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Abstract—We describe a novel approach to reduce spatially varying motion blur in video and images using a hybrid camera system. A

hybrid camera is a standard video camera that is coupled with an auxiliary low-resolution camera sharing the same optical path but

capturing at a significantly higher frame rate. The auxiliary video is temporally sharper but at a lower resolution, while the lower frame-

rate video has higher spatial resolution but is susceptible to motion blur. Our deblurring approach uses the data from these two video

streams to reduce spatially varying motion blur in the high-resolution camera with a technique that combines both deconvolution and

super-resolution. Our algorithm also incorporates a refinement of the spatially varying blur kernels to further improve results. Our

approach can reduce motion blur from the high-resolution video as well as estimate new high-resolution frames at a higher frame rate.

Experimental results on a variety of inputs demonstrate notable improvement over current state-of-the-art methods in image/video

deblurring.

Index Terms—Motion deblurring, spatially varying motion blur, hybrid camera.

Ç

1 INTRODUCTION

THIS paper introduces a novel approach to reduce
spatially varying motion blur in video footage. Our

approach uses a hybrid camera framework first proposed
by Ben-Ezra and Nayar [6], [7]. A hybrid camera system
simultaneously captures a high-resolution video together
with a low-resolution video that has denser temporal
sampling. The hybrid camera system is designed such that
the two videos are synchronized and share the same optical
path. Using the information in these two videos, our
method has two aims: 1) to deblur the frames in the high-
resolution video and 2) to estimate new high-resolution
video frames at a higher temporal sampling.

While high-resolution, high-frame-rate digital cameras
are becoming increasingly more affordable (e.g., 1;960�
1;280 at 60 fps are now available at consumer prices), the
hybrid camera design remains promising. Even at 60 fps,
high-speed photography/videography is susceptible to
motion blur artifacts. In addition, as the frame rate of high-
resolution cameras increases, low-resolution camera frame-
rate speeds increase accordingly with cameras available now

with over 1,000 fps at lower resolution. Thus, our approach
has application to ever increasing temporal imaging. In
addition, the use of hybrid cameras and hybrid camera-like
designs have been demonstrated to offer other advantages
over single-view cameras including object segmentation and
matting [7], [35], [36], depth estimation [31], and high
dynamic range imaging [1]. The ability to perform object
segmentation is key in deblurring moving objects, as
demonstrated by the authors of [7] and our own work in
Section 5.

The previous work in [6], [7] using a hybrid camera
system focused on correcting motion blur in a single image
under the assumption of globally invariant motion blur. In
this paper, we address the broader problem of correcting
spatially varying motion blur and aim to deblur temporal
sequences. In addition, our work achieves improved
deblurring performance by more comprehensively exploit-
ing the available information acquired in the hybrid camera
system, including optical flow, back-projection constraints
between low-resolution and high-resolution images, and
temporal coherence along image sequences. In addition, our
approach can be used to increase the frame rate of the high-
resolution camera by estimating intermediate frames.

The central idea in our formulation is to combine the
benefits of both deconvolution and super-resolution. Decon-
volution of motion-blurred, high-resolution images yields
high-frequency details, but with ringing artifacts due to the
lack of low-frequency components. In contrast, super-
resolution-based reconstruction from low-resolution images
recovers artifact-free low-frequency results that lack high-
frequency detail. We show that the deblurring information
from deconvolution and super-resolution is complementary
to each other and can be used together to improve deblurring
performance. In video deblurring applications, our method
further capitalizes on additional deconvolution constraints
that can be derived from consecutive video frames. We
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demonstrate that this approach produces excellent results
in reducing spatially varying motion blur. In addition, the
availability of the low-resolution imagery and subse-
quently derived motion vectors further allows us to
estimate new temporal frames in the high-resolution
video, which we also demonstrate.

A shorter version of this work appeared in [47]. This
journal version extends our conference work with greater
discussion of the deblurring algorithm, further technical
details of our implementation, and additional experimenta-
tions. In addition, a method to estimate new temporal frames
in the high-resolution video is presented in Section 6,
together with supporting experiments in Section 7.

The processing pipeline of our approach is shown in Fig. 2,
which also relates process components to their correspond-
ing section in the paper. The remainder of the paper is
organized as follows: Section 2 discusses related work,
Section 3 describes the hybrid camera setup and the
constraints on deblurring available in this system, Section 4
describes our overall deconvolution formulation expressed
in a maximum a posteriori (MAP) framework, Section 5
discusses how to extend our framework to handle moving
objects, Section 6 describes how to perform temporal
upsampling with our framework, Section 7 provides results
and comparisons with other current work, followed by a
discussion and summary in Section 8.

2 RELATED WORK

Motion deblurring can be cast as the deconvolution of an
image that has been convolved with either a global motion
point spread function (PSF) or a spatially varying PSF. The
problem is inherently ill-posed as there are a number of
unblurred images that can produce the same blurred image
after convolution. Nonetheless, this problem is well studied
given its utility in photography and video capture. The
following describes several related works.

Traditional deblurring. The majority of related work
involves traditional blind deconvolution, which simulta-
neously estimates a global motion PSF and the deblurred
image. These methods include well-known algorithms such
as Richardson-Lucy [40], [33] and Wiener deconvolution
[50]. For a survey on blind deconvolution, readers are
referred to [20], [19]. These traditional approaches often
produce less than desirable results that include artifacts
such as ringing.

PSF estimation and priors. A recent trend in motion
deblurring is to either constrain the solution of the deblurred
image or to use auxiliary information to aid in either the PSF
estimation or the deconvolution itself (or both). Examples
include work by Fergus et al. [17], which used natural image
statistics to constrain the solution to the deconvolved image.
Raskar et al. [38] altered the shuttering sequence of a
traditional camera to make the PSF more suitable for
deconvolution. Jia [23] extracted an alpha mask of the
blurred region to aid in PSF estimation. Dey et al. [15]
modified the Richardson-Lucy algorithm by incorporating
total variation regularization to suppress ringing artifacts.
Levin et al. [28] introduced gradient sparsity constraints to
reduce ringing artifacts. Yuan et al. [53] proposed a multi-
scale nonblind deconvolution approach to progressively

recover motion-blurred details. Shan et al. [41] studied the
relationship between estimation errors and ringing artifacts,
and proposed the use of a spatial distribution model of
image noise together with a local prior that suppresses
ringing to jointly improve global motion deblurring.

Other recent approaches use more than one image to aid
in the deconvolution process. Bascle et al. [5] processed a
blurry image sequence to generate a single unblurred
image. Yuan et al. [52] used a pair of images, one noisy
and one blurred. Rav-Acha and Peleg [39] consider images
that have been blurred in orthogonal directions to help
estimate the PSF and constrain the resulting image. Chen
and Tang [11] extend the work of Rav-Acha and Peleg [39]
to remove the assumption of orthogonal blur directions.
Bhat et al. [8] proposed a method that uses high-resolution
photographs to enhance low-quality video, but this ap-
proach is limited to static scenes. Most closely related to
ours is the work of Ben-Ezra and Nayar [6], [7], which used
an additional imaging sensor to capture high-frame-rate
imagery for the purpose of computing optical flow and
estimating a global PSF. Li et al. [31] extend the work of
Ben-Ezra and Nayar [6], [7] by using parallel cameras with
different frame rates and resolutions, for the purpose of
depth map estimation and not deblurring.

The aforementioned approaches assume the blur to arise
from a global PSF. Recent work addressing spatially
varying motion blur includes that of Levin [27], which
used image statistics to correct a single motion blur on a
stable background. Bardsley et al. [4] segmented an image
into regions exhibiting similar blur, while Cho et al. [12]
used two blurred images to simultaneously estimate local
PSFs as well as deconvolve the two images. Ben-Ezra and
Nayar [7] demonstrated how the auxiliary camera could be
used to separate a moving object from the scene and apply
deconvolution to this extracted layer. These approaches
[27], [4], [12], [7], however, assume the motion blur to be
globally invariant within each separated layer. Work by
Shan et al. [42] allows the PSF to be spatially varying;
however, the blur is constrained to that from rotational
motion. Levin et al. [30] proposed a parabolic-motion
camera designed for deblurring images with 1D object
motion. During exposure, the camera moves in a manner
that allows the resulting image to be deblurred using a
single deconvolution kernel.

Super-resolution and upsampling. The problem of
super-resolution can be considered as a special case of
motion deblurring in which the blur kernel is a low-pass
filter that is uniform in all motion directions. High-
frequency details of a sharp image are, therefore, comple-
tely lost in the observed low-resolution image. There are
two main approaches to super-resolution: image hallucina-
tion based on training data and image super-resolution
computed from multiple low-resolution images. Our work
is closely related to the latter approach, which is reviewed
here. The most common technique for multiple image
super-resolution is the back-projection algorithm proposed
by Irani and Peleg [21], [22]. The back-projection algorithm
is an iterative refinement procedure that minimizes the
reconstruction errors of an estimated high-resolution image
through a process of convolution, downsampling, and
upsampling. A brief review that includes other early work
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on multiple image super-resolution is given in [10]. More
recently, Patti et al. [37] proposed a method to align low-
resolution video frames with arbitrary sampling lattices to
reconstruct a high-resolution video. Their approach also
uses optical flow for alignment and PSF estimation. These
estimates, however, are global and do not consider local
object motion. This work was extended by Elad and Feuer
[16] to use adaptive filtering techniques. Zhao and Sawhney
[55] studied the performance of multiple image super-
resolution against the accuracy of optical flow alignment
and concluded that the optical flows need to be reasonably
accurate in order to avoid ghosting effects in super-
resolution results. Shechtman et al. [43] proposed space-
time super-resolution in which multiple video cameras
with different resolutions and frame rates are aligned
using homographies to produce outputs of either higher
temporal and/or spatial sampling. When only two
cameras are used, this approach can be considered a
demonstration of a hybrid camera; however, this work
does not address the scenario where severe motion blur is
present in the high-resolution, low-frame-rate camera.
Sroubek et al. [45] proposed a regularization framework
for solving the multiple image super-resolution problem.
This approach also does not consider local motion blur
effects. Recently, Agrawal and Raskar [2] proposed a
method to increase the resolution of images that have been

deblurred using a coded exposure system. Their approach
can also be considered as a combination of motion
deblurring and super-resolution, but is limited to transla-
tional motion.

Our work. While various previous works are related in
part, our work is unique in its focus on spatially varying
blur with no assumption on global or local motion paths.
Moreover, our approach takes full advantage of the rich
information available from the hybrid camera system, using
techniques from both deblurring and super-resolution
together in a single MAP framework. Specifically, our
approach incorporates spatially varying deconvolution
together with back-projection against the low-resolution
frames. This combined strategy produces deblurred images
with less ringing than traditional deconvolution, but with
more detail than approaches using regularization and prior
constraints. As with other deconvolution methods, we
cannot recovery frequencies that have been completely loss
due to the motion blur and downsampling. A more detail
discussion on our approach is provided in Section 4.4.

3 HYBRID CAMERA SYSTEM

The advantages of a hybrid camera system are derived from
the additional data acquired by the LR-HFR camera. While
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Fig. 1. Trade-off between resolution and frame rates. (a) Image from a high-resolution, low-frame-rate camera. (b) Images from a low-resolution,
high-frame-rate camera.

Fig. 2. The processing pipeline of our system. Optical flows are first calculated from the low-resolution, high-frame-rate (LR-HFR) video. From the
optical flows, spatially varying motion blur kernels are estimated (Section 3.2). Then the main algorithm performs an iterative optimization procedure,
which simultaneously deblurs the high-resolution, low-frame-rate (HR-LFR) image/video and refines the estimated kernels (Section 4). The output is
a deblurred HR-LFR image/video. For the case of deblurring a moving object, the object is separated from the background prior to processing
(Section 5). In the deblurring of video, we can additionally enhance the frame rate of the deblurred video to produce a high-resolution, high-frame-
rate (HR-HFR) video result (Section 6).



the spatial resolution of this camera is too low for many

practical applications, the high-speed imagery is reasonably

blur free and thus is suitable for optical flow computation.

Fig. 1 illustrates an example. Since the cameras are assumed

to be synchronized temporally and observing the same

scene, the optical flow corresponds to the motion of the

scene observed by the HR-LFR camera, whose images are

blurred due to its slower temporal sampling. This ability to

directly observe fast moving objects in the scene with the

auxiliary camera allows us to handle a larger class of object

motions without the use of prior motion models, since

optical flow can be computed.

3.1 Camera Construction

Three conceptual designs of the hybrid camera system were

discussed by Ben-Ezra and Nayar [6]. In their work, they

implemented a simple design in which the two cameras are

placed side by side such that their viewpoints can be

considered the same when viewing a distant scene. A

second design avoids the distant scene requirement by

using a beam splitter to share between two sensing devices

the light rays that pass through a single aperture, as

demonstrated by McGuire et al. [36] for the studio matting

problem. A promising third design is to capture both the

HR-LFR and LR-HFR videos on a single sensor chip.

According to [9], this can readily be achieved using a

programmable CMOS sensing device.
In our work, we constructed a handheld hybrid camera

system based on the second design as shown in Fig. 3. The two

cameras are positioned such that their optical axes and pixel

arrays are well aligned. Video synchronization is achieved

using a 8051 microcontroller. To match the color responses of

the two devices, we employ histogram mapping. In our

implemented system, the exposure levels of the two devices

are set to be equal, and the signal-to-noise ratios in the HR-

LFR and LR-HFR images are approximately the same.

3.2 Blur Kernel Approximation Using Optical Flows

In the absence of occlusion, disocclusion, and out-of-plane
rotation, a blur kernel can be assumed to represent the motion
of a camera relative to objects in the scene. In [6], this relative
motion is assumed to be constant throughout an image, and
the globally invariant blur kernel is obtained through the
integration of global motion vectors over a spline curve.

However, since optical flow is in fact a local estimation of
motions, we can calculate spatially varying blur kernels
from optical flows. We use the multiscale Lucas-Kanade
algorithm [32] to calculate the optical flow at each pixel
location. Following the brightness constancy assumption of
optical flow estimation, we assume that our motion-blurred
images are captured under constant illumination such that
the change of pixel color of moving scene/object points
over the exposure period can be neglected. The per-pixel
motion vectors are then integrated to form spatially varying
blur kernels, Kðx; yÞ, one per pixel. This integration is
performed as described by the authors of [6] for global
motion. We use a spline curve with C1 continuity to fit the
path of optical flow at position ðx; yÞ. The number of frames
used to fit the spline curve is 16 for image examples and 4
for video examples (Fig. 3). Fig. 4 shows an example of
spatially varying blur kernels estimated from optical flows.

The estimated optical flows may contain noise that
degrades blur kernel estimation. We found such noisy
estimates to occur mainly in smooth or homogeneous
regions that lack features for correspondence, while regions
with sharp features tend to have accurate optical flows.
Since deblurring artifacts are evident primarily around such
features, the Lucas-Kanade optical flows are effective for
our purposes. On the other hand, the optical flow noise in
relatively featureless regions has little effect on deblurring
results, since these areas are relatively unaffected by errors
in the deblurring kernel. As a measure to heighten the
accuracy and consistency of the estimated optical flows, we
use local smoothing [51] as an enhancement of the multi-
scale Lucas-Kanade algorithm [32].

The estimated blur kernels contain quantization errors
due to the low resolution of the optical flows. Additionally,
motion vector integration may provide an imprecise
temporal interpolation of the flow observations. Our MAP
optimization framework addresses these issues by refining
the estimated blur kernels in addition to deblurring the
video frames or images. Details of this kernel refinement
will be discussed fully in Section 4.

3.3 Back-Projection Constraints

The capture of low-resolution frames in addition to the
high-resolution images not only facilitates optical flow
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Fig. 3. Our hybrid camera combines a Point Gray Dragonfly II camera,
which captures images of 1;024� 768 resolution at 25 fps (6.25 fps for
image deblurring examples), and a Mikrotron MC1311 camera that
captures images of 128� 96 resolution at 100 fps. A beamsplitter is
employed to align their optical axes and respective images. Video
synchronization is achieved using a 8051 microcontroller.

Fig. 4. Spatially varying blur kernel estimation using optical flows. (a)
Motion blur image. (b) Estimated blur kernels of (a) from optical flows.



computation but also provides super-resolution-based
reconstruction constraints [21], [22], [37], [10], [16], [3],
[43] on the high-resolution deblurring solution. The back-
projection algorithm [21], [22] is a common iterative
technique for minimizing the reconstruction error and
can be formulated as follows:

Itþ1 ¼ It þ
XM
j¼1

ðuðWðIljÞ � dðIt � hÞÞÞ � p; ð1Þ

where M represents the number of corresponding low-
resolution observations, t is an iteration index, Ilj refers to
the jth low-resolution image, Wð�Þ denotes a warp function
that aligns Ilj to a reference image, � is the convolution
operation, h is the convolution filter before downsampling,
p is a filter representing the back-projection process, and dð�Þ
and uð�Þ are the downsampling and upsampling processes,
respectively. Equation (1) assumes that each observation
carries the same weight. In the absence of a prior, h is chosen
to be a Gaussian filter with a size proportionate to the
downsampling factor, and p is set equal to h.

In the hybrid camera system, a number of low-resolution
frames are captured in conjunction with each high-resolution
image. To exploit this available data, we align these frames
according to the computed optical flows, and use them as
back-projection constraints in (1). The number of low-
resolution image constraints M is determined by the relative
frame rates of the cameras. In our implementation, we choose
the first low-resolution frame as the reference frame to which
the estimated blur kernel and other low-resolution frames are
aligned. Choosing a different low-resolution frame than the

reference frame would lead to a different deblurred result,
which is a property that can be used to increase the temporal
samples of the deblurred video as later discussed in Section 6.

The benefit of using multiple such back-projection
constraints is illustrated in Fig. 5. Each of the low-resolution
frames presents a physical constraint on the high-resolution
solution in a manner that resembles how each offset image is
used in a super-resolution technique. The effectiveness of
incorporating the back-projection constraint to suppress
ringing artifacts is demonstrated in Fig. 5 in comparison to
several other deconvolution algorithms.

4 OPTIMIZATION FRAMEWORK

Before presenting our deblurring framework, we briefly
review the Richardson-Lucy deconvolution algorithm, as
our approach is fashioned in a similar manner. For the sake
of clarity, our approach is first discussed for use in
correcting global motion blur. This is followed by its
extension to spatially varying blur kernels.

4.1 Richardson-Lucy Image Deconvolution

The Richardson-Lucy algorithm [40], [33] is an iterative
maximum likelihood deconvolution algorithm derived
from Bayes’ theorem that minimizes the following estima-
tion error:

arg min
I
nðkIb � I �Kk2Þ; ð2Þ

where I is the deblurred image, K is the blur kernel, Ib is
the observed blur image, and nð�Þ is the image noise

1016 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 6, JUNE 2010

Fig. 5. Performance comparisons for different deconvolution algorithms on a synthetic example. The ground-truth motion blur kernel is used to
facilitate comparison. The signal-to-noise ratio (SNR) of each result is reported. (a) A motion-blurred image ðSNRðdBÞ ¼ 25:62Þ with the
corresponding motion blur kernel shown in the inset. Deconvolution results using (b) Wiener filter ðSNRðdBÞ ¼ 37:0Þ, (c) Richardson-Lucy
ðSNRðdBÞ ¼ 33:89Þ, (d) total variation regularization ðSNRðdBÞ ¼ 36:13Þ, (e) gradient sparsity prior ðSNRðdBÞ ¼ 46:370, and (f) our approach
ðSNRðdBÞ ¼ 50:26 dBÞ, which combines constraints from both deconvolution and super-resolution. The low-resolution image in (g) is eight times
downsampled from the original image, shown in (h).



distribution. A solution can be obtained using the iterative
update algorithm defined as follows:

Itþ1 ¼ It �K � Ib
It �K ; ð3Þ

where � is the correlation operation. A blind deconvolution
method using the Richardson-Lucy algorithm was pro-
posed by Fish et al. [18] which iteratively optimizes I and
K in alternation using (3) with the positions of I and K
switched during optimization iterations for K. The
Richardson-Lucy algorithm assumes image noise nð�Þ to
follow a Poisson distribution. If we assume image noise to
follow a Gaussian distribution, then a least-squares method
can be employed [21]:

Itþ1 ¼ It þK � ðIb � It �KÞ; ð4Þ

which shares the same iterative back-projection update rule
as (1).

From video input with computed optical flows, multiple
blurred images Ib and blur kernels K may be acquired by
reversing the optical flows of neighboring high-resolution
frames. These multiple observation constraints can be
jointly applied in (4) [39] as

Itþ1 ¼ It þ
XN
i¼1

wiKi � ðIbi � It �KiÞ; ð5Þ

where N is the number of aligned observations.

4.2 Optimization for Global Kernels

In solving for the deblurred images, our method jointly
employs the multiple deconvolution and back-projection
constraints available from the hybrid camera input. For
simplicity, we assume in this section that the blur kernels
are spatially invariant. Our approach can be formulated into
an MAP estimation framework as follows:

arg max
I;K

P ðI;KjIb;Ko; IlÞ

¼ arg max
I;K

P ðIbjI;KÞP ðKojI;KÞP ðIljIÞP ðIÞP ðKÞ

¼ arg min
I;K

LðIbjI;KÞþLðKojI;KÞþLðIljIÞþLðIÞþLðKÞ;

ð6Þ

where I and K denote the sharp images and the blur kernels
we want to estimate; Ib, Ko, and Il are the observed blurred
images, estimated blur kernels from optical flows, and the
low-resolution, high-frame-rate images, respectively; and
Lð�Þ ¼ �logðP ð�ÞÞ. In our formulation, the priors P ðIÞ and
P ðKÞ are taken to be uniformly distributed. Assuming that
P ðKojI;KÞ is conditionally independent of I, that the
estimation errors of likelihood probabilities P ðIbjI;KÞ,
P ðKojI;KÞ, and P ðIljIÞ follow Gaussian distributions, and
that each observation of Ib, Ko, and Il is independent and
identically distributed, we can then rewrite (6) as

arg min
I;K

XN
i

kIbi � I �Kik2

þ �B
XM
j

kIlj � dðI � hÞk
2 þ �K

XN
i

kKi �Koik
2;

ð7Þ

where �K and �B are the relative weights of the error terms.
To optimize the above equation for I and K, we employ
alternating minimization. Combining (1) and (5) yields our
iterative update rules as follows:

1. update

Itþ1 ¼ It þ
XN
i¼1

Kt
i �
�
Ibi � It �Kt

i

�
þ �B

XM
j¼1

h� ðuðWðIljÞ � dðIt � hÞÞÞ;

2. update

Ktþ1
i ¼ Kt

i þ eItþ1 �
�
Ibi � Itþ1 �Kt

i

�
þ �K

�
Koi �Kt

i

�
;

where eI ¼ I=Pðx;yÞ Iðx; yÞ, Iðx; yÞ � 0, Kiðu; vÞ � 0, andP
ðu;vÞKiðu; vÞ ¼ 1. The two update steps are processed in

alternation until the change in I falls below a specified level

or until a maximum number of iterations is reached. The

term WðIljÞ is the warped aligned observations. The

reference frame to which these are aligned to can be any of

theM low-resolution images. Thus, for each deblurred high-

resolution frame, we have up to M possible solutions. This

will later be used in the temporal upsampling described in

Section 6. In our implementation, we set N ¼ 3 in

correspondence to the current, previous, and next frames,

and M is set according to the relative camera settings (4/16

for video/image deblurring in our implementation). We

also initialize I0 as the currently observed blurred image Ib,

K0
i as the estimated blur kernel Koi from optical flows, and

set �B ¼ �K ¼ 0:5.

For more stable and flexible kernel refinement, we refine

the kernel in a multiscale fashion as done in [17], [52]. Fig. 6

illustrates the kernel refinement process. We estimate PSFs

from optical flows of the observed low-resolution images and

then downsample to the coarsest level. After refinement at a

coarser level, kernels are then upsampled and refined again.

The multiscale pyramid is constructed using a downsam-

pling factor of 1=
ffiffiffi
2
p

with five levels. The likelihood P ðKojKÞ
is applied at each level of the pyramid with a decreasing

weight so as to allow more flexibility in refinement at finer

levels. We note that starting at a level coarser than the low-

resolution images allows our method to recover from some

error in PSF estimation from optical flows.
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Fig. 6. Multiscale refinement of a motion blur kernel for the image in
Figs. 11a, b, c, d, and e exhibits refined kernels at progressively finer
scales. Our kernel refinement starts from the coarsest level. The result
of each coarser level is then upsampled and used as an initial kernel
estimate for the next level of refinement.



4.3 Spatially Varying Kernels

A spatially varying blur kernel can be expressed as
Kðx; y; u; vÞ, where ðx; yÞ is the image coordinate and ðu; vÞ
is the kernel coordinate. For large-sized kernels, e.g., 65� 65,
this representation is impractical due to its enormous storage
requirements. Recent work has suggested ways to reduce the
storage size, such as by constraining the motion path [42];
however, our approach places no constraints on possible
motion. Instead, we decompose the spatially varying kernels
into a set of P basis kernels kl whose mixture weights al are a
function of image location:

Kðx; y; u; vÞ ¼
XP
l¼1

alðx; yÞklðu; vÞ: ð8Þ

The convolution equation then becomes

Iðx; yÞ �Kðx; y; u; vÞ ¼
XP
l¼1

alðx; yÞðIðx; yÞ � klðu; vÞÞ: ð9Þ

In related work [26], principal components analysis

(PCA) is used to determine the basis kernels. PCA,

however, does not guarantee positive kernel values, and

we have found in our experiments that PCA-decomposed

kernels often lead to unacceptable ringing artifacts, ex-

emplified in Fig. 7b. The ringing artifacts in the convolution

result resemble the patterns of basis kernels. Another
method is to use a patch representation which segments
images into many small patches such that the local motion
blur kernel is the same within each small patch. This
method was used Joshi et al. [25], but their blur kernels are
defocus kernels with very small variations within local
areas. For large object motion, blur kernels in the patch-
based method would not be accurate, leading to disconti-
nuity artifacts as shown in Fig. 7c. We instead choose to use
a delta function representation, where each delta function
represents a position ðu; vÞ within a kernel. Since a motion
blur kernel is typically sparse, we store only 30-40 delta
functions for each image pixel, where the delta function
positions are determined by the initial optical flows. From
the total of 65� 65 possible delta functions in the spatial
kernel at each pixel in the image, we find, in practice, that
we only use about 500-600 distinct delta functions to
provide a sufficient approximation of the spatially varying
blur kernels in the convolution process. Examples of basis
kernel decomposition using PCA and the delta function
representation are shown in Fig. 8. The delta function
representation also offers more flexibility in kernel refine-
ment, while refinements using the PCA representation are
limited to the PCA subspace.

By combining (9) and (7), our optimization function
becomes

arg min
I;K

XN
i

Ibi �
XP
l

ailðI � kilÞ
�����

�����
2

þ �B
XM
j

kIlj � dðI � hÞk
2 þ �K

XN
i

XP
l

kailkil � aoilkilk
2:

ð10Þ

The corresponding iterative update rules are then

1. update

Itþ1 ¼ It þ
XN
i¼1

XP
l

atilkil � Ibi �
XP
l

atil
�
It � kil

� !

þ �B
XM
j¼1

h� ðuðW ðIljÞ � dðIt � hÞÞÞ;
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Fig. 8. PCA versus the delta function representation for kernel decomposition. The top row illustrates the kernel decomposition using PCA and the
bottom row shows the decomposition using the delta function representation. The example kernel is taken from among the spatially varying kernels
of Fig. 7 from which the basis kernels are derived. Weights are displayed below each of the basis kernels. The delta function representation not only
guarantees positive values of basis kernels but also provides more flexibility in kernel refinement.

Fig. 7. Convolution with kernel decomposition. (a) Convolution result

without kernel decomposition, where full blur kernels are generated on

the fly per pixel using optical flow integration. (b) Convolution using 30

PCA-decomposed kernels. (c) Convolution using a patch-based

decomposition. (d) Convolution using delta function decomposition of

kernels, with at most 30 delta functions per pixel.



2. update

atþ1
il ¼ atil þ eI 0tþ1 � I 0bi �

XP
l

atilðI 0tþ1 � kilÞ
 ! !

� kil þ �K
�
aoil � atil

�
;

where I 0 and I 0b are local windows in the estimated result and
the blur image. This kernel refinement can be implemented
in a multiscale framework for greater flexibility and stability.

The number of delta functions kil stored at each pixel
position may be reduced when an updated value of ail
becomes insignificant. For greater stability, we process each
update rule five times before switching to the other.
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Fig. 11. Image deblurring using globally invariant kernels. (a) Input. (b) Result generated with the method of [17], where the user-selected region is

indicated by a black box. (c) Result generated by Ben-Ezra and Nayar [6]. (d) Result generated by back projection [21]. (e) Our results. (f) The

ground-truth sharp image. Close-up views and the estimated global blur kernels are also shown.

Fig. 10. Relationship of high-resolution deblurred result to corresponding
low-resolution frame. Any of the low-resolution frames can be selected
as a reference frame for the deblurred result. This allows up to
M deblurred solutions to be obtained.

Fig. 9. Layer separation using a hybrid camera: (a)-(d) low-resolution

frames and their corresponding binary segmentation masks. (e) High-

resolution frame and the matte estimated by compositing the low-

resolution segmentation masks with smoothing.



4.4 Discussion

Utilizing both deconvolution of high-resolution images and
back projection from low-resolution images offers distinct
advantages because the deblurring information from these
two sources tends to complement each other. This can be
intuitively seen by considering a low-resolution image to be
a sharp high-resolution image that has undergone motion
blurring with a Gaussian PSF and bandlimiting. Back
projection may then be viewed as a deconvolution with a
Gaussian blur kernel that promotes recovery of lower
frequency image features without artifacts. On the other
hand, deconvolution of high-resolution images with the
high-frequency PSFs typically associated with camera and
object motion generally supports reconstruction of higher
frequency details, especially those orthogonal to the motion
direction. While some low-frequency content can also be
restored from motion blur deconvolution, there is often
significant loss due to the large support regions for motion
blur kernels, and this results in ringing artifacts. As
discussed in [39], the joint use of images having such
different blur functions and deconvolution information
favors a better deblurring solution.

Multiple motion blur deconvolutions and multiple back
projections can further help to generate high-quality results.
Differences in motion blur kernels among neighboring
frames provide different frequency information, and

multiple back-projection constraints help to reduce quanti-
zation and the effects of noise in low-resolution images. In
some circumstances, there exists redundant information
from a given source, such as when high-resolution images
contain identical motion blur or when low-resolution
images are offset by integer pixel amounts. This makes it
particularly important to utilize as much deblurring
information as can be obtained.

Our current approach does not utilize priors on the
deblurred image or the kernels. With constraints from the
low-resolution images, we have found these priors to be
unneeded. Fig. 5 compares our approach with other
deconvolution algorithms. Specifically, we compare our
approach with Total Variation regularization [15] and
Sparsity Priors [28], which have recently been shown to
produce better results than traditional Wiener filtering [50]
and the Richardson-Lucy [40], [33] algorithm. Both Total
Variation regularization and Sparsity Priors produce results
with less ringing artifacts. There are almost no ringing
artifacts with Sparsity Priors, but many fine details are lost.
In our approach, most medium to large-scale ringing
artifacts are removed using the back-projection constraints,
while fine details are recovered through deconvolution.

Although our approach can acquire and utilize a greater
amount of data, high-frequency details that have been lost
by both motion blur and downsampling cannot be
recovered. This is a fundamental limitation of any
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Fig. 12. Image deblurring with spatial varying kernels from rotational motion. (a) Input. (b) Result generated with the method of [42] (obtained
courtesy of the authors of [42]). (c) Result generated by Ben-Ezra and Nayar [6] using spatially varying blur kernels estimated from optical flow.
(d) Result generated by back projection [21]. (e) Our results. (f) The ground-truth sharp image. Close-ups are also shown.



deconvolution algorithm that does not hallucinate detail.
We also note that reliability in optical flow cannot be
assumed beyond a small time interval. This places a
restriction on the number of motion blur deconvolution
constraints that can be employed to deblur a given frame.

Finally, we note that the iterative back-projection

technique incorporated into our framework is known to

have convergence problems. Empirically, we have found

that stopping after no more than 50 iterations of our

algorithm produces acceptable results.

5 DEBLURRING OF MOVING OBJECTS

To deblur a moving object, a high-resolution image needs
to be segmented into different layers because pixels on the
blended boundaries of moving objects contain both
foreground and background components, each with
different relative motion to the camera. This layer
separation is inherently a matting problem that can be
expressed as

I ¼ �F þ ð1� �ÞB; ð11Þ

where I is the observed image intensity, F , B, and � are the
foreground color, background color, and alpha value of the
fractional occupancy of the foreground. The matting

problem is an ill-posed problem since the number of
unknown variables is greater than the number of observa-
tions. Single-image approaches require user assistance to
provide a trimap [14], [13], [46] or scribbles [49], [29], [48]
for collecting samples of the foreground and background
colors. Fully automatic approaches, however, have required
either a blue background [44], multiple cameras with
different focus [35], polarized illumination [36], or a camera
array [24]. In this section, we propose a simple solution to
the layer separation problem that takes advantage of the
hybrid camera system.

Our approach assumes that object motion does not
cause motion blur in the high-frame-rate camera such that
the object appears sharp. To extract the alpha matte of a
moving object, we perform binary segmentation of the
moving object in the low-resolution images and then
compose the binary segmentation masks with smoothing
to approximate the alpha matte in the high-resolution
image. We note that Ben-Ezra and Nayar [7] used a similar
strategy to perform layer segmentation in their hybrid
camera system. In Fig. 9, an example of this matte
extraction is demonstrated together with the moving
object separation method of Zhang et al. [54]. The
foreground color F must also be estimated for deblurring.
This can be done by assuming a local color smoothness
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Fig. 13. Image deblurring with translational motion. In this example, the moving object is a car moving horizontally. We assume that the motion blur
within the car is globally invariant. (a) Input. (b) Result generated by Fergus et al. [17], where the user-selected region is indicated by the black box.
(c) Result generated by Ben-Ezra and Nayar [6]. (d) Result generated by back projection [21]. (e) Our results. (f) The ground-truth sharp image
captured from another car of the same model. Close-up views and the estimated global blur kernels within the motion blur layer are also shown.



prior on F and B and solving for their values with

Bayesian matting [14]:

��1
F þ I�2=�2

I I�ð1� �Þ=�2
I

I�ð1� �Þ=�2
I ��1

B þ Ið1� �Þ2=�2
I

" #
F

B

� �

¼
��1
F �F þ I�=�2

I

��1
B �B þ Ið1� �Þ=�2

I

" #
;

ð12Þ

where ð�F ;�F Þ and ð�B;�BÞ are the local color mean and

covariance matrix (Gaussian distribution) of the foreground

and background colors, I is a 3� 3 identity matrix, and �I is

the standard derivation of I, which models estimation errors

of (11). Given the solution of F and B, the � solution can be

refined by solving (11) in closed form. Refinements of F , B,

and� can be done in alternation to further improve the result.
Once moving objects are separated, we deblur each layer

separately using our framework. The alpha mattes are also

deblurred for compositing, and the occluded background

areas revealed after alpha mask deblurring can then be

filled in either by back projection from the low-resolution

images or by the motion inpainting method of [34].

6 TEMPORAL UPSAMPLING

Unlike deblurring of images, videos require deblurring of
multiple consecutive frames in a manner that preserves
temporal consistency. As described in Section 4.2, we can
jointly use the current, previous, and subsequent frames to
deblur the current frame in a temporally consistent way.
However, after sharpening each individual frame, temporal
discontinuities in the deblurred high-resolution, low-frame-
rate video may become evident through some jumpiness in
the sequence. In this section, we describe how our method
can alleviate this problem by increasing the temporal
sampling rate to produce a deblurred high-resolution,
high-frame-rate video.

As discussed by Shechtman et al. [43], temporal super-
resolution results when an algorithm can generate an output
with a temporal rate that surpasses the temporal sampling
of any of the input devices. While our approach generates a
high-resolution video at greater temporal rate than the input
high-resolution, low-frame-rate video, its temporal rate is
bounded by the frame rate of the low-resolution, high-
frame-rate camera. We therefore refrain from the term
super-resolution and refer to this as temporal upsampling.

Our solution to temporal upsampling derives directly
from our deblurring algorithm. n our scenario, we have
M high-frame-rate low-resolution frames corresponding to
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Fig. 14. Image deblurring with spatially varying kernels. In this example, the moving object contains out-of-plane rotation with both occlusion and
disocclusion at the object boundary. (a) Input. (b) Result generated by Ben-Ezra and Nayar [6]. (c) Result generated by back projection [21]. (d) Our
results using the first low-resolution frame as the reference frame. (e) Our results using the last low-resolution frame as the reference frame. (f) The
ground-truth sharp image. Close-ups are also shown.



each high-resolution, low-frame-rate motion-blurred image.
Fig. 10 shows an example. With our algorithm, we therefore
have the opportunity to estimateM solutions using each one
of the M low-resolution frames as the basic reference frame.
While the ability to produce multiple deblurred frames is not
a complete solution to temporal upsampling, here the use of
theseM different reference frames leads to a set of deblurred
frames that is consistent with the temporal sequence. This
unique feature of our approach is gained through the use of
the hybrid camera to capture low-resolution, high-frame-
rate video in addition to the standard high-resolution, low-
frame-rate video. The low-resolution, high-frame-rate video
not only aids in estimating the motion blur kernels and
provides back-projection constraints, but can also help to
increase the deblurred video frame rate. The result is a high-
resolution, high-frame-rate deblurred video.

7 RESULTS AND COMPARISONS

We evaluate our deblurring framework using real images
and videos. In these experiments, a ground-truth blur-free
image is acquired by mounting the camera on a tripod and
capturing a static scene. Motion blurred images are then
obtained by moving the camera and/or introducing a
dynamic scene object. We show examples of several
different cases: globally invariant motion blur caused by
camera shake, in-plane rotational motion of a scene object,

translational motion of a scene object, out-of-plane rota-
tional motion of an object, zoom-in motion caused by
changing the focal length (i.e., camera’s zoom setting), a
combination of translational motion and rotational motion
with multiple frames used as input for deblurring one
frame, video deblurring with out-of-plane rotational
motion, video deblurring with complex in-plane motion,
and video deblurring with a combination of translational
and zoom-in motion.

Globally invariant motion blur. In Fig. 11, we present
an image deblurring example with globally invariant
motion, where the input is one high-resolution image and
several low-resolution images. Our results are compared
with those generated by the methods of Fergus et al. [17],
Ben-Ezra and Nayar [6], and back projection [21]. Fergus
et al.’s approach is a state-of-the-art blind deconvolution
technique that employs a natural image statistics constraint.
However, when the blur kernel is not correctly estimated,
an unsatisfactory result shown in (b) will be produced. Ben-
Ezra and Nayar use the estimated optical flow as the blur
kernel and then perform deconvolution. Their result in (c) is
better than that in (b) as the estimated blur kernel is more
accurate, but ringing artifacts are still unavoidable. Back
projection produces a super-resolution result from a
sequence of low-resolution images as shown in (d). Noting
that motion blur removal is not the intended application of
back projection, we can see that its results are blurry since
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Fig. 15. Image deblurring with spatially varying kernels. In this example, the camera is zooming into the scene. (a) Input. (b) Result generated by
Fergus et al. [17]. (b) Result generated by Ben-Ezra and Nayar [6]. (c) Result generated by back projection [21]. (d) Our results. (f) The ground-truth
sharp image. Close-ups are also shown.



the high-frequency details are not sufficiently captured in
the low-resolution images. The result of our method and the
refined kernel estimate are displayed in (e). The ground
truth is given in (f) for comparison.

In-plane rotational motion. Fig. 12 shows an example
with in-plane rotational motion. We compared our result
with those by Shan et al. [42], Ben-Ezra and Nayar [6], and
back-projection [21]. Shan et al.’s [42] is a recent technique
that targets deblurring of in-plane rotational motion. Our
approach is seen to produce less ringing artifacts compared
to [42] and [6], and it generates greater detail than [21].

Translational motion. Fig. 13 shows an example of a car
translating horizontally. We assume that the motion blur
within the car region is globally invariant and thus techniques
for removing globally invariant motion blur can be applied
after layer separation of the moving object. We use the
technique proposed in Section 5 to separate the moving car
from the static background. Our results are compared with
those generated by Fergus et al. [17], Ben-Ezra and Nayar [6],
and back projection [21]. In this example, the moving car is
severely blurred with most of the high-frequency details lost.
We demonstrate in (c) the limitation of using deconvolution
alone even with an accurate motion blur kernel. In this
example, the super-resolution result in (d) is better than the
deconvolution result, but there are some high-frequency
details that are not recovered. Our result is shown in (e),
which maintains most low-frequency details recovered by

super-resolution and also high-frequency details recovered
by deconvolution. Some incorrect high-frequency details
from the static background are incorrectly retained in our
final result because of the presence of some high-frequency
background details in the separated moving object layer. We
believe that a better layer separation algorithm would lead to
improved results. This example also exhibits a basic limita-
tion of our approach. Since there is significant car motion
during the exposure time, most high-frequency detail is lost
and cannot be recovered by our approach. The ground truth
in (f) shows a similar, parked car for comparison.

Out-of-plane rotational motion. Fig. 14 shows an
example of out-of-plane rotation, where occlusion/disocclu-
sion occurs at the object boundary. Our result is compared
to that of Ben-Ezra and Nayar [6] and back projection [21].
One major advantage of our approach is that we can detect
the existence of occlusions/disocclusions of the motion-
blurred moving object. This not only helps to estimate the
alpha mask for layer separation but also aids in eliminating
irrelevant low-resolution reference frame constraints for
back projection. We show our result by choosing the first
frame and the last frame as the reference frame. Both
occlusion and disocclusion are contained in this example.

Zoom-in motion. Fig. 15 shows another example of
motion blur from zoom-in effects. Our result is compared to
Fergus et al. [17], Ben-Ezra and Nayar [6], and back
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Fig. 16. Deblurring with and without multiple high-resolution frames. (a) and (b) Input images containing both translational and rotational motion blur.
(c) Deblurring using only (a) as input. (d) Deblurring using only (b) as input. (e) Deblurring of (a) using both (a) and (b) as inputs. (f) Ground-truth
sharp image. Close-ups are also shown.



projection [21]. We note that the method of Fergus et al. [17]
is intended for globally invariant motion blur and is shown
here to demonstrate the effects of using only a single blur
kernel to deblur spatially varying motion blur. Again, our
approach produces better results with less ringing artifacts
and richer detail.

Deblurring with multiple frames. The benefit of using
multiple deconvolutions from multiple high-resolution
frames is exhibited in Fig. 16 for a pinwheel with both
translational and rotational motions. The deblurring result
in (c) was computed using only (a) as input. Likewise, (d) is
the deblurred result from only (b). Using both (a) and (b) as
inputs yields the improved result in (e). This improvement
can be attributed to the difference in high-frequency detail
that can be recovered from each of the differently blurred
images. The ground truth is shown in (f) for comparison.

Video deblurring with out-of-plane rotational motion.
Fig. 17 demonstrates video deblurring of a vase with out-of-
plane rotation. The center of rotation is approximately
aligned with the image center. The top row displays five
consecutive input frames. The second row shows close-ups
of a motion-blurred region. The middle row shows our
results with the first low-resolution frames as the reference
frames. The fourth and fifth rows show close-ups of our
results with respect to the first and fifth low-resolution
frames as the reference frames.

This example also demonstrates the ability to produce
multiple deblurring solutions as described in Section 6. For
temporal upsampling, we combine the results together in

the order indicated by the red lines in Fig. 17. With our
method, we can increase the frame rate of deblurred high-
resolution videos up to the same rate as the low-resolution,
high-frame-rate video input.

Video deblurring with complex in-plane motion. Fig. 18
presents another video deblurring result of a tossed box
with complex (in-plane) motion. The top row displays five
consecutive input frames. The second row shows close-ups
of the motion-blurred moving object. The middle row shows
our separated mattes for the moving object, and the fourth
and fifth rows present our results with the first and third
low-resolution frames as reference. The text on the tossed
box is recovered to a certain degree by our video deblurring
algorithm. As in the previous video deblurring example, our
output is a high-resolution, high-frame-rate deblurred
video. This result also illustrates a limitation of our method,
where the shadow of the moving object is not deblurred and
may appear inconsistent. This problem is a direction for
future investigation.

Video deblurring with a combination of translational

and zoom-in motions. Our final example is shown in Fig. 19.
The moving object of interest is a car driving toward the
camera. Both translational effects and zoom-in blur effects
exist in this video deblurring example. The top row displays
five consecutive frames of input. The second row shows
close-ups of the motion-blurred moving object. The middle
row shows our extracted mattes for the moving object, and
the fourth and fifth rows present our results with the first
and fifth low-resolution frames as reference.
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Fig. 17. Video deblurring with out-of-plane rotational motion. The moving object is a vase with a center of rotation approximately aligned with the
image center. (a) Input video frames. (b) Close-ups of a motion-blurred region. (c) Deblurred video. (d) Close-ups of deblurred video using the first
low-resolution frames as the reference frames. (e) Close-ups of deblurred video frames using the fifth low-resolution frames as the reference frames.
The final video sequence has higher temporal sampling than the original high-resolution video and is played with frames ordered according to the red
lines.



8 CONCLUSION

We have proposed an approach for image/video deblurring

using a hybrid camera. Our work has formulated the

deblurring process as an iterative method that incorporates

optical flow, back projection, kernel refinement, and frame

coherence to effectively combine the benefits of both

deconvolution and super-resolution. We demonstrate that

this approach can produce results that are sharper and

cleaner than state-of-the-art techniques.

While our video deblurring algorithm exhibits high-

quality results on various scenes, there exist complicated

forms of spatially varying motion blur that can be difficult

for our method to handle (e.g., motion blur effects caused

by object deformation). The performance of our algorithm is

also bounded by the performance of several of its

components, including optical flow estimation, layer

separation, and also the deconvolution algorithm. Despite

these limitations, we have proposed the first work to handle

spatially varying motion blur with arbitrary in-plane/out-

of-plane rigid motion. This work is also the first to address

video deblurring and increase video frame rates using a

deblurring algorithm.
Future research directions for this work include how to

improve the deblurring performance through incorporating

priors into our framework. Recent deblurring methods have
demonstrated the utility of priors, such as the natural image

statistics prior and the sparsity prior, for reducing ringing

artifacts and for kernel estimation. Another research direction

is to improve layer separation by more fully exploiting the

available information in the hybrid camera system. Addi-

tional future work may also be done on how to recover the

background partially occluded by a motion-blurred object.
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