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Abstract

We describe a novel application framework to reduce the
effects of ink-bleed in old documents. This task is treated as
a classification problem where training-data is used to com-
pute per-pixel likelihoods for use in a dual-layer Markov
Random Field (MRF) that simultaneously labels image pix-
els of the front and back of a document as either foreground,
background, or ink-bleed, while maintaining the integrity
of foreground strokes. Our approach obtains better results
than previous work without the need for assumptions about
ink-bleed intensities or extensive parameter tuning. Our
overall framework is detailed, including front and back im-
age alignment, training-data collection, and the MRF for-
mulation with associated likelihoods and intra- and inter-
layer cost computations.

1. Introduction
Ink-bleed is a serious problem commonly found in aging

handwritten documents. Ink-bleed occurs when ink written
on one side of a page penetrates the paper to become visi-
ble on the opposite side. The severity and characteristics of
ink-bleed is related to a variety of factors including the ink’s
chemical makeup, the paper’s physical and chemical con-
struction, the amount of ink applied and the paper’s thick-
ness (both spatially varying), the document’s age, and the
amount of humidity in the environment housing the docu-
ments. Figure 1-(a) shows examples of ink-bleed exhibiting
various levels of severity and intensity characteristics from
four different documents. The documents are from the same
archival collection dating from 1820-1850.

The obvious drawback of ink-bleed is the reduction in
the document’s legibility. The motivation of our work is to
provide a practical approach to reduce ink-bleed interfer-
ence in imaged documents in order to improve legibility as
shown in Figure 1-(b). We also strive for a solution that is
applicable in a real-world setting that considers the wide-
range of ink-bleed diversity as well as practical concerns,
such as the abilities of the end users.
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(a) (b)
Figure 1. (a) Closeup of image regions from different handwritten
documents, circa 1820-1850, suffering ink-bleed. (b) Our goal is
to retain the original foreground strokes to improve legibility.

[Contribution] This paper describes a novel application
framework to reduce ink-bleed from images of the front
and back of a document. The problem is treated as one of
classification where image pixels are labeled as either fore-
ground, ink-bleed, or background. This pixel labeling is
aided by a dual-layer MRF with smoothness cost designed
to reduce noise while maintaining foreground strokes in re-
gions where foreground and ink-bleed overlap. Our ap-
proach operates on a wide-range of ink-bleed and does not
require assumptions about the ink-bleed intensity or exten-
sive parameter tuning. All necessary components needed
for this application are presented, including front and back
image alignment, collection of training-data, and the dual-
layer MRF setup with associated likelihoods and intra- and
inter-layer cost computations.

The remainder of this paper is organized as follows:
section 2 discusses related work; section 3 provides an
overview of our framework; section 4 details the data-cost
computations and dual-layered MRF formulation; section
5 presents results including comparisons against other ap-
proaches; section 6 provides a short discussion and sum-
mary.
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2. Related Work
There is surprisingly little previous work targeting com-

plex ink-bleed. This is likely due to the difficulty in obtain-
ing access to older handwritten materials that are housed
under tight regulation. Much of the previous work that
does exist focuses on relatively simple ink-bleed that can
be removed using variations of local or global threshold-
ing (e.g. [1, 6, 10]).

Drira et al [5] presented a recent approach targeting
complex ink-bleed that uses Principal Component Analy-
sis (PCA) to first reduce the dimensionality of an RGB
input image. Pixels then are classified as foreground and
background by iteratively clustering the PCA data into two
groups via an adaptive threshold. Tonazzini et al [14] tar-
geted complex ink-bleed using blind signal separation via
Independent Component Analysis which linearly decom-
poses an RGB image into three signals assumed to be fore-
ground, background, and ink-bleed. Wolf [16] recently ex-
tended this idea using non-linear blind separation via an
MRF framework that could separate the foreground and ink-
bleed from either RGB or grayscale images.

Thresholding and source separation approaches pro-
duce good results when the ink-bleed and foreground have
clearly distinguishable graylevel intensities or RGB signa-
tures. Both techniques, however, suffer when the ink-bleed
and foreground have similar intensities as shown in some of
the examples in figure 1-(a). Thresholding techniques make
a further assumption that the ink-bleed intensity is always
lighter than the foreground, an often invalid assumption. In
addition, these techniques use a single image only which
provides limited information.

One obvious strategy to obtain more information is to
use images from both the front and back side of a doc-
ument. Sharma [9] demonstrated a successful two-image
‘show through’ reduction approach for use in xerox imag-
ing. Show-through, however, assumes global bleeding be-
tween the front and back images where ink-bleed typically
varies spatially making it more difficult to model. The most
significant two-image approach targeting ink-bleed are the
wavelet-based approaches introduced by Tan et al [12] and
Wang et al [15]. These techniques first globally align the
front and back images from which an initial classification
of the foreground and ink-bleed strokes is made using the
magnitude of the image difference. Iterative filtering of
the wavelet coefficients is used to dampen ink-bleed while
sharpening foreground pixels. While this technique pro-
duces good results, six parameters must be tuned per exam-
ple, including thresholds for the difference-image, damp-
ening and sharpening coefficients, the number of wavelet
scale-levels, and the number of iterations.

Our approach is unique from previous work in several
distinct ways. First, while previous work performs well for
examples that meet their assumptions, our approach oper-

ates on a larger range of inputs without explicit thresholding
or extensive parameter tuning. Our approach also simul-
taneously corrects both the front and back images, where
other two-images approaches ( [15, 12, 9]) process each side
individually. Lastly, we present a complete framework, in-
cluding overlooked components such as the need for local-
alignment of the front and back images, as well as an easy
way to collect training-data.

3. Framework Overview

Our overall framework is discussed, including front and
back image alignment, the feature used for classification,
and training-data collection. Details to the labeling MRF
are given in section 4. A brief description of our applica-
tion’s usage is presented first.

3.1. Application Usage

This work is done in partnership with the National
Archives of Singapore which houses hundreds of volumes
of governmental ledgers, circa 1820-1850, that suffer from
ink-bleed. Many of these ledgers have been imaged to
grayscale microfilm while others are imaged upon request.
Researchers of these ledgers are most often lawyers and le-
gal aides who still rely on these documents in legal disputes.
Only digital images of the original materials are made avail-
able to users. Our application serves as a post-processing
tool to help make the documents more legible. While most
users are computer-literate they have little to no background
in computer vision or image processing.

3.2. Step-by-step Procedure

Our framework starts with two high-resolution images
(∼2K×3K) of the two sides of a page. Images obtained
from microfilm are grayscale, while others are RGB scans
of the original material. The pages in these volumes are
typically bound and as a result are not completely pressed
flat when imaged. This non-planar imaging compounded
with small 3D surface variations that are typical of these
older documents makes it impossible to align the front and
back images with a single global transform. While ‘flatten-
ing’ techniques can remove these 3D surface variations (e.g.
[4, 8, 13]), such approaches require additional 3D scanning
equipment not available in mainstream imaging setups and
cannot be used on existing microfilmed documents. As a re-
sult, a local alignment procedure in addition to global align-
ment is needed.

Considering our input images our overall procedure is
as follows: 1) image alignment with local refinement; 2)
training-data collection via minimal user-assistance; 3) pix-
els labeling using the dual-layer MRF framework; 4) output
image generation.
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Figure 2. Local displacements computed between the front and
back images. A zoomed inset shows front regions (black-crosses)
matched to their corresponding locations in the back image (white-
crosses). Overlapped image regions with and without local align-
ment are shown with 50% opacity. ‘Ghosting’, visible from mis-
alignment, is removed with the local alignment procedure.

3.3. Image Alignment with Local Refinement

While input images are already coarsely aligned they still
require an initial global alignment. To do this, the back im-
age is mirrored and the location of the maximum correlation
score of the front and mirrored back image over a [−20, 20]
pixel range in the horizontal and vertical direction is then
taken be the global displacement. For our examples, a trans-
lation alignment suffices, however, a full affine alignment
could be easily incorporated.

Local displacements are computed by dividing the front
image into local windows (60× 60 for our examples). Cor-
relation is performed between each front image window
with its corresponding back location over a [−10, 10] pixel
range in the horizontal and vertical direction. The location
of the maximum correlation score for each window is taken
to be the local displacement. If the maximum score is be-
low a minimum threshold, it is assumed that there is no lo-
cal change. Using the local displacements, thin-plate-spline
(TPS) interpolation [2] is used to warp the back page to
align with the front. Figure 2 shows this local-alignment
procedure. The front and back image regions are shown
overlapped with 50% opacity. Ghosting from misalignment
is visible when local alignment is not performed; this is re-
moved after TPS warping.

3.4. Ratio Feature

A good feature is crucial for classification. Given the
aligned images, a ratio feature is defined as ρp = Cp

Cp′
,

where Cp and Cp′ are the intensities of front image pixel
p and corresponding back image pixel p′ respectively. The
back image feature, ρp′ , is the reciprocal of the front fea-
ture.

This ratio feature saliently captures the difference in

the various front-back configurations, including situations
where the ink-bleed intensity is darker or lighter than the
opposite page’s foreground pixels. Difficulties can arise
when the ink-bleed and foreground have similar intensities,
resulting in a ratio close to the value 1, a value that can also
occur in features where both front and back pixels are back-
ground or foreground. Inter-layer costs in our dual-layer
MRF will be used to disambiguate this situation.

While this is a simple feature, it proved to be the best dis-
criminant over other all available information including fea-
ture from pixel intensity (including RGB when available),
pixel differences, and combinations of these that also in-
cluded ratio.

3.5. Training Data Collection

Due to the ink-bleed diversity, training-data needs to be
obtained for each image pair. This requires user assistance
which is kept to a minimum using a two step procedure.
The user first draws simple color-coded strokes on the front
and back images, labeling a few examples of foreground,
background, and ink-bleed.

The initial user labeled training samples are too sparse
for practical use and unbalanced in terms of number of
labels, with generally many more background examples
provided than foreground and ink-bleed. To enlarge the
training-sets, a K-NN classifier based on the ratio feature’s
distance from the sparse user-labeled data is used to label
the entire image, where K is the square root of the size
of the user-labeled data. Pixel-wise confidence scores are
computed as discussed in Eq (2) in Section 4.1. The 10%
most confident pixels for each class are selected to define
the enlarged training-sets. Figure 3 shows this training-data
collection procedure.

Red = foreground
Green = ink-bleed
Blue = background

Figure 3. Initial training-data is provided via minimal user markup
in the form of color strokes or points drawn over foreground (red),
ink-bleed (green) and background (blue) examples in the front and
back images (markup is enlarged for clarity). The training-data is
enlarged using highly confident pixels labeled via the initial user
markup.
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Figure 4. Our MRF network with associated nodes and edges.

4. MRF formulation
After training-data collection, each image pixel is la-

beled as one of three classes: Foreground, Ink-bleed and
Background denoted as {F , I,B}. This task is formulated
as a discrete labeling MRF where each pixel, p is assigned
a label lp, where lp ∈ {F , I,B} (see [7] for details to MRF
formulations). The optimal label assignment is found by
minimizing the following energy terms:

E = Ed + λEs, (1)

where Ed represents the data-cost energy associated with
the likelihoods of assigning a lp to each pixel and Es is
a smoothness energy based on the MRF’s prior cost for as-
signing neighboring pixels different label values. The scalar
weight λ is set to one in our work. While this energy func-
tion is standard for all MRFs, the associated likelihood (data
cost) and the prior (smoothing cost) are unique for each
problem. Details of Ed are given in section 4.1.

Our smoothness termEs is composed of intra-layer edge
costs, V1(lp, lq), that computes the cost of assigning neigh-
boring pixels the labels lp and lq and inter-layer edge costs
(between layer), V2(lp, lp′), that computes the cost of as-
signing a label combination to pixel p and its correspond-
ing pixel on the opposite layer p′. Intra-layer edges are set
for both the front and back image, thus we also have edges
V1(lp′ , lq′) as shown in figure 4. Intra-layer edge costs are
designed to encourage consistent labels based on feature
and color similarity. The inter-layer edge costs are designed
to avoid invalid label configurations and aid in resolving
regions with overlapping ink. This dual-layer combina-
tion proves significantly more effective at maintaining fore-
ground strokes compared with using the intra-layer alone.
Details to Es are given in section 4.2.

4.1. Data Cost Energy Ed
The data-cost Ed is defined for both the front and back

image. Only the front is described here for example. The 1-
dimensional ratio feature is normalized to be zero centered
with standard deviation of one before the following proce-
dure. For speedup, the dense training-data is clustered by

K-means, with cluster centers of each class represented as
{ρFi }|Li=1, {ρIj }|Mj=1 and {ρBk }|Nk=1. While choosing the op-
timal number of cluster centers is an open problem, we set
L = M = N as 10% of the size of the smallest training-set.

For each pixel p, we compute the Euclidean distances
(L2-norm) between ρp and all the L + M + N cluster
centers and then select the top-K closest centers where K
is set as

√
L+M +N . The top-K centers are denoted

as {ρm}|Km=1 and are further divided into three index sets
πF ,πI and πB according to their labels. The distance be-
tween ρp and the m-th cluster center ρm is computed by
dpm = ||ρp − ρm||. We also denote d2

p as the mean squared
distance to the top-K centers. The similarity of pixel p to
each class is defined as:

SF =
∑
m∈πF

exp(−d2
pm/d

2
p)

SI =
∑
m∈πI

exp(−d2
pm/d

2
p) (2)

SB =
∑
m∈πB

exp(−d2
pm/d

2
p).

The data-cost term, Ed, for each label is defined as:

Ed(lp = F) =
SI + SB

2× (SF + SI + SB)

Ed(lp = I) =
SF + SB

2× (SF + SI + SB)
(3)

Ed(lp = B) =
SF + SI

2× (SF + SI + SB)
.

Eq (3) results in Ed ranging between zero and one, and
Ed(lp = F) + Ed(lp = I) + Ed(lp = B) = 1.

4.2. Smoothness term Es

As previously stated, the prior term Es is computed as
edge costs within a layer and between layers giving rise to:

Es =
∑
p,q∈N

V1(lp, lq) +
∑

p,p′∈M
V2(lp, lp′), (4)

where p, q ∈ N are the within layer edges and p, p′ ∈ M
are the between layer edges. These two terms are weighted
equally.

4.2.1 Intra-Layer Edge Costs

Intra-layer costs are based on the intensity difference or ra-
tio difference between two intra-layer neighbors p and q.
We define dρpq = ||ρp − ρq|| as the distance between p and
q ratio feature. Similarly we define dcpq = ||Cp − Cq|| as
the distance between p and q pixel intensity. We normalize
dρpq and dcpq to range between zero and one. To impose a
smoothness constraints in the intra-layer while preserving
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the edges between different classes, the intra-layer cost is
expressed as:

V1(lp, lq) =
1

1 + (ξpq)2
, (5)

where ξpq is defined in the following table:

lq
lp Foreground Ink-Bleed Background

Foreground ∞ dρpq dcpq
Ink-Bleed dρpq ∞ dρpq

Background dcpq dρpq ∞

It is worthwhile to note that we use dcpq to define the
intra-layer cost in Foreground-Background configuration
because we observe that the intensity from the foreground
and background pixels differ more than that of the ratio fea-
ture. In other configurations, we use the default ratio fea-
ture. Moreover, if the neighbors have the same label, we use
zero cost to enforce the smoothness constraint (the three∞
in the diagonal cells result in a zero cost).

4.2.2 Inter-Layer Edge Costs

Inter-layer costs, V2(lp, lp′), are defined as:

lp′
lp Foreground Ink-Bleed Background

Foreground 0 0 0
Ink-Bleed 0 ∞ ∞

Background 0 ∞ 2ω

In the above table, we have a conditional constraint for
the Background-Background configuration. We set ω as 1
if (Cp < C1

avg and Cp′ < C2
avg), 0 otherwise, where C1

avg

and C2
avg are the average intensities of the foreground pix-

els in the front and back images respectively. The back-
ground pixels are usually the brightest pixels in the whole
document, thus we assume that both front and back pixel
that have lower intensity (i.e. darker) are not likely to be a
Background-Background configuration and a small weight
of 2 is used as penalization. We use three infinity penal-
ties in the above table because these three cases will never
happen. If one pixel is labeled as ink-bleed in one side,
the corresponding pixel in the opposite image can only be
foreground. All other configurations are possible and are
therefore assigned a zero cost.

4.3. Minimizing the Objective Function Energy

We use the Graph-cuts approach described by Boykov
and Kolmogorov [3] to minimize our global objective func-
tion stated in Eq (1). The Middlebury’s MRF code provided
by [11] is modified to incorporate our dual-layer configura-
tion. In all of our experiments, the optimization converges
within 5-6 iterations.

5. Results

We compared our approach with the single-image adap-
tive thresholding approach [5]1, the front and back image
wavelet-based approach [15], and a single-layer MRF based
on our data-cost and intra-layer cost formulations. Markup
varies per example, but generally consists of 5− 15 strokes
or points drawn on both the front and back images. Pro-
cessed images are roughly 2K×3K in resolution. Pixels
labeled as foreground are shown with the input images in-
tensity, all other pixels are set to the mean intensity of the
background training-labels.

Figure 5 shows sub-regions from four examples that rep-
resent a reasonably diverse range of ink-bleed. Shown are
the front and back input and our results, as well as a compar-
ison of the other approaches on the front image only which
are combined into a single image partitioned as follows:
(top) single-image adaptive thresholding, (middle) single
layer MRF and (bottom) two-image wavelet approach. Fig-
ure 6 shows a full-page example with comparisons of se-
lected regions shown at the bottom. For all examples our
approach provides subjectively the best results. The wavelet
approach [15] produces comparable results in some cases
but requires six-parameters to be tuned per example.

Quantitative results were obtained by counting the num-
ber of errors observed in the output images. Errors are
considered any foreground word not detected correctly or
any background/ink-bleed detected as foreground. Since
ground-truth is not available, our quantitative results are still
subjective as errors are decided by a human observer. How-
ever, in a best effort for fairness we found that our method
had a precision accuracy of 85.96%, compared to 63.70%
for [5], 71.94% for [15], and 75.00% for the single-layered
MRF. Precision is defined as (W−WF )/(W+WB), where
W is the total number of foreground words,WF is the num-
ber of incorrectly classified foreground words, and WB are
the number of stroke-size background or ink-bleed regions
that were classified as foreground. Precision was computed
for 10 full-page images with a total of 4896 words.

6. Discussion and Summary

Our results demonstrate the effectiveness of our ap-
proach for reducing ink-bleed. As with all supervised learn-
ing techniques training-data is needed. Our two step proce-
dure for labeling data requires minimal user markup. While
markup differs from input to input, only a dozen or so
quickly drawn strokes are typically used per image. It is
arguable that user-assisted markup is similar to setting pa-
rameters or thresholds, but we note that it is much easier for
the domain user to specify image examples in lieu of tuning
algorithmic parameters. Furthermore, in a long-term work-

1The PCA step of this algorithm is omitted for grayscale input images.
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Ex. I

Ex. II

Ex. III

Ex. VI

(a) (b) (c) (d) (e)
Figure 5. [Examples I-II are from microfilm; Examples III-IV are from RGB scans.] (a-b) Front and back with markup. The back markup
is mirrored for clarity. (c-d) Output obtained using our dual-layered MRF approach. (e) Comparisons with adaptive thresholding [5], single
layer MRF and wavelet [15] in top-middle-bottom format. Red lines separate the different results. Note that sub-regions are chosen to
show some markup, however, the entire markup is not shown.

ing scenario it should be possible to use previously collected
training-data on new pages with similar ink-bleed.

The documents targeted in our work have the same color
ink throughout a page, however, our framework can be
used on other types of documents exhibiting different back-
ground and foreground characteristics (e.g. multi-colored
ink). Furthermore, different features for different document
types and even classifiers (e.g. SVM) could be used in the
likelihood computation with the same overall framework
and dual-layer MRF setup remaining intact. Many old doc-
uments exhibit problems in addition to ink-bleed; e.g. the
water-stains in Figure 5. Our classification approach is in-
herently more robust to these types of problems.

Lastly, we note that additional semantic information
such as stroke direction or character characteristics were not
used in our MRF. This was purposely done to circumvent
tailoring our solution to the examples at hand. Incorporation
of higher-level semantics into this framework undoubtedly
deserves further consideration.

In summary, we have presented a novel framework for
reducing ink-bleed. This framework provides a practical
approach to ink-bleed removal that can target a wide range
of examples and is suitable for use in a real-world setting.
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