrinsic spatial correspondence. To
label each pixel into {F,Z,B}, the task is formulated as
a discrete labeling MRF where each pixel, p is assigned a
label I, where I, € {F,Z,B} (see [21] for details of MRF
formulations). As shown in [21], the optimal label assignment
can be found by minimizing the following energy terms:

E = FE;+ \Es, “4)

where FE; represents the data-cost energy associated with
the likelihoods of assigning an [, to each pixel and FE; is
a smoothness energy based on the MRF’s prior cost for
assigning neighboring pixels different label values. The scalar
weight A\ is to balance the two terms, which is set as one in
our work. While this energy function is standard for all MRFs,
the associated likelihood (data cost) and the prior (smoothness
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Fig. 6. Our MRF network with associated nodes and edges.

Back Image

cost) are unique for each problem. Details of E; are given in
section IV-CI.

Our smoothness term E is composed of intra-layer edge
costs, Vi(lp,1,), that computes the cost of assigning neigh-
boring pixels the labels [, and [; and inter-layer edge costs
(between layer), Va(lp, [,/), that computes the cost of assigning
a label combination to pixel p and its corresponding pixel p’
on the opposite layer. Intra-layer edges are set for both the
front and back image, thus we also have edges Vi(l,,l,)
as shown in Figure 6. Intra-layer edge costs are designed to
encourage consistent labels for neighboring pixels based on
feature likelihoods. The inter-layer edge costs are designed to
avoid invalid label configurations and aid in resolving regions
with overlapping ink. This dual layer combination proves
significantly more effective at maintaining foreground strokes
compared with using the intra-layer alone. Details to £ are
given in section IV-C2.

1) Data Cost Energy E;: The data-cost E,; is defined for
both the front and back image. Only the front is described
here for example. The data-cost term, Ey, for each label is
defined as:

B _ Stz + SB
Bally =F) = 2% (Sr+ S+ Sg)
Sr+Sp
E :I =
ab=1) = 355,75, 58) ®)
Sr+ S
Eq(l,=B) = FTo

2><(S_7-'+SI+SB)'

in which the likelihood values of each pixel are calculated
by KNN or SVM classifier discussed in SectionIV-B. Eq(5)
results in Eq ranging between zero and one, and E4(l, =
F)+ Ed(lp =7)+ Ed(lp =B)=1

2) Smoothness term Eg: As previously stated, the prior
term F; is computed as edge costs within a layer and between
layers, namely:

Eo= Y Villy,lg)+ > Vallply), ©6)

P,gEN p,p'EM

where p,q € N are the within layer edges and p,p’ € M
are the between layer edges. These two terms are weighted
equally.

Intra-Layer Edge Costs: Intra-layer costs are based on the
intensity difference or ratio difference between two intra-layer



neighbors p and q. We define db, = |[p, — pg|| and d5, =
[|Cp, — Cy| as the distance between p and ¢ in terms of ratio
and intensity feature respectively. We normalize df), and dj,, to
range between zero and one. To impose smoothness constraints
in the intra-layer while preserving the edges between different
classes, the intra-layer cost is expressed as:

_ 1
1+ (§pq)*
where &, is defined in the following table:

l

Vi(ly, lq) (N

lp Foreground Ink-Bqleed Background
Foreground 00 g, dpg
Ink-Bleed g, 00 dng
Background dpg g, 00

It is worthwhile to note that we use d;,, to define the intra-
layer cost in Foreground-Background configuration because we
observe that the intensity from the foreground and background
pixels differ more than that of the ratio feature. In other
configurations, we use the default ratio feature. Moreover, if
the neighbors have the same label, we use zero cost to enforce
the smoothness constraint (the three oo in the diagonal cells
result in zero costs).

Inter-Layer Edge Costs: Inter-layer costs, Va(lp,1,), are
defined as:

Ly
lp Foreground Ink-ﬁleed Background
Foreground 0 0 0
Ink-Bleed 0 00 00
Background 0 00 2w

In the above table, we have a conditional constraint for the
Background-Background configuration. We set w as a constant

1if (C, < Ch,, and Cpy < C2,), 0 otherwise, where C,,/
and C2, o are the average intensities of the foreground pixels

labeled by KNN or SVM classifier before MRF procedure in
the front and back images respectively. The background pixels
are usually the brightest pixels in the whole document, thus we
assume that both front and back pixel that have lower intensity
(i.e. darker) are not likely to be a Background-Background
configuration and a small weight of 2 is used as penalization.
We use three infinity penalties in the above table for invalid
configurations. For example, if one pixel is labeled as ink-
bleed, the corresponding pixel in the opposite image can only
be foreground. All other configurations are possible and are
therefore assigned a zero cost.

The only two parameters in our MRF framework are A
and w, which are used to balance two energies and enforce
small penalty for the unlikely Background-Background con-
figuration. In this work, we empirically fix A and w as 1,
and our experiments show that this setting works well on all
the documents with wide spectrum of ink-bleed. It may be
possible to compute the optimal parameters based on the input
images’ intensity profiles, however, this task is currently left
for future work.

3) Minimizing the Objective Function Energy: Several
state-of-the-art energy minimization approaches (see [22]) can

be used to minimize our global objective function stated in
Eq (4). We use the a-expansion move of graph cuts approach
to optimize our energy function (see [23], [24], [25]). The
Middlebury’s MRF code provided by [22] is modified to incor-
porate our dual layer configuration. In all of our experiments,
we find that satisfactory results can be obtained with five
iterations.

V. RESULTS

Experiments are reported using images from the National
Archives of Singapore. For the real images we first show
subjective results on representative ink-bleed examples. We
compare our approach with the representative algorithms in
different approaches, as well as our own approach using only
a single layer of the MRF. Since ground truth is not available
for the real images, an objective evaluation is performed that
counts of the number of Missed, Interfered, and Added words.
In order to provide a ground truth comparison, a synthetic
testcase is used that computes accuracy at pixel level. These
experiments are described in the following.

Note that user-markup varies per example, but it generally
consists of no more than 5 — 15 strokes or points drawn on
both the front and back images.

A. Real examples

1) Subjective Results: Several results on images from the
NAS are shown here. Results shown in this paper have no fur-
ther post-processing of any kind. Pixels labeled as foreground
are shown with the original image intensity, all other pixels
are set to the mean color of the background training samples.

Figure 7 shows sub-regions from two examples that repre-
sent a reasonably diverse range of ink-bleed. Shown are the
original front and back input, results from the single-image
adaptive thresholding approach by Drira et al [6], the two-
image based wavelet domain approach by Tan et al [12], the
KNN approach with single and dual layer MRF (SL-MRF-
KNN and DL-MRF-KNN), the SVM approach with single
and dual layer MRF (SL-MRF-SVM and DL-MRF-SVM).
Figure 8 shows a full-page example with comparisons of
selected regions shown at the bottom.

For all examples, the dual layer approaches DL-MRF-KNN
and DL-MRF-SVM provide much better performance, when
compared with the prior work from single-image adaptive
thresholding and wavelet approach. For the results from the
prior work, we observe that some parts of the foreground
strokes are missing as well as obvious noise, which are the
non-foreground pixels misclassified as foreground by the prior
approaches. The wavelet approach [12] produces good results
in some cases, but requires six-parameters to be tuned per
example in order to obtain the best results.

The results from DL-MRF-KNN and DL-MRF-SVM show
that almost all the foreground strokes are correctly preserved.
In addition, there are less noisy pixels remaining in the image.
We also observe that the DL-MRF-KNN and DL-MRF-SVM
outperform SL-MRF-KNN, and SL-MRF-SVM respectively,
which demonstrates that a single-layer MRF is not sufficient
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Fig. 7. Two representative example pairs showing both the front and back image. The back image is mirrored for clarity. Results are shown for the adaptive
thresholding by Drira et al [6], the Wavelet approach by Tan et al [12], KNN with single layer MRF, KNN with our dual layer MRF, SVM with single layer
MRE, and SVM with dual layer MRF.
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Fig. 8. A full page example (RGB scan) with only the front is shown (top) with the complete user markup. Comparisons with other techniques are shown
for three selected regions. Our dual layer MRF approaches produce the best results.
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Fig. 9. Examples of Missed, Interfered, and Added errors in objective
evaluation using real images. Shown are the input images (top row), examples
that would be categorized as having no error (middle row), and examples of
errors (bottom row).

for ink-bleed reduction. Finally, we observe that DL-MRF-
SVM slightly outperform DL-MRF-KNN, in particular the
foreground strokes in DL-MRF-SVM are thicker resulting in
better preserved foreground strokes.

2) Quantitative Results: As a quantitative evaluation on the
real images, we compute the number of words having errors
observed in the output images.

At a document level two types of errors can occur: 1)
foreground words not detected correctly; 2) ink-bleed or back-
ground words detected as foreground. Sets of words exhibiting
these errors are denoted as W ¥ and W7 respectively, with W
denoting the total number of foreground words in a document.
W can be divided into two groups: Missed and Interfered.
Missed words refer to foreground words that are not classified
as foreground or have large portions missing. Interfered refers
to words where large amounts of the ink-bleed are labeled
incorrectly with the foreground strokes, typically occurring
when ink-bleed overlaps with foreground strokes. W% is
composed of Added words and refers to pixel regions (most
often ink-bleed) that are incorrectly labeled as foreground.
Figure 9 shows examples of these three types of errors.
Following the definitions from Wang et al [12], recall and
precision are defined as:

w-—wt

. . — I
W precision = W—W (8)

recall = W W s 17V B

where W — W' is the correctly recognized (or understood)
words, and W — W Missed 4 J7B ig the total detected words
by the system both correctly and incorrectly '.

Ten results containing more than 1200 words in total were
selected to represent a wide spectrum of ink-bleed. Performing
word-by-word comparison among four different approaches
is a non-trivial task, and great care was taken to be fair
when counting correct and erroneous words. The results are
presented in Figure 10, together with precision and recall for
five front back image pairs (ten images in total), against other
techniques. From a user’s point of view, Missed errors are the
most serious as missing a word can potentially change the
document’s meaning. For some examples, (i.e. trial 2, 8, 9)
the number of missed words are high, however, most of these

In the standard definition of precision, the denominator is
w — WF + WB — W — WM'Lssed _ Wlnterfered + WB. While
interfered words can not be correctly understood by the annotator, they are
still detected as foreground words by the system. Therefore, we do not
subtract WInterfered in the denominator of Eq. (8).

are in fact ‘partially’ missed words, where the word may still
be recognizable as shown in Figure 9.

Given recall and precision, F measure can be used to
evaluate the total performance. According to [26], it is defined

as:

(1 + 3?) x (precision x recall)
Fy=—"% = , ©)
(2 X precision + recall

where ( is the weight to balance the precision and recall.
Considering that it is more intolerable for the users to have a
word missing than to have ink-bleed still remaining, we give
recall more weight than precision. We report the results from
the classical F5 measure in Figure 10, in which g is set as 2,
making recall weighted twice as much as precision.

Again, we observe that dual layer MRF based approaches
(DL-MRF-KNN and DL-MRF-SVM) achieve the best results
in all categories. In addition, DL-MRF-SVM slightly outper-
forms DL-MRF-KNN.

B. Synthetic Experiment

As there is no ground truth for our archival images, we
designed a pair of synthetic images as shown in Figure 11.
Each word has spatially-varying intensity values ranging from
60 — 120, which represents difficult cases from our archival
images. The background is left as white. We observe that the
documents provided by the NAS contain very little noise and
the serious problem is with the ink-bleed. We therefore only
consider ink-bleed in the synthetic images. In our synthetic
images, we exaggerate the variation in intensity within fore-
ground and ink-bleed by generating images with ink-bleed
darker than the foreground in some parts of the image and
lighter than the foreground in other parts of the image.

For every pixel p, its possible ink-bleed intensity Ig is
generated by its opposite pixel p’’s original intensity I7,. As
there is no established model of bleeding process, we simply
assume the severity of II’; is proportional to the darkness of p’,
which means that the darker the pixel is, the more ink it bleeds
to the opposite side. As darker pixels have smaller intensity
values, we use (255 — Ij)) to represent the darkness of the
pixel. Ink-bleed intensity appearing at pixel p is defined as:
Ib =255 — (255—[0,)exp(—(§)") (10)
p p t ’
where ¢ is an intensity threshold that pixels with intensity
below can cause bleed. This is done because light foreground
text does not cause ink-bleed. The term exp(—(%”)”) is a
value in [0, 1] which means the portion of the original darkness
appear in the ink-bleed. n is a parameter which controls the
ink-bleed variation speed. If n is large, when the strokes
become lighter, the ink-bleed is lightened very fast and vice
versa. The intensity of a pixel p in the synthetic image is
defined as:

I, = min(12, %),

(0 (1n
which means if the ink-bleed caused by the back side is lighter
than pixel at front side, the front side will not be affected.
In our experiments, we empirically set £ = 150 and n = 6
and generate the synthetic images shown in Figure 11. Al-

though this model may not perfectly describe the real ink-bleed



Algorithm Trial Trial Trial Trail Trail Trail Trail Trail Trail Trail Averages
1 2 3 4 5 6 7 8 9 10 >
it of 171 141 121 115 110 109 124 112 115 126
words
Missed 44 66 4 12 7 7 8 40 9 23 Recall 69.16%
Adaptive Interfered 18 18 7 12 17 9 13 17 40 22 Precision  86.67%
Added 4 17 9 19 8 0 0 21 31 13 F, Measure 72.07%
Missed 4 9 3 19 12 20 7 28 44 22 Recall 74.03%
Wavelet Interfered 64 68 2 7 0 3 0 6 8 10 Precision  94.16%
Added 9 21 0 2 0 0 0 5 6 9 F, Measure 77.34%
Missed 7 54 9 13 22 33 7 37 46 22 Recall 76.23%
SL-MRF-KNN Interfered 17 7 2 3 2 0 6 1 3 1 Precision  97.72%
Added 3 4 1 4 0 0 0 0 4 6 F, Measure 79.74%
Missed 4 33 2 7 8 9 3 17 17 7 Recall 87.31%
DL-MRF-KNN Interfered | 10 8 5 2 0 0 4 4 9 10 Precision  98.03%
Added 3 5 2 1 0 0 0 0 6 5 F, Measure 89.26%
Missed 5 66 7 19 25 34 13 48 34 40 Recall 75.11%
SL-MRF-SVM Interfered 7 0 1 1 0 0 0 0 2 1 Precision  99.21%
Added 2 0 0 0 0 0 1 0 1 4 F, Measure 78.95%
Missed 2 24 3 4 9 10 0 14 14 9 Recall 90.36%
DL-MRF-SVM Interfered 5 5 1 4 0 0 5 2 4 6 Precision  98.57%
Added 1 3 0 1 0 0 6 0 1 5 F, Measure 91.89%

Fig. 10. The number of Missed, Interfered, and Added words resulting from the following approaches: single-image adaptive thresholding [6], the two-image
wavelet-based approach [12], the SL-MRF-KNN, DL-MRF-KNN, SL-MRF-SVM, and DL-MRF-SVM.(See text for details and examples of Missed, Interfered,

and Added words).

process, we believe it generates a reasonable (and challenging)
synthetic example for testing.

1) Subjective Results: The results in Figure 11 show our
dual layer MRF approaches outperform other techniques.
Portions of the foreground strokes are lost using Drira et al [6]
while they are broken using Tan et al [12]. On the other hand,
our dual layer MRF works well using either KNN or SVM.

2) Quantitative Results: For objective evaluation, we define
precision and recall similarly to those in Section V-A2 on pixel
basis. Then there are only two error scenarios: (1) foreground
pixels mislabeled as ink-bleed or background and (2) ink-bleed
or background pixels that are mislabeled as foreground, which
are denoted as P¥" and PP respectively. Based on the ground
truth, the correctly detected foreground pixels are denoted as
P — PF. We also denote the total number of foreground pixels
in ground truth as P. Precision and recall at pixel level are
defined as:

p—pF
P—PFypPB>

pP—pF

P (12)

recall =

precision =

Figure 12 shows the quantitative evaluations on the results
of synthetic images. Both KNN with dual layer MRF and
SVM with dual layer MRF outperform other techniques in
terms of both precision and recall. Note that in the pixel-level
evaluation, P — P¥" is used to represent the correctly detected
foreground pixels, which can be easily determined by using
the ground truth.

C. Result Discussion

As with any system that relies on user input, the user needs
to provide enough training data that represent the variations
within each class. For most cases in our experiments, 10-15
dots and stokes are enough for an entire page as shown in
Figure 8. Note the non-geometric damage such as the water
stain in Figure 8 can also be eliminated if the user marks
some pixels in the water stain regions as background. If there
is spatial varying foreground or ink-bleed in the image, it is
better for the user to give markups covering the whole range

of every class. For example, if there are both light and dark
foreground strokes on the same page, marking one stroke for
each type as foreground would be enough. Even if there is
spatial variation in the image, 4-5 markup strokes for each
class are enough to cover all the variation.

Considering the processing time is image dependent, we
tested 10 pairs of images with size 1K x 1K on a 2.67GHz
multi-core CPU and computed the average time to process an
image pair. For adaptive thresholding [6], it takes around 4.8
seconds to process a pair. The wavelet based approach [12]
takes around 29.9 seconds. For our approaches, on average it
takes 167.9 seconds for SL-MRF-KNN and 187.1 seconds for
DL-MRF-KNN, 147.2 seconds for SL-MRF-SVM and 165.0
seconds for DL-MRF-SVM. Although adaptive thresholding
is very fast, the results are not satisfactory. While our method
seems slower than wavelet based approach [12], we note that
in our experience the wavelet based approach [12] requires
several attempts at tuning the six parameters. Thus, we believe
our processing times are acceptable in this application given
the alternatives.

VI. DISCUSSION AND CONCLUSION

Our results demonstrate that our DL-MRF-SVM and DL-
MRF-KNN can generate results superior to previous ap-
proaches. As discussed in Section II one key reason for this
improved performance is our allowance of user-interaction in
the application framework which avoids the need for assump-
tions about ink-bleed characteristics. Furthermore, our MRF
formulation helps to enforce spatial coherency and disallow
invalid configurations in the final results.

As to the exact amount of markup needed, this of course
differs from input to input. In addition, different markup can
produce similar results. As with other supervised learning
approaches, our approach does assume that the user labeled
data is correct. Validation techniques can be used to help throw
out outliers in the event of erroneous user markup especially
along the boundary of foreground and ink-bleed strokes.

In conclusion, we have presented a novel user-assisted
framework for reducing ink-bleed. Our framework falls within
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Fig. 11. A synthetic example. Synthetically generated images and simulated ink-bleed (top row),
row), and our DL-MRF-KNN and DL-MRF-SVM (bottom row).
Adaptive Wavelet DL-MRF-KNN | DL-MRF-SVM
Front | Back | Front | Back | Front | Back | Front | Back
Precision 73.44 | 74.29 | 88.96 | 87.64 | 99.51 | 99.60 | 99.15 | 98.52
Recall 57.22 1 73.12 | 80.97 | 81.51 | 99.13 | 99.00 | 99.63 | 99.80
Average Precision 73.87 88.30 99.56 98.84
Average Recall 65.17 81.24 99.07 99.72
F, Measure 66.67 82.56 99.17 99.54

Fig. 12.

the recent trend of so called “interactive computer vision”,
where problems that are too hard to automate, or ill-posed,
are aided with the user’s help. By combining KNN and SVM
likelihood computations together with our dual layer MRF
we are able to produce results superior to previous work. We
believe this framework provides a practical approach to ink-
bleed removal that can target a wide range of examples and
is suitable for use in a real-world setting.
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