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Abstract— This paper addresses how to model and correct
image blur that arises when a camera undergoes ego motion
while observing a distant scene. In particular, we discuss how
the blurred image can be modeled as an integration of the clear
scene under a sequence of planar projective transformations (i.e.
homographies) that describe the camera’s path. This projective
motion path blur model is more effective at modeling the spatially
varying motion blur exhibited by ego motion than conventional
methods based on space-invariant blur kernels. To correct the
blurred image, we describe how to modify the Richardson-Lucy
(RL) algorithm to incorporate this new blur model. In addition,
we show that our projective motion RL algorithm can incorporate
state-of-the-art regularization priors to improve the deblurred
results. The projective motion path blur model along with the
modified RL algorithm is detailed together with experimental
results demonstrating its overall effectiveness. Statistical analysis
on the algorithm’s convergence properties and robustness to noise
is also provided.

. INTRODUCTION

Motion blur from camera ego motion is an artifact in pho-
tography caused by the relative motion between the camera a
an imaged scene during exposure. Assuming a static and dista
scene, and ignoring the effects of defocus and lens aberratiof
each point in the blurred image can be modeled as the convoluti
of the unblurred image by a point spread function (PSF) tha
describes the relative motion trajectory at that point’'s position
The aim of image deblurring is to reverse this convolution process (C)RMS: 10.3517 (d) Ground truth

to recover the clear image of the scene from the captured quE%. 1. (a) An image degraded by spatially varying motion blur due to

image as shown in Figl_"re 1 o ) ) camera ego motion. (b) The result from our basic algorithm. (c) Our result
A common assumption in existing motion deblurring algowith added regularization. (d) Ground truth image. TR&/ S errors are also

rithms is that the motion PSF is spatially invariant. This implieghown below each image.

that all pixels are convolved with the same motion blur kernel.

However, as recently discussed by Lewnal. [17] this global

PSF assumption is typically invalid. In their experiments, imagé&ggions, or worse, a separate blur kernel per pixel. However,

taken with camera shake exhibited notable amounts of rotatibacause our approach is not based on convolution with an explicit

that causes spatially varying motion blur within the imageP?SF, it has no apparent frequency domain equivalent. One of the

Figure 2 shows a photograph that illustrates this effect. Aska&y contributions of this paper is to show how our blur model

result, Levinet al. [17] advocated the need for a better motiorgan be used to extend the conventional pixel-donfRaghardson-

blur model as well as image priors to impose on the deblurrédicy (RL) deblurring algorithm. We refer to this modified RL

results. In this paper, we address the former issue by introducialgorithm as theprojective motion Richardson-Lucy algorithm.

a new and compact motion blur model that is able to descriémilar to the conventional RL deblurring, regularization based

spatially varying motion blur caused by a camera undergoing ego various priors can be incorporated in our algorithm.

motion. Our paper is focused on developing the projective motion
We refer to our blur model as thprojective motion blur  blur model and the associated RL algorithm. We assume that

model as it represents the degraded image as an integrationtled motion path of the camera is known and that the camera’s

the clear scene under a sequence of planar projective transformetion satisfies our projective motion blur model. Recent methods

Figure 3 shows a diagram of this representation. One key benefeful in estimating the projective motion path are discussed in

of this model is that it is better suited to represent camera e§ection VI. As with other camera shake deblurring approaches,

motion than the conventional kernel-based PSF parameterizatioa assume that the scene is distant and and void of moving

that would require the image to be segmented into uniform blobjects.




Blur image

Fig. 3. Our input image is considered the integration of angenacene
under projective motion.

Fig. 2. This example demonstrates the spatially varyingreatfi camera ) ] ] )
shake (a similar example was shown in [31]). The motion paths of tte&ddressed motion blur from a moving camera by first using a log-

saturated point light sources (shown zoomed-in) represent the PSF at varige$ar transform to transform the image such that the blur could be
locations in the image. It is clear that the PSFs are not uniform in appearan8§pressed as a spatially invariant PSF. The range of motion that
could be addressed was limited to rotation and translation. When

The remainder of this paper is organized as follows: Sectiongdfdressing moving objects, the input image can be segmented
discusses related work; Section Il details our motion blur modef!t® Multiple regions each with a constant PSF as demonstrated
Section IV derives the projective motion Richardson-Lucy ey Levin [15], Bardsle_yat al. [2], Choetal. [7] and Liet al. [18].
convolution algorithm; Section V describes how to incorporat%uch segmented reglor_ls, hovyever, should t_)e small _to make_ the
regularization into our modified RL deconvolution algorithm WitH:ons.tant PSF assumptlon.vahd for the Spa“a”Y varying motion
implementation details; Section VI discusses potential methoB&! in camera shake motion. For example, al. [27], [28]
that can be used to estimate the projective motion path; sg&tended the hybrid camera framework used by Ben-Ezra and
tion VIl provides analysis of the convergence properties of ot@yar [4] to estimate a PSF per pixel using an auxiliary video
algorithm, its sensitivity to noise, and comparisons against otHfeg@mera. This need for a per-pixel PSF revealed the futility of

approaches. A discussion and summary of this work is presenf@&’ing on the conventional kernel based PSF model for spatially
in Section VIII. varying blur due to ego motion.

The impetus of this work is to introduce a better blur model
for camera ego motion. While this paper was under review, the

utility of this projective motion path model has already been

Existing work targeting image blur due to camera ego motiQimonstrated by Tait al. [29] for deblurring moving objects and

has assumed a global PSF for the entire image. When the blur RSE; o [19] for generating sharp panoramas from motion blurred

is known, or can be estimated, well-known debluring algorithr‘r]Fnage sequences. In addition, Whyeal. [31] simultaneously

such as Richardson-Lucy [22], [20] and Wiener filter [32] can b ohosed a similar blur formulation and correction algorithm.

applied to deblur the image. Due to poor kernel estimation, Qfhije their work focuses on rotational motion about the camera’s
convolution with PSFs that result in unrecoverable frequenmq_.?ptical center. the formulation of their motion blur model is
these conventional deblurring algorithms can introduce undgantical to ou’rs

c .

sirable artifacts in the deblurred result such as “ringing” an
amplification of image noise.

Consequently, research addressing image deblurring, includinq . . .

camera shake and other types of blur, typically target either blur" th_'s sectpn, we desc_rlbe our bll." model b"?‘SEd on a pI_anar
kernel estimation or ways to regularize the final result, or botR.roJeCtlve mot_lon path. This _model W'.” be used in the following
For example, Deyet al. [10] and Chan and Wong [6] utilized section to derive the deplurr!ng algorlthm. . . .
total variation regularization to help ameliorate ringing and noise In photography, the pixel intensity of an image is determined

artifacts. Fergust al. [11] demonstrated how to use a variationa y the amount of light received by the imaging sensor over the

Il. RELATED WORK

Ill. THE PROJECTIVEMOTION BLUR MODEL

Bayesian approach combined with gradient-domain statistics ©POSU"® time:
estimate a more accurate PSF. Rask@ml. [21], [1] coded T N
the exposure to make the PSF more suitable for deconvolution. I(z) :/o SI(z,tydt = Al(w,t;), 1)

Jia [13] demonstrated how to use an object’s alpha matte to better i=1

compute the PSF. Leviet al. [16] introduced a gradient sparsitywhere I(x) is the image recorded after exposubdyz,t) and

prior to regularize results for images exhibiting defocus blur. Thits discrete equivaleni\I(z,t¢;) are the image captured by the

prior is also applicable to motion blurred images. Yghal. [33] sensor within an infinitesimal time intervatl at time instance;

proposed a multiscale approach to progressively recover blurfedr] is the total exposure time andis a3 x 1 vector indicating

details while Sharet al. [24] introduced regularization based onthe homogenous pixel coordinate. In our model, we asspme

high order partial derivatives to reduce image artifacts. (the discrete sampling rate over exposure time) is large enough
These previous approaches all work under the uniform PSB that the difference between continuous integration and discrete

assumption. As mentioned in Section I, camera ego motion cauggegration is negligible.

a spatially varying motion blur that cannot be accurately modeledWhen there is no relative motion between the camera and the

with a uniform PSF. Prior work has recognized the need to handleene, assuming the effects of sensor noise is sthally, ¢1)

non-uniform motion blur for camera ego motion, moving objects\ (z,t3) = --- = Al(z,ty) and I(z) = NAI(z,tg)

and defocus blur. For example, early work by Sawchuk [23}(z) is a clear image. When there is relative motidiiz) is
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more compact representation of the motion blur than our model.
However, in the cases of other motions, e.g. in-plane/out-of-
plane rotation, our projective motion model is more compact and
intuitive.

3

Motion Path Conventional Representation
IV. PROJECTIVEMOTION RICHARDSON-LUCY
LV V]| N |>)>]

In this section, we describe how to modify the Richardson-
Lucy algorithm to incorporate our blur model. To do so, we first

Our Representation

) give a brief review of the Richardson-Lucy algorithm [22], [20]
% 5 and then derive our algorithm in a similar manner. For simplicity,
S N the termI instead ofI, is used to represent the clear image to
. be estimated.
Blur Image ; . .
. Richardson-Lucy Deconvolution Algorithm
1 A. Richardson-Lucy D [ution Algorith
= Z(@Jr b +q}+® The derivation in this section of the Richardson-Lucy Decon-
N ) volution algorithm [22], [20] is based on the paper from Shepp
and Vardi [26]. In particular, the derivation from Shepp and Vardi
/' shows that the RL algorithm can be considered a maximum
FAVAVALEEIV.AV.AV.A likelihood solution using the Poisson distribution to model the
Rotation Our Representation likelihood probability P(B, k|I):
Yy N B g(x)B(r)e*g(r)
1 PBKD = [ 55— @
) _N (®+@+ +®+@) z€l
- g(z) = > Ikl —y), )
= yek

Fig. 4. This figure compares our blur model and the conventiomadel. where B is the observed motion blurred image,is the motion

Given the motion path (PSF), a conventional model uses an rectangular ke ; _ ; ;
(analogous to an image patch) to represent the PSF. In comparison, %L%F’ I.G.Zyek k(y) = 1, I is the clear image we want to

model uses a sequence of transformation matrices. For rotational motion, §§timate, an(i](x) is a convolution process .for a pixel Io_c_ate(_j
representation encodes the rotation via a sequence of homographies natuallyr. Equation (4) assumes that the likelihood probability is

while the conventional approach would need to store pixelwise PSFs. conditionally independent for each Sincez ck k(y) =1 and
Yy
> wep B(x) =3, c;I(x), the overall intensity is preserved.

) ] ) ) In [26], Shepp and Vardi show that Equation (4) is a con-
the summation of multipleunaligned images Al(z,¢;). For a caye function by showing the matrix of second derivatives of
static distant scene, the relative motion causes a planar prOjeC@(ﬁjaﬂon (4) is negative semi-definite. In order to optimize
transform in the image plane, i.&I(z,t;) = Al(hiz,ti-1).-  Equation (4), it follows from the Theorem 2.19(e) of [30] that
Here, 1; is a homographydefined by & x 3 non-singular matrix e sufficient conditions fof to be a maximizer of Equation (4)

up to a scalar. Suppose di} are known, we can then expressyye the Kuhn-Tucker conditions where allsatisfy:
Al(z,t;) by Iy(x) using the following formulation:

B(w),—g()
; o) 2L 70y ©)
1 ol (x) B(z)!
Al(z,t;) = AI(] ] hjz, to) = ~lo(Hiz), ) cel
Jj=1 and
B(z),—g(w)

y<o, if I(z)=0. (7)

B(z)!

where H; = H;Zl h; is also a homography. Hence, we obtain 9 (][ g9(z)
our projective motion blur model as: Ol(z) -

N 1 To obtain the iterative update rule for the RL algorithm, we
B(y) = z; Al(z,ti) = + z; Io(Hix), (3) use the first condition in Equation @)for all = € I:

i= 1= o T B(w)e—g(w)
where B(y) is the motion blurred image, ang(z) is the clear I(z) a1(z) m(] ] Q()Tx)!) = 0
image we want to estimate. According to our model, the blur zel
image is the average of multiple clear images, each of which isj,, 9 B(x)ln(g(z)) — g(z) — In(B(z)! - 0,
a planar projective transformed of the clear imdgeér). ( )zzaaf(w)( (@)inls(@)) - 5(2) (B(=)))

Figure 4 illustrates the relationship between our blur model B(z) 0 o

and the conventional representation. The conventional spatially I(l’)z 9(2) al(m)g(ﬁc) _I(I)ng(@ = 0
invariant PSF representation is a special case of our model for zel zel
which everyh; is a translation. Note that for in-plane transla- I(x)z Mk(y —z) - I(z) Zk(y —z) = 0.
tional motion, the conventional kernel-based model provides a vek 9(v) vek

IWe use a homography for its ability to model all planar transformations. 2The second condition in Equation (7) is used to relate the RL algorithm
More restrictive transformations, e.g. rotation, translation, etc, can be useith the EM algorithm [9] for the convergence proof. For further details, we
instead when prior knowledge of the camera’s motion path is known. refer readers to [26].



Intermediate result, It Synthetic Blur Image, B’ Residual Error Image, E! Integrated errors Updated result, 1%+

(result at 20th iteration)

Fig. 5. Overview of the projective motion RL algorithm. Givéime current estimatiori?, we compute a synthetic blur imag#®’ according to the given
motion in terms ofH;. The residual error imag&® = B/ B’ is computed by pixel-wise division. The residual errors are then integrated accordﬂﬂg]to

to produce an updated estimatidft'. The I*+! is then used as the initial guess for the next iteration. This process is iterated until convergence or after a
fixed number of iterations. In our implementation, the number of iterations is fixed to 500.

Since Zyek k(y) = 1, we havezyek k(y — z) = 1. After Substituting and replacing Equation (5) with Equation (10) for
adding the iteration index, we get: the RL algorithm, we get:

1 ot B(y) 41 ot B(y) 7
I'(z) = I'(z) ZZGk It(z)k(y—z)k(y_x)' 8 I''(z) = I'(») Z mkw(y)7 12)
yek yEky Y
Utilizing the convolution operation for the whole image, weawhich is the general form for spatially varying motion deblurring
obtain the RL algorihm: using the RL algorithm. The motion path . is the reverse
direction of motion path irk,.
Since the motion path ik, according to Equation (10), can

be described by a sequence of homographis, .. Hy, we
can also group the motion path @f.. Grouping the motion
ath of &, forms a new sequence of homographies which is
he original homography sequence but with each matrix inverted
and applied in reverse order, i.H;,l...Hl_l. For each point
along the motion path i, ... Hy, Hy'...H; ' reverse the
transformation and integrate the errors along the motion path.
Thus, we obtain the iterative update rule for the projective motion
blur model:

41 gt s B

I = I xk ® W7 (9)
wherek is the transpose of that flips the shape of upside-
down and left-to-right® is the convolution operation and is a
pixel-wise multiplication operation. To understand Equation (9
we can consider thaB’® = k @ I' is the prediction of a blurred
image according to the current estimation of clear imagand
the given point spread functioh. Thus, B/B'* is the residual
errors (by pixel-wise division) between the real blurred im&ye
and the predicted blurred image’. The correlation operation
(k®) integrates the residual errors distributed according. f6he N
update rule in Equation (9) essentially computes a clear im&ge ot L > E(H; 'a), (13)
that would generate the blurred imagd#e given a known point N i=1
spread functionk. Typically, the algorithm start with an initial

B(x)
guess ofl® = B.

(o) —
whereE*(z) = TSN TR )
real blurred imageB and the predicted blurred image’t =
B. Projective Motion Richardson-Lucy algorithm # S, I'(H;z). Note that although we computed the per-pixel

With the basic Richardson-Lucy algorithm, we can derive Ourpotion PSF during the derivation, Equation (13) processes the

projective motion Richardson-Lucy algorithm. From the projeémage as a whole and does not need to reconstruct the per-pixel

tive motion blur model defined in Equation (3), we can integratgz10tl0n PSF -expllcnly. Th|§ Is similar to t.he global convpluhon
and correlation process in the conventional RL algorithm. In

the motion path at each pixel locatignand define a spatiall . .
b P .4 P y essence, our approach replaces the convolution and correlation

varying motion PSHFe,: . . . .
ying Y operators in the conventional RL algorithm with a sequence of

is the residual error between the

1 forward projective motions and their inverses via the homogra-
B(y) = N ZI(H”C) = Z I(@)ky (), (10) phies. Figure 5 diagrams our projective motion RL algorithm.
=1 zEky
and L 1 V. ADDING REGULARIZATION
_ N if z= Hi Y . . . . . . o
ky(x) = 0 . ) (11) The result derived in the previous section is a maximum likeli-
, otherwise

hood estimation with respect to Poisson noise models and imposes
where Zweky ky(z) = Zfil % = 1. Becauser = Hi_ly does no regularization on the solution. Recent deblurring works (e.qg.
not correspond to a discrete integer pixel coordinate, bicudit0], [16], [33]) have shown that imposing certain image priors
interpolation is used to estimate the pixel values for the paints can significantly reduce deconvolution artifacts. In this section,



RMS: 10.3517 RMS: 10.9025 RMS: 10.8316 RMS: 10.4296
Total Variation Laplacian Bilateral Bilateral Laplacian

Fig. 6. Comparisons on different regularization: Total Variation (TV) regularization, Laplacian regularizatio gdn, Bilateral regularization and Bilateral
Laplacian regularization. The results on the top row are produced with fixed 0.5; The results on the bottom row are produced with our suggested
implementation scheme which decreases progressively as iterations increase. The number of iterations and parameters setting) (@ed¢pé same for

all testing case. Our implementation scheme is effective as the deblurring quality improves in terms of both visual appead@i¢& amrbrs. The input

blur image and ground truth image can be found in Figure 1(a) and (d) respectively.

we first derive the general form for including a regularizatiomwhere L(-) = In(P(:)), R(I) = —%L(I) is the regularization
term in the Richardson-Lucy algorithm. We then describe hoterm and ) is the relative weight between the data term and
regularization based on total variation [10], Laplacian [16], anithe regularization term in Equation (14). Computing the first
bilateral regularization in [33] can be incorporated into ouderivative of Equation (14) with respect tz) and setting it
algorithm. The goal of this section is not to compare and evaluagual to zero, we get'

the performance of different regularization in the deconvolution
process. Instead, we want to show the capability of our projective Z S
motion RL to include regularization terms that have been used v€k
with the conventional RL. In addition, we discuss implementatiowhereVR(I(z)) is the first derivative ofR((z)) with respect to
details that allow the regularization terms to be more effective amgy). In order for the RL algorithm to converge, we neé,q_ =
avoid the tuning of the parametex, that controls the relative ast — ~o. Hence, the regulanzed RL algorithm becomes:
weight of regularization.

k(y —z) =1 — AVR(I(z)), (15)
z€k I Z)

t+1 _ 37)
TS : ! (x)*l—/\VR,rt Zzzekp Z)7(16)
Regularization in Richardson-Lucy algorithm
We start with the derivation from the Bayes’s equation. Suppogad
that P(I) is the prior probability of the restored imagde Then, e . I xk® = a7
the objective function we want to optimize becomes: T 1-AVR(IY) keIt
Similarly, for our projective motion RL algorithm, we can derive
arg max P(I|B, k) from Equation (16) to get a regularized version of the update rule:
= argmax P(B,k|I)P(I) Itz
1 I'"le) = — 2 EY( . 18
= argmin—L(B, k|I) - L(1) (@) = 3= WR m N Z (18)
= argmlnz z)In(g(z)) + AR(I(z)), (14) In the following, we describe several regulanzatlon approaches
el commonly used with motion deblurring.
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Fig. 7. Convergence rates of our projective motion RL algorithm. The first and the fourth rows show the pdt'gft, the second and the fifth rows

show the plot of RMS errors against number of iterations and the input motion blur image for our basic algorithm, regularized algorithm with fixed weight
(A = 0.5), and regularized algorithm with decreasing weight (linearly froto 0) as the number of iterations increase. Note that the motion blur are different

for the two test cases. The third and the sixth row show the input motion blur image and intermediate results at the 20th, 50th, 100th, 500th and 5000th

iterations for the basic algorithm.

Total variation regularization Toal variation (TV) regularization al. [10]. The purpose of introducing this regularization is to
has been demonstrated by Chan and Wong [6] and Bey suppress image noise amplified during the deconvolution process



by minimizing the magnitude of gradients in the deblurredgma multi-scale fashion with the spatial variance of Gaussian blur
kernel from one level to another set to #2 = 0.5. The termo?
Rry(I) = / (IVI(2)][>dz (19) s the range variance and it is set to®el x | max () — min(I)|.
. i o . The size of local neighborhoot¥ (z) is determined by,.
where VI(z) is the first order derivative of (x) (in o andy In [33], visual artifacts are progressively suppressed by both
direction). Substituting this regularization term into Equation (18},ier scale and intra-scale regularization. The bilateral regulariza-

we get: tion corresponds to the inter-scale regularization. Our iterative
i I'(z) 1 . . update rule with the bilateral regularization term are derived
1= . N
_ Vit ; _ 3 t+1, I'(z) 1 topr—1
WhergVRTV(I) = __VW' As reported in [10])\ = 0.002° is I'(z) = T=awvRs(D) X o ZE (H; "z), (26)
used in their experiments. i=1
) o . o where
Laplacian regularization The Laplacian regularization, some- 4
times called the sparsity regularization, asserts that for natursiRz(I) = Z (Iy — Iy Dy), (27)
images the histogram of the gradient magnitudes should follow yEN ()
a heavy-tailed distribution that can be modeled by a Laplacian I(x)—1
ot Y 3 LAPRCAN (@) = gu(lla — wlP)aa(lIT(@) — 1)) L)) (9

distribution. The Laplacian regularization, suggested by [16], or

takes the following form: The term D, is a displacement operator which shifts the

Ry(I) = exp(—l|VI|d), (21 entire image[j by. the displacement vectdly - x), and A (as.

Ui reported in [33]) is set to be a decay function whose weight
whered is a parameter controlling the shape of distribution, andecreases as the number of iterations increases. The effect of this
the termn = 0.005 (according to [16]) is the variance of thebilateral regularization is similar to the effect of the Laplacian
image noise. In [16]d is set t00.8. In our implementation and regularization, however, we found that the bilateral regularization
the source code providéave follow the same parameter settingstends to produce a smoother result not only because its use of a
The effect of Laplacian regularization is also to suppress noiS@ussian distribution fog(-), but also because the larger local

and to reduce small ringing artifacts. neighborhood sizev(z). In our implementation, we also include
Adding this regularization into our projective motion RL algo-a regularization where.(-) follows a Laplacian distribution. We
rithm, we obtain another set of update rules: call this a “Bilateral Laplacian” regularization. In our implemen-

tation, the parameters @h(-) is set to be the same as that used

iy '@ LS i oo in [16].
! <w>—me2E<Hi n @)
- Implementation Details One major challenge in many deblurring
approaches is the need for parameter tuning. In our case, the
VRp(I) = 1 exp(_l|v[|d)|v[|d*1v2[, (23) most important parameter is the tepnwhich adjusts the relative
n n weight between the data term and the regularization terr.isf
A typical value for X (according to the implementation of [16])too large, details in the deblurred results can be overly smoothed.
is between0.001 to 0.004. We note that in the implementationOn the other hand, i is too small, deconvolution artifacts cannot
of [16] a slightly different formulation is used: be suppressed.

where

- 1 2; o4 In our experiments, we found that having a large iniNdhat is
VEL(I) =~ |VI]d=2 VoL (24) progressively decreased as the number of iterations are increased
- . . oduces the best results. This implementation scheme has been
The effects of the two regularization schemes in Equation (Zgied in [24], [33]. In regards to its effectiveness, [17] analysis of

and Equation (24), however, are similar with larger regularizati(éﬂis approach noted that this scheme allows the energy function to

converge to a local minima, but this local minima is closer to the
ground truth image than its global minima. In our implementation,

Bilateral regularization In order to suppress visual artifacts’ < dvided the iterations into five sets each containing 100

while preserving sharp edges, Yueral. [33] proposed an edge- csratlons. Tge;lare_ set tlo b%ﬁoy O'?’ Ot'_25’ (1‘)'125}?1.0 Im ea;:Q tshet.
preserving bilateral regularization cost: € ran our deblurring algorithm starting from the largé €

smallest\. One interesting observation we found is that under this

Rp()=>_ > alllz—yl»)(1-g(llI(x)-1(»)]|*), (25) implementation scheme the total variation regularization produces
T yEN(z) the best results in terms of root-mean-squaka/(S) erro. One

explanation is that the Laplacian and Bilateral regularization tend

Gaussian functions with zero mean and variancecdf o2 to protect false edges that arise from deconvolution artifacts.

respectively. In [33], the deblurring process is performed in aThe .V'SU.aI appearance of our deblurred resglts W|th.d|fferent
regularization are similar and all of the previously discussed

3This is a weight for image intensity between 0 and 1. For image intensity

weight given to smaller gradient and vice versa. In our impl
mentation, we use the method in Equation (23).

where N(z) is local neighborhood ofr, gi(-), g2(-) are two

between 0 and 255, a normalized weight should be equalo@2 x 255 = SLaplacian and bilateral regularization are essentially the sam&(if) is
0.51. the first order neighborhood ang(-) is a Laplacian function.
4http://yuwing.kaist.ac.kr/projects/projectivedeblur/index.htm 5The RM S error measured for image intensity between 0 to 255.



RMS = 32.2848 RMS = 47.6842 RMS = 87.3484
Fig. 8. Evaluation on the robustness of our algorithm by adding different amount of noise in blurred images. Top row: noisy blurred image, the amplitude
of noise is determined by the noise variane€){ Second row: Deblurring results with our basic projective motion RL algorithm. Third row: Deblurring

results with total variation regularization. In the presence of image noise, our deblurring algorithm amplified the image noise in deblurred results. The effects
of regularization hence become significant in suppressing amplified image noise.

regularization schemes can successfully improve the visual qualitymputed as done in [28] and sequence of homographies can
of the deblurred image. One important thing to note is that in the fitted to each frame. Another promising hardware coupling
last set of iterations, we do not impose any regularization bist the use of accelerometers and inertial sensors for estimating
we start with a very good initialization that is produced fronthe cameras motion as demonstrated in [12] and [14]. Recently,
the regularized deblurring algorithm. We found that even withoai et al. [29] showed how a coded exposure could be used to
regularization, having a good initialization can effectively reduceapture an image containing a motion blurred moving object.

ringing and noise amplification. Through the analysis of motion discontinuities protected by the
coded exposure, homographies describing the motion path could
VI. MOTION ESTIMATION be computed.

Although the focus of this paper is the derivation of Ul niform Motion Assumption If the motion blur is caused by a

projective motion path blur model and its associated deblurruz%nstant motion path over the exposure time, then the path can

algorithm, for completeness we describe some promising meth%esdescribed B — b h. According to the definition
1=hy=--=hy.

to compute the projective motion within the exposure time. Gergﬁc o — Hi b we can get
eral algorithms for motion estimation is part of future research.” ~** = *lj=1"7" 9

hi = \/H 1<i<N. 29
Auxiliary Hardware or Imaging Modifications A direct method ! N - (29)
to estimate camera motion in terms of homographies during thlus, we can obtairk; by computing theN-th matrix root [5]
exposure is to use a hybrid camera [4], [28] that captures ah Hy, and the estimation of the series iof is reduced to the

auxiliary high-frame-rate low-resolution video. From the auxiliargstimation ofH . The easiest technique to estimate this uniform
video, motion trajectory at each pixel (i.e. optical flow) can beotion is described by Shaat al. [25] which relies on the user
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RM S =58.8623 RM S = 65.6026 RMS = 81.4583 RMS = 106.0478 RMS = 126.0776

Fig. 9. Evaluation on the robustness of our algorithm by adding different amount of noise in blurred images. Top row: noisy blurred image, the amplitude
of noise is determined by the noise variane€)( Second row: Deblurring results with our basic projective motion RL algorithm. Third row: Deblurring
results with total variation regularization. In the presence of image noise, our deblurring algorithm amplified the image noise in deblurred results. The effects
of regularization hence become significant in suppressing amplified image noise.

to supply image correspondences to establish the transformatiderations. Robustness is analyzed by comparing the results with
Another highly promising technique is that proposed by Dai artifferent amounts of additive noise. We also evaluate the quality
Wu [8] that uses the blurred objects alpha matte to estifiage of our projective motion RL with and without regularization by
In our experiments, we use a former approach in [25]. Recentfyeating a set synthetic test cases. Our results are also compared
Li et al. [19] proposed a method to estimate a global homograplagainst spatially invariant deblurring method, e.g. [16], with syn-
between successful video images to perform mosaicing. Ttheetic test cases that resemble real motion blurred images caused
frames could also be deblurred using a motion path model similay camera shake. Finally, we show results on real images for
to that proposed in this paper. which the projective motion paths were estimated using methods
Recently, Whyteet al. [31] use a variational Bayesian approacllescribed in Section VI.
to estimate the weight of quantized rotation parameters without
the need for auxiliary hardware or a uniform assumption. TheAr Convergence Analysis
estimation of the motion PSF, however, is not sufficiently accuraté
leading to deconvolution artifacts in the deblurred result. This While the conventional RL algorithm guarantees convergence,
work concurrently showed a method to estimate the spatially this section, we empirically examine the convergence of our
varying PSF using blurred and noisy image pairs. projective motion RL algorithm. At each iteration, we compute
the log ratiolog(I**!/I) and the RMS error of the current
result against the ground truth image. We run our algorithm for a
total of 5,000 iterations for each case. The convergence rates of
In this section, we empirically examine our algorithm’s convemur basic projective motion RL, regularized algorithm with fixed
gence properties by plotting the RMS error against the numberrefyularization weight X = 0.5, for intensity range between

VIl. EXPERIMENT RESULTS
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Fig. 10. RM S pixel errors for different examples and test cases in our synthetic trials. We compare/ftseof the input blur image (blue), the deblurred
image using basic projective motion RL (red) and the deblurred image using projective motion RL with (Total Variation) regularization Alreested
images and results are available in the supplemental materials. An example (input and output) from these results are shown here.

and255) and regularized algorithm with decreasing regularizatione use the Poisson noise model with total variation regularization.
weight (linearly from1 to 0) are compared. Plotted is thHeM S The test pattern is a resolution chart. As expected, our deblurring
error with respect to the ground truth image. Figure 7 shows thesults without regularization amplifies image noise like other
graphs plotting RMS errors against the number of iterations. deblurring algorithms. The quality of our deblurring algorithm
Typically, our method converges within 300 to 400 iterationdegrades as the amount of noise increases. In addition, larger
for both the basic algorithm and regularized algorithm with fixethotions tend to produce noisier results. In such cases, the added
regularization weight. As the number of iterations increasespise in the image around the center of rotation becomes less
the difference of RMS errors between successive iterationapparent than those in image regions with larger motion blur
decreases, however, after 500 iterations the visual improvemérg. the image boundaries). In the presence of image noise,
in the deblurred result is unnoticeable as shown in some intéite regularization term becomes important to improve the visual
mediate results in Figure 7. We found that the algorithm withuality of the results. Better results can be achieved by increasing
regularization produce&M S errors that are higher than the basithe regularization weight as the noise level increased. However,
algorithm. The main reason is that the test cases demonstrdtadairness of comparisons, we use the same regularization weight
here are noise-free, and the regularization tends to smooth aestdiscussed in Section V. The difference between the regularized
high frequency details resulting in high&\/ .S error. However, and un-regularized results are significant both in terms of visual
as we will show in the next subsection, when noise is presentdoality and RMS errors. However, when the amount of image
the image, incorporating regularization becomes effective. Usingise added is very large, e.g? > 20, the regularization term
the decreasing regularization weight scheme we still observecannot suppress image noise effectively.
decrease inRM S errors even ab000 iterations. This approach
also achieveskM S errors lower than both the basic algorithm _ . .
and regularized algorithm using a fixed regularization weight: Qualitative and Quantitative Analysis
This convergence study confirms the effectiveness of this scheméigure 1 has already shown a synthetic example of spatially
observed by [24], [33]. varying motion blur with knowrh;. To further evaluate our algo-
rithm quantitatively, we have created a test set consisting of fifteen
test cases and five test imagedandrill, Lena, Cameraman,

B Noise Analydis Frui dPAMI. The Mandrill I i ignifi high
To test for the robustness of our algorithm, we added differe [wts an - TheMandriii example contains significant g
requency details in the hair regions. Thena example contains

amounts of zero-mean Gaussian noise to the synthetic blur, . . )
. ) . . : oth high frequency details, smooth regions and also step edges.
images. To simulate sensor noise, the added image noise

: - f& Cameraman image is a monotone image but with noise added
not undergo the convolution process, and is independent of t -
. independently to each RGB channel. Thriits example also

motion blur effect. . . . ;
. . . _— contains high frequency details and smooth regions. Lastly, the
Figure 8 and Figure 9 show our deblurring results with differe . . . . :
. . AMI example is a text-based binary image (i.e. black and white).
amounts of Gaussian nofsedded. We show results of our " :
For each test case, we add additional Gaussian neise=(2)

algorithm with and without regularization. For this experimentt,o simulate camera sensor noise. The parameters setting are the

"The noise variance of Gaussian noise added are with respect to intensity@Me for all test cases and the values we used are the same as in
range between 0 and 255. the implementation of [16].
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. . . Fig. 12. Our simulated spatially varying motion blur PSF famera shake.
We show theRMS of the input motion blurred image, the From the approximated kernels in Figure 11, we inclutietbgree of rotation

RM S of deblurred image using our basic projective motion RL atin total) in the motion path. This is done by first estimating the PSF using

gorithm and thekRM S of the deblurred image with regularizationhomo_grallf)h(ijes (Fig(lj{fe _tl) adnd theﬂhiﬂtr%dlllciﬂg a rotfation_ in ﬂ}e gﬁotion path
e . . a single degree distributed over the whole range of motion. To demonstrate
(total variation) are provided. Figure 10 shows our results. Oﬁ&e effect of this rotation, we reconstructed the PSFs at nine different positions

projective motion RL is effective, especially when regularizatiop the image. These reconstructed PSFs will be used by a spatially invariant

is used with our suggested implementation scheme. These teston deblurring algorithm [16] for comparison. With only degree of
cases also demonstrate that our approach is effective in recovefRigtion we can see a significant change to the camera shake PSFs in different

. . . o L . _regdions of the image. Rotational motion for real camera shake (e.g. as shown
spatially varying motion blur that satisfied our projective motiog, Figure 2) would be larger than shown here.

blur assumption. We note that in some test cases, e.g. examples

from the Fruits test case, theRMS errors of the deblurred . . . . .
the PSF is sampled, however, visual artifacts become increasingly

results are larger than thRM S errors of input motion blurred oticeable as we move farther away from the sampled point of
images. This is due to the effects of amplified noise. After noi{ﬁ : w v er away pled por
e PSF used for deconvolution.

suppression with regularization, ti\/.S errors of the deblurred
results are smaller than theA/S errors of input motion blurred

Fig. 11. Top row: Ground truth PSF from [17]. Bottom row: Ouipegxi-
mated PSF using projective motion paths.

images. E. Real Examples
Figure 14 shows an example of global motion blur obtained
D. Comparisons with spatially invariant method from our previous work using a hybrid-camera system [28].

To evaluate our projective motion blur model for the motiof© obtain the motion path homographies, we use the motion
blur effects caused by camera shake, another test set was ¥@&tors between in the low-resolution high-framerate camera as
ated to simulate blur from camera shake motion. Our rests deset of point correspondences and fit a global homography
compared against results obtained using a spatially invariant bR@ low-resolution frames. We also show the effectiveness of
model based on the deblurring algorithm in [16]. our regularization compared with previous results. Our approach

This test set consists of 8 test cases and 5 imafet, achieves comparable result with [28], however we do not use the
Einstein, Lotus, Tower andPalace. For each test case, we first usdow-resolution images for regularization as done in [28].
homographies to approximate the shape and intensity variation ofigure 15 and Figure 16 show more real examples with
“real” motion blur kernels. The real kernels are from the groun@omed-in motiofi and rotational motion respectively. These
truth kernels in the data provided by Lewéhal. [17]. Figure 11 input images was obtained with a long exposure time with low
shows their ground truth kernels and our approximated kernd®O setting. The motion blurred matrix/y is obtained by
using homographies to describe the projective motion path. Sirfiiéing the transformation matrix with user markup as shown in
Levin et al. locked theZ-axis rotation handle of tripod when theyFigure 15(a) and Figure 16(a) respectively. Eaghs computed
captured the images, their data does not contain any rotatiéii. assuming the motion is a uniform. We show the deblurred
However, real camera shake usually contains small amount 'egults from our algorithm without and with regularization in (b)
rotation. We added degree of rotation in total to the overalland (c). The ground truth image is shown in (d) for comparisons.
motion path to simulate the effects of in-plane rotation of camel4e note that our real examples contain more visual artifacts than
shake as shown in Figure 12. Although the motion blur of thi§ie synthetic examples. This is due to estimation errofs .iThe
test set contains rotation, the effect of rotation is almost invisibfifects of image noise in our real examples are not as significant
from the motion blurred images itself since the translation&s in our synthetic test case due to the long exposure time. We
motion dominates the effects of motion blur. However, when walso note that the motions in our real examples are not as large
apply spatially invariant motion deblurring algorithm [16] to thes@s in our synthetic example.
images, the effects of rotation is obvious. Similar to the previous
test set, we also added Gaussian noisé £ 2) to simulate VIIl. DISCUSSION ANDCONCLUSION

camera Sensor noise. . . —_— .
. . This paper has introduced two contributions for addressin
Figure 13 shows theRM S errors of our results (with TV . bap g

o - . ) _image blur due to camera ego motion. The first is a formulation
regularization) compared with results from [16] using nine d|f g g

; t PSE led at diff ¢ locati f the | Wi of the motion blur as an integration of the scene that has under-
eren S sampied at difterent focations of Ihe image. We Usg,o 5 motion path described by a sequence of homographies.
the source code provided by [16] with paramekes 0.001 to

btain th its f h o it itenl d The advantage of this motion blur model is that it can better
obtain the Tesults for comparison. DUr results consistently pro rameterize camera ego motion than the conventional approaches
smaller RM S errors and less visual artifacts when compared

Rat rely on a uniform blur kernel. In addition, this “kernel
the results from [16]. These test cases also show the insufficiency y '

of conventional spatially invariant motion to model camera shake sThe approach in [25] only discusses how to estimate rotational motion,
The results of [16] obtain good results around local regions wheset the estimation for zoom motion can be derived using a similar method.

11



50 = Input 50 = Input 50 = Input
45 WPSF1 45 WPSF1 45 WPSF1

40 W PSF 2 40 W PSF 2 40 W PSF2

35 mPSF3 3 mPSF3 W PSF3
W PSF4

=PsF4

Now
& S

=PpsF4
11 . HPSFS
PSF6

MS Error:
~
[

WPSF5 WPSFS

MS Error:
~
]

RMS Errors

PSF 6 PSF 6

PSF7
PSF 8

PSF7
PSF8

PSF7

PSF8

PSF9 PSF9 PSF9

Our Results

1 2 3 4 5 6 7 8 Our Results 1 2 3 4 5 6 7 8 Our Results 1 2 3 4 5 6 7 8
Test case Test case Test case

Doll Einstein Lotus

50 = Input 50 = Input

45 mosF1 mpsF1

=PSF2 =PSF2

mPSF3

W PSF3

mPSF4 =PsF4

HPSFS HPSFS

PSF6 PSF 6
PSF7

PSF8

PSF7
PSF8

PSF9 PSF9

Our Results Our Results

Testease Testease Global PSF representation ~ Our PSF representation
Tower Palace

Fig. 13. We compare our results with the spatially invariant motion deblurring algorithm in [16].RIW&S pixel errors for different examples and test
cases are shown. For the results of [16], we sampled the PSF at nine different locations in the images and therefore obtain nine different PSFs for deblurring
Our results are compared to the results from [16] using all nine PSFs. Our approach consistently producegai@lierors in all examples for all test

cases.

free” formulation more closely models the physical phenomer@ur algorithm can only recover the hidden details that remain
causing the blur. Our second contribution is an extension to tmside the motion blur images. Another limitation is that our
RL deblurring algorithm to incorporate our motion blur modeapproach does not deal with moving or deformable objects or
in a correction algorithm. We have outlined the basic algorithscenes with occlusion and/or disocclusion or with significant
as well as details on incorporating state-of-the-art regularizatiaepth variation. Figure 17, for instance, shows an object with out-
Experimental results has demonstrated the effectiveness of ofiplane rotational motion and large variation in relative depth
approach on a variety of examples. captured with a coded exposure camera. Here, we assume the

The following discusses issues and limitations of this blunotion to be strictly horizontal, and estimate the motion PSF
model, as well as a discussion on convergence, running tinusjng only local observations around the (b) mouth, (c) ear, and
and future work. (d) chair. Our deblurring results accurately recovered scene details
only for the local regions used for PSF estimation; other regions
A. Conventional PSF representation versus projective model blur are distqrted by t.he incorrect .PSF. Bgtter res_ults c_ould potent_ially
model be obtained by first segmenting the image into different regions

) . that each satisfies the projective motion model, and then applying

While this paper advocates a new blur model for camera g, motion deblurring algorithm on each region separately. The
motion to replace the conventional kerel-based approach, Weplem with occlusions, disocclusions and depth variations is
ngte that the conventional represgntatlon has several advantaggs,mon to existing deblurring techniques, since the exhibited
First, the kernel-based PSF provides an easy to understand gndye biur cannot be adequately represented by a PSF in such
intuitive represents of “point spread” about a point. Seconfages Other limitations of our approach include the problem of
the kernel-based model can include other global blurring effegi§q| color saturations and severe image noise as demonstrated in
(e.g. defocus) and motion blur in a unified representation, whilg, experimental.
our representation only targets motion blur from camera motion.
Third, by assuming the motion blur is globally the same, imag& Running Time Analysis

deconvolution can be done in the frequency domain, while ] ) )
our projective motion RL algorithm can only be done in the OUr current implementation takes about 15 minutes to run
iterations on an image siz@2 x 512 with an Intel(R)CPU

spatial domain. As demonstrated several times in this paper, TR
conventional representation, however, is not suitable for deal\igé‘loo@l'%e‘hz and 512MB of RAM. The running time of our

with spatially varying motion blur. For such cases, our projectivddorithm depends on several factors, including image Hige
motion RL formulation becomes advantageous. number of discrete sampling (number of homographies) and the

number of iterationg”. Hence, the running time of our algorithm

o is O(|I|NT). Comparing our running time to approaches which

B. Limitations reconstruct pre-pixel PSF for deblurring (e.g. [28]), their running
Our projective motion RL algorithm has several limitationsime is O(|I|MT) where M is window size of the square blur

similar to other deblurring algorithms. A fundamental limitatiorkernel used to represent the PSF. Our approach has a significant

to our algorithm is that the high frequency details that hawedvantage withV << M. In our experiments, we found that

been lost during the motion blur process cannot be recoveréd. = 50 is sufficient to model very large variations over the
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(d)

Fig. 14. Image deblurring using globally invariant kernels. (a) Input from

a hybrid camera (courtesy of [28]) where the high-frame-rate low-resolution
images are also shown; (b) Result generated by [3](Standard RL algorithﬂ]
from Matlab); (c) Result from our projective motion RL with regularization.
(d) The ground truth sharp image. Close-up views and the estimated globﬁ]
blur kernels are also shown.

(3]
projective motion path. However, a conventional PSF kernel SiZﬁ]
M can be as large a3l x 31 = 961 for small to mid-range
motion. We also note that the majority of our running time is spenis]
in the bicubic interpolation process necessary when applyin#
the homographies. Significant speed-ups could undoubtedly é
obtained with better implementation exploiting a GPU to perforni7]
the image warping. (8]

E]
D. Future Directions

There are several future directions of this work. One is to e;<1-0]
plore other existing algorithms and hardware (e.g. coded exposure
and coded aperture) that can use our projective motion path blur
formulation. Another important direction is to consider how ou
framework can be used to perform blind-deconvolution where the
camera’s motion path is unknown. Promising preliminary work?2]
by Whyte et al. [31] has already been performed in the case
of rotation about the camera’s optical center both in a blings]
estimation scenario and via image pairs. [14]
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Fig. 15.
(b) Our result from using the basic projective motion RL algorithm; (c) Our
result including regularization; (d) Ground truth image.

(a) Blurred input image and user markups for motion estimation;
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If we introduce regularization as a prior mode(I), we now
have to maximize a posterior probabilify(I|B, k). After some
mathematical rearrangement, we can obtain the following energy

APPENDIX function for minimization:

arngaxP(I|B,k),
= argmax P(B,k|I)P(I),

image statistics follows a Gaussian distribution instead of a - argminZHg(a:)—B(ac)||2—|—/\R(I), (33)
1

Poisson distribution, we can model the likelihood probability

xel
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wht;:re llg(x) — B(z)||> is the data term, andR(I) =

—UTQ log(P(I)) is the regularization term.

Computing the derivative of Equation (33), we can obtain
another set of iterative update rule based on gradient-decent
method:

o= 't ko (B -k ")+ VR, (34)
and
1 N . L .
t+1 t It v
I Ity — El E"(H; "z)+ AVR(I"), (35)

for the conventional motion blur model and our projective motion
blur model respectively. Note that the regularization terms studied
in Section V for the Poisson noise model can also be used for
the Gaussian noise model, as well as the same implementation
scheme for the adjustment af
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