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Abstract. This paper introduces a new procedure to handle color in
single image super resolution (SR). Most existing SR techniques focus
primarily on enforcing image priors or synthesizing image details; less
attention is paid to the final color assignment. As a result, many ex-
isting SR techniques exhibit some form of color aberration in the final
upsampled image. In this paper, we outline a procedure based on image
colorization and back-projection to perform color assignment guided by
the super-resolution luminance channel. We have found that our proce-
dure produces better results both quantitatively and qualitatively than
existing approaches. In addition, our approach is generic and can be
incorporated into any existing SR techniques.
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1 Introduction and Related Work

Image super resolution (SR) refers to techniques that estimate a high-resolution
(HR) image from a single low-resolution (LR) image input. Strategies to address
the image SR problem are typically categorized into three broad methods: in-
terpolation based methods, reconstruction based methods, and learning based
methods.

Interpolation based techniques (e.g., [1-4]) have their roots in sampling the-
ory and interpolate the HR image directly from the LR input. While these ap-
proaches tend to blur high frequency details resulting in noticeable aliasing ar-
tifacts along edges, they remain popular due to their computational simplicity.
Reconstruction based approaches (e.g., [5-13]) estimate an HR image by enforc-
ing priors in the upsampling process. Such priors are commonly incorporated into
a back-projection framework to reduce artifacts around edges while constrain-
ing the estimated HR image against the LR input. Learning based techniques
estimate high frequency details from a training set of HR images that encode
the relationship between HR and LR images (e.g., [14-21]). These approaches
synthesize missing details based on similarities between the input LR image and
the examples in the training set based on patch similarities. Hybrid approaches
that combine elements of reconstruction and learning based methods have also
been proposed (e.g., [22,23]).

While these existing SR techniques have successfully demonstrated ways to
enhance image quality through priors or detail hallucination — how to han-
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Fig. 1. (a) LR chrominance input. Results using bicubic interpolation of the UV chan-
nels (b), using joint-bilateral upsampling [25] (c), and our result (d). Color difference
maps (bottom) are computed based on the CIEDE2000 color difference formula ([26,
27)).

dle color in the SR process has received far less attention. Instead, two sim-
ple approaches are commonly used to assign color. The first approach is to
perform color assignment using simple upsampling of the chrominance values.
This approach, used extensively in both reconstruction-based and learning-based
SR (e.g. [12,13,19,24]), first transforms the input image from RGB to another
color space, most notably YUV. Super resolution is applied only to the lumi-
nance channel, Y. The chrominance channels, U and V, are then upsampled
using interpolation methods (e.g. bilinear, bicubic) and the final RGB is com-
puted by recombining the new SR luminance image with the interpolated chromi-
nance to RGB. The second approach, used primarily in learning-based techniques
(e.g. [14-16)), is to use the full RGB channels in patch matching for detail syn-
thesis, thus directly computing an RGB output.

These two existing approaches for SR color assignment have drawbacks. The
basis for the UV-upsampling approach is that the human visual system is more
sensitive to intensities than color and can therefore tolerate the color inaccura-
cies in this type of approximation. However, color artifacts along the edges, are
still observable, especially under large magnification factors as shown in Fig. 1.
Performing better upsampling of the chrominance, by weighted average [28] or
joint-bilateral filtering [25], can reduce these artifacts as shown in Fig. 1(c), but
not to the same extent as our algorithm (Fig. 1(d)). In addition, techniques such
as joint-bilateral upsampling requires parameter-tuning to adjust the Gaussian
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Fig. 2. (a) LR chrominance input, (b) ground truth image (top) and training images
(bottom), (c) result using learning based SR [16], (d) our result. Color difference maps
are computed based on the CIEDE2000 color difference formula ([26, 27]).

window size and parameters of the bi-lateral filter’s spatial and range compo-
nents to obtain optimal results.

For learning-based techniques, the quality of the final color assignment de-
pends heavily on the similarity between the training data and the input image.
The techniques that perform full RGB learning can exhibit various color artifacts
when suitable patches cannot be found in the the training data. Approaches that
apply learning-based on the luminance channel in tandem with UV-upsampling
can still exhibit errors when the estimated SR luminance images contains con-
trast shifts due to training set mismatches. Since back-projection is often not
used in learning-based techniques, this error in the SR luminance image can lead
to color shifts in the final RGB assignment. Fig. 2 shows examples of the color
problems often found in learning-based approaches.

In this paper, we propose a new approach to reconstruct colors when per-
forming single image super resolution. As with chrominance upsampling, our
approach applies super resolution only to the luminance channel. Unique to our
approach, however, is the use of image colorization [29, 30] to assign the chromi-
nance values. To do this, we first compute a chrominance map that adjusts the
spatial locations of the chrominance samples supplied by the LR input image.
The chrominance map is then used to colorize the final result based on the SR lu-
minance channel. When applying our approach to learning-based SR techniques,
we also introduce a back-projection step to first normalize the luminance chan-
nel before image colorization. We show that this back-projection procedure has



4 Colorization for Single Image Super Resolution

| Color map generationl

-

@7,

c
2
=)
q
N
=
o
Q
o

'
| Back projection |

(f) YSR (optional)

Fig. 3. The pipeline of our algorithm. (a) LR input image. (b) The chrominance com-
ponent of input image. (¢) Initial chrominance map produced by expanding (b) with
the desired scale without any interpolation. (d) Adjusted chrominance map. (e) The
luminance component of input image. (f) Upsampled image using any SR algorithm.
(g) Upsampled image produced by adding the back-projection constraint (if neces-
sary). (h) Final color SR image obtained by combining the color map (d) and the SR
luminance image (g) using colorization.

little adverse impact on the synthesized details. Our approach not only shows
improvements both visually and quantitatively, but is straight-forward to imple-
ment and requires no parameter tuning. Moreover, our approach is generic and
can be used with any existing SR technique.

The remainder of this paper discusses our SR color assignment procedure
and demonstrates results on several examples using both reconstruction and
learning-based techniques. The paper is concluded with a short discussion and
summary.

2 Colorization Framework for Super Resolution

The pipeline of our approach is summarized in Fig. 3. Given a LR color im-
age (Fig.3 (a)), our goal is to produce a SR color image (Fig.3 (h)). To achieve
this goal, the input LR image is first decomposed into the luminance channel
Y7, and the chrominance channels Uy, and Vi, . For simplicity, we use only the U
channel to represent chrominance since the operations on the U and V' channels
are identical. For the luminance, the HR luminance channel Yy is constructed
from Y7 by using any preferred SR algorithm. To assign the RGB colors to the
final SR image Iy, we use the colorization framework introduced by Levin et
al. [29]. For the colorization, we introduce a method to generate chrominance
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samples which act as the seeds for propagating color to the neighboring pix-
els. The chrominance samples are obtained from the low resolution input, Uy,
however the spatial arrangement of these chrominance values are generated au-
tomatically from the relationships between intensities in Y7, and Y.

Before we explain the colorization scheme, we note that we apply back-
projection for computing Yy from Y;, when the selected SR algorithm does not
already include the back-projection procedure. We explain the reason for this
first, before describing the colorization procedure.

2.1 Luminance Back-projection

Enforcing the reconstruction constraint is a standard method which is used in
many reconstruction based algorithms [9-13]. The difference among these var-
ious approaches is the prior imposed on the SR image. In our framework, the
reconstruction constraint is enforced by minimizing the back-projection error of
the reconstructed HR image Yy against the LR image Y; without introducing
extra priors. This can be expressed as as:

Yg = argrryljn 1Yz — (Yg ®@h) ||, (1)
H

where | is the downsampling operator and ® represents convolution with filter
h with proportional to the magnification factor.

Assuming the term Yy, — (Yg ® h) | follows a Gaussian distribution, this
objective equation can be cast as a least squares minimization problem with an
optimal solution Yz obtained by the iterative gradient descent method [5].

The reason to incorporate the reconstruction constraint is that the desired
output should have the similar intensity values as the input image. As discussed
in Section 1, learning-based techniques often suffer from luminance shifts due to
training example mismatches. Conventional wisdom is that back-projection may
remove hallucinated details, however, we found that adding this procedure had
little effect on the synthesized details. Fig. 4 shows an example of the gradient
histogram of the original Ysg as more iterations of back-projection are applied.
We can see that the gradient profiles exhibit virtually no change, while the
color errors measured using the CIEDE200 metric against the ground truth
are significantly reduced. This is not too surprising given that the estimated
luminance image is downsampled in the back-projection process described in
Eq. (1). Thus, back-projection is correcting luminance mismatches on the low-
pass filtered image, allowing the fine details to remain. For SR techniques that
already includes back-projection, this step can be omitted.

3 Colorization Scheme

The core of our approach lies in using image colorization to propagate the chromi-
nance values from the LR input in order to add color to the upsampled SR
luminance image. In [29], a gray-scale image is colorized by propagating chromi-
nance values which are assigned via scribbles drawn on the image by the user.



6 Colorization for Single Image Super Resolution

0 iteration 2 iterations 4 iterations 8 iterations 16 iterations 32 iterations

Fig. 4. Illustration of the benefits of back-projection. Estimated HR images (top), their
CIEDE2000 color difference maps (middle), and gradient magnitude profiles (bottom)
are shown at different iterations based on Eq. (1).

In our approach, the initial chrominance assignment comes from the LR image.
The positions of these assignments are adjusted to better fit the HR luminance
channel. We first review the image colorization and then describe our procedure
to build the chrominance map.

3.1 Image Colorization

Image colorization [29] computes a color image from a luminance image and a
set of sparse chrominance constraints. The unassigned chrominance values are
interpolated based on the assumption that neighboring pixels r and s should
have similar chrominance values if their intensities are similar. Thus, the goal
is to minimize the difference between the chrominance Ug (r) at pixel r and the
weighted average of the chrominance at neighboring pixels:

E=>) (Uu(r)— Y wrsUnul(s (2)

SEN(T)

where wyg is a weighting function that sums to unity. The weight wys should be
large when Yz (r) is similar to Yg(s), and small when the two luminance values
are different. This can be achieved with the affinity function [29]:

Wrs O e—(YH(r)—YH(S))2/20f (3)

where o, is the variance of the intensities in a 3x3 window around r. The
final chrominance image is obtained by minimizing Eq. 2 based on the input
luminance image and chrominance constraints. The final RGB image is computed
by recombining the luminance and the estimated chrominance.
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Fig.5. (a) The effect of the chrominance seed position on the final colorization result
are shown. The arrows indicate the chrominance propagation based on the intensity
affinity based on the seed location. (b) Our aim is to adjust the seed point to be located
at a position in the HR luminance result that is more similar the LR image luminance.
This will produce a better colorization result.

3.2 Chrominance map generation

To perform image colorization, chrominance values must be assigned to a set
of pixels, or seed points, from which the color is propagated. In [29], scribbles
from the user-input are used as the initial assignment of color. In this paper,
the chrominance from the LR image is used for the initial color assignment. For
example, for an 8x upsampling, a pixel in the LR image can be mapped to
any of the pixels in the corresponding 8 x 8 block of corresponding HR pixels.
The key in our colorization scheme lies in the positioning of the seed points
in the upsampled image since blindly assigning the chrominance value to the
middle of the patch may not produce the best result and can likely result in
undesired color bleeding. This is illustrated in Fig. 5(a), where the we see that
the estimated chrominance values are sensitive to the position of the seed point
(i.e. hard constraint), especially on the edges.

Our strategy is to place the chrominance value in a position in the upsampled
patch where the luminance value of the computed SR (Yy) is closest to the
original LR pixel’s intensity (Y7,) as shown in Fig. 5(b). This approach, however,
can be sensitive to noise and we therefore introduce a simple Markov Random
Field (MRF) formulation to regularize the search direction for assigning the seed
point. The idea is that the neighboring seed points are likely to share the same
search direction in the HR image. Fig. 6 outlines the approach using an example
with 8x upsampling.

The search directions are discretized into four regions (Fig. 6 (a)) which serve
as the four labels of the MRF, i.e. I, € {0,1,2,3}. Let x be a pixel coordinate
in the LR image and X be the upsampled coordinate of the point x. Let N;(X)
be the neighborhood of X in the direction ¢, where ¢ € {0,1,2,3}. A standard
MRF formulation is derived as:

E = E, + \E,, (4)
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Fig. 6. The MRF example: (a) Discretized search directions. (b) Data cost computation
in each search direction. (c) Smoothness constraint to regularize results. The MRF
smoothness prior regularizes the search direction to be similar to the search directions
of neighboring LR pixels.

where Ej; is the data cost of assigning a label to each point x and FEy is the
smoothness term representing the cost of assigning different labels to adjacent
pixels. The term A serves as the typical balancing weight between the data cost
and the smoothness cost. Each cost is computed as follows :

Eq(lx =) = i YL(x) = Yu(Z)|, (5)
and
Es(lpv lq) = f(lpa lq) : Q(qu), (6)

where f(l,,l,) = 0if I, = I, and f(l,,l;) = 1 otherwise. The term ¢(§) =
E% with Yy, = ||Yz(p) — YL(¢)||?, where p and q are neighboring pixels. This
weighting term encourages pixels with similar LR luminance intensity values to
share the same directional label. The MRF labels are assigned using the belief
propagation (BP) algorithm [31].

After computing the search direction using the MRF regularization, the
chrominance value from the LR image is placed on the pixel with the most
similar luminance value in the regularized search direction. Fig. 7 shows an ex-
ample of the results obtained before and after applying the chrominance map
adjustment. Bleeding is present without the adjustment, however, the results is
much closer to the ground truth with the adjustment .
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Fig. 7. (a) Initial color map Us. (b) Color map Ug. (c) Colorization result using (a).
(d) Colorization result using (b). Color map (b) produce better results without leakage
at boundaries since the chrominance points are well located.

Fig. 8. (Top) Images used for our experiments. (Bottom) Images used as the training
examples for the learning-based SR.

4 Experimental Results

Here we show results of our colorization scheme on 4 representative images shown
in Fig. 8. For brevity, we only show the error maps and selected zoomed regions.
Full resolution images of our results, together with additional examples, are avail-
able online. For the color difference measure, we use the CIEDE2000 metric [26,
27] together with a “hot” color-map. The mean color errors, AFE, for all pixels
as defined by the CIEDE2000 metric are provided.

The first two results are shown in Fig. 9 and Fig. 10. The images have been
upsampled using 4x magnification using the recent reconstruction based SR
algorithm in [13]. The results were produced with executable code available on
the author’s project webpage. Our colorization results are compared with the de
facto UV-upsampling technique (also used in [13]). As can be seen, the overall
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Fig. 9. Example 1 (Ballon): 4x reconstruction-based upsampling has been applied to
the “ballon” image. UV-upsampling (a,c) is compared with our result (b,d).

error maps for our results are better. For the zoomed regions, we can see that
artifacts about edges are less noticeable using our technique.

The next two results are shown in Fig. 11 and Fig. 12. Fig. 8 (bottom)
shows the training images used for the learning examples, which are the the
same images used in the [16]. We use our own implementation of the full RGB
learning method using the one-pass algorithm described in [16]. For our results,
we first apply back-projection on the SR luminance channel before performing
the colorization step. Learning-based techniques exhibit more random types of
color artifacts, however, our approach is still able to improve the results as shown
in the errors maps and zoomed regions.

The final example demonstrates the benefits of the optional back-projection
procedure when the SR luminance image exhibits significant intensity shifting.
In this example, only two of the training images are used to produce the SR
image. Fig. 13(a) shows the result and the associated error. Fig. 13(b) shows our
results obtained by only applying the colorization step and Fig. 13(c) shows the
results when back-projection is used followed by our colorization method. We
can see the error is significantly reduced when the back-projection procedure is
incorporated.

5 Discussion and Summary

The focus of this paper is on assigning the final color values in the super resolu-
tion pipeline, and not how to perform SR itself. Therefore, our results are affected
by the quality of the SR technique used, which is evident in the learning-based
examples which tend to produce a higher overall error. However, even in these
examples, our approach is able to offer a better final color assignment when com-
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Fig. 10. Example 2 (Pinwheel): 4Xx reconstruction-based upsampling has been applied
to the “pinwheel” image. UV-upsampling (a,c) is compared with our result (b,d).

Fig. 11. Example 3 (Parrot): 4x learning-based upsampling (a,c) has been applied to
the the “parrot” image. Full RGB SR is compared with our result (b,d).
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Fig. 12. Example 4 (Flowers): Example 2 (Parrot): 4x learning-based upsampling (a,c)
has been applied to the the “parrot” image. Full RGB SR is compared with our re-
sult (b,d).

Fig. 13. Example showing the benefits of back-projection. (a) learning-based result;
(b) our approach without back-projection; (c) our approach with back-projection.
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pared with the ground truth. For reconstruction-based approaches, our overall
edges appear sharper compared to basic UV-upsampling. We note that our ap-
proach inherits the limitations of image colorization. In particular, color bleeding
may occur in regions with different chrominance but similar luminance values.
However, the reasonably dense chrominance sampling from the LR image helps
to keep such artifacts localized.

While we introduce an MRF regularization to aid in the chrominance map
assignment, poor assignment of chrominance values can obviously result in un-
desired artifacts. Our quantitative measurements suggest our current approach
is reasonable. We envision that better results could be obtained in the future
with more sophisticated strategies for the chrominance placement.

In summary, we have introduced a new approach for assigning colors to
SR images based on image colorization. Our approach advocates using back-
projection with learning-based techniques and describes a method to adjust
the chrominance values before performing image colorization. Our approach is
generic and can be used with any existing SR algorithms.
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