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Abstract

This paper presents an approach that uses conformal map-
ping to parameterize a document’s 3D shape to a 2D plane.
Using this conformal parametrization, a restorative map-
ping between an image of the distorted document and a
“flattened” representation of the document can be com-
puted and used to deskew the image. Our experiments
show that arbitrarily distorted documents can be restored
to within a single pixel of their true planar format. In addi-
tion, surface points can be constrained to mapped to spec-
ified locations in the restored 2D plane.

1 Introduction

Institutions actively digitize printed materials. While such
digitization has traditionally been performed using flatbed
scanners, an increasingly common trend is to use cameras
[8]. Camera-based approaches, however, do little to guar-
antee that items are flat when imaged. As a result, images
of non-planar documents can appear distorted. Techniques
to remove distortion from imaged documents are desired
to make the imaged content appear correct and more read-
able. These approaches often refer to the distortion as skew
and the removal process as deskewing.

From a single image it is difficult to correct distortion
for documents with arbitrary shape. One interesting bene-
fit of camera-based imaging is that 3D points on the docu-
ment surface can be reconstructed by coupling an active
lighting device with the camera. From these 3D points
a triangulated mesh can be constructed that approximates
the document’s 3D surface [2, 16]. The problem now, as
shown in figure 1, is given an image of a distorted docu-
ment and a 3D reconstruction of the document’s surface,
can we produce a restored image of the document as it
would appear in its planar format.

Paper documents can be modelled mathematically as
applicable surfaces which are developable to a plane, i.e.
the surface can be unfolded onto a plane without stretch-
ing or tearing. Thus, an exact 3D model of the document’s
surface can be mapped back to a plane without any distor-
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Desired Output: 2D image
with distortion removed.

y

Input:
Image of non-planar document and
3D surface mesh

Figure 1: Problem Addressed: The input is (1) an image
of a non-planar document and (2) a 3D reconstruction the
document’s surface. The goal is to produce a restored ver-
sion of the document that appears flat.

tion. In practice, however, this is not possible. Pilu [16]
showed that the acquired 3D surface cannot be flattened
by simple 2D re-tiling. Because the 3D mesh represents
only an approximation of the true surface, subject to re-
construction errors and under-sampling, the reconstructed
surface is not truly iso-metric with a plane. This results in
the need to deform or overlap some of the triangles in the
flattening process. Overlapping triangles would result in
undesirable artifacts in the restored image and is unaccept-
able in a restorative context. As a result, some notion of
deformation (i.e. distortion) must be allowed in the 3D to
2D mapping process.

In this paper, we address this flattening problem using
conformal mapping. A conformal map is a 2D parameteri-
zation of a 3D surface such that angles are preserved. De-
velopable surfaces are completely conformal [12], which is
intuitive by their definition since no shearing or stretching
is necessary to map them to a plane. For general surfaces
(including nearly developable surfaces) a conformal map
can be computed that minimizes angle distortion. In this
paper, we show how conformal mapping can be used to
parameterize the document’s 3D surface to deskew an im-
age of the warped document. Our experiments show that
the conformal deskewing approach can restore images of
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distorted documents to within a single pixel of their “flat-
tened” representation. In addition, the conformal param-
eterization can be computed quickly by solving a linear
system of equations and can incorporate knowledge about
3D surface points in the mapping process to establish ori-
entation.

The remainder of this paper is organized as follows:
section 2 discusses related work; section 3 discusses the
deskewing algorithm; section 4 demonstrates the approach
on several test cases; section 5 concludes the work.

2 Related Work

We discuss related work in two contexts: document
restoration and 3D mesh parameterization.

2.1 Document Restoration

Distortion correction algorithms have traditionally focused
on planar skew found in flatbed imaged items where the
imaged content is not in alignment with the image axis.
These approaches uses various techniques to compute
affine and planar transforms to deskew the image (e.g. see
[1, 11]). Another type of distortion commonly addressed
is the curvature distortion near the spine of a book. While
this distortion is caused by the material’s non-planar shape,
the restrictive and predictable nature of this deformation
makes it relatively easy to correct using cylindrical models
[4,5, 19, 20].

Brown et al. [2] and Pilu [16] addressed arbitrar-
ily distorted documents using the document’s 3D shape.
Structured-light devices are used with the imaging camera
to reconstruct an approximation of the document’s surface.
The 3D surface model is flatten to a plane using relaxation
methods that minimize spring energies between 3D ver-
tices. The z values of the document’s 3D surface are grad-
ually reduced to the 2-y plane. When the distance between
adjacent vertices change, spring energies are induced. The
relaxation method iteratively adjust vertex positions on the
2D plane until spring energies are minimized. A corrective
warp between the 2D points in the original input image and
their corresponding flattened vertices is used to create the
restored image.

While these approaches are successful, they suffer from
being computationally slow. Brown et al. [2] state that their
approach takes roughly one minute to converge on a regu-
larly sampled mesh with 45 x 45 vertices. Pilu states [16]
that over 1000 iterations on a grid of 20 x 15 3D points
are needed. Moreover, the orientation of the resulting flat-
ten representation cannot be predicted and an additional
corrective transformation is needed to bring the flattened
representation into a desired alignment.

2.2 Mesh Parameterization

Other related work can be found in the areas of computer
graphics and geometric modelling, where 2D parameter-
ization of 3D meshes is of great interest for remeshing,
surface fitting, and to compute texture-coordinates. Ap-
proaches in this area vary by the distortion metric used and
the underlying approaches employed.

Several approaches use spring-like energies between
vertices [3, 10, 18] to minimize distance, angle distortion,
or a combination of both. These differ from those used
for document restoration in that they can solve the param-
eterization with a linear system, but require the boundary
to be fixed. Such boundary restrictions is not possible for
our problem since the 3D reconstruction obtained from the
document is only of a sub-section of the document and the
boundary is unknown.

Parameterization using conformal mapping has been
addressed using Discrete Harmonic Maps [9], Differential
geometry [17], and finite-elements approaches [13]. These
approaches also require that boundary conditions be spec-
ified. Recently, Desburn [7] and Levy [15] presented tech-
niques that can handle arbitrary boundaries. While these
approaches typical require user interaction to help cut the
closed 3D meshes into surface patches and are focused on
parameterization for texture-mapping, the basic idea can
be used by our restoration problem.

In the following section, we adapt the conformal map-
ping procedure for use in a document restoration frame-
work. Our overall procedure is detailed.

3 Conformal Mapping

A mapping f is conformal at point a € S if for each pair
of smooth curves v and § in € that pass through point a,
the angle between their tangent vectors /(a) and 0’(a) at
point a is the same as the angle between the tangent vectors
(f ov)(a) and (f o ) (a), i.e. the images of v and ¢
under f. If f is conformal for all points in € it is called a
conformal mapping.

Consider now a continuous closed 3D surface repre-
sented by a vector 7(u, v), parameterized by v and v, with
components or 1, T2, z3. The mapping R® +— R? of
r(u,v) to the u-v plane is conformal [6] if:

o*r  O%r

2 = — _— =
vr_3u2 ov?

0 ey
where V? is the Laplacian operator on 7.

For our application, since the input is a set of dis-
crete 3D points on 7 reconstructed on the document’s
surface, we are looking for an inverse mapping from
(z1,22,23) +— (u,v). Consider now a 2D function
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f(z,y), parameterized by (z,y) that returns a 2D point 2D Triangle to Triangle Mapping

(u,v). The 2D Laplacian operator can be satisfied by the g
Cauchy-Riemann equation [14] such that: Emfl : :

0 0

or o,
ax ay (xlylzl) ql = (ul'vl)

which implies

ou Ov ou ov

The problem can be reduced to R? — R? by consider-
ing how to map the triangles of a 3D mesh to their corre-
sponding triangles in the u-v plane in parameter space [15].
Each 3D triangle is converted to its local 2D coordinate
frame aligned by the triangle’s normal as shown in figure
2. Using this idea, we can use the reconstructed 3D points
to formamesh M = {p,c(; s Tje[1 m) }, Where p; are the
n 3D points acquired on the documents surfaces and serve
as the vertices, and T; represents the resulting m triangles,
denoted as a tuple of three mesh vertices. In their local co-
ordinate frame, we can consider p; = (2}, y;) (Which we
will write for notation simplicity as p; = (x,y)).

A triangle-to-triangle mapping is defined by a unique
affine transformation between the original and destination
triangle. If we consider the affine mapping f(p) — q,
where p = (x,y) and q = (u,v) where Tp,p,p, is the
source triangle and T, q,q, i the destination, then the two
triangles vertices are related as:

f(p) = area(Tp pyps)d1 + area(Tp pypy )d2 + area(To pipy )3

area(Tp, paps)

The partial derivatives (triangle gradient) of this equation
is as follows:
Of _ ai(yz —ys) +az2(ys — 1) + as(yr — y2)

oz 2 area(Tp,pyps)

3)
@ _ d1(z2 — x3) + qa2(z3 — 1) + gs(x1 — x2)

Jy 2 area(Tp,pyps)

This triangle gradient can be used to formulate the
Cauchy-Riemann equations stated in equation 2. This can
be written compactly in matrix form as follows:

ou ov

oz oy | _
37”_;’_@ -
ox oy
ul
u2
1 [Azy Azes Azs —Ay1 —Ays —Ays s
247 |Ay1 Ay Ays Az Axa Axs o
v2
v3

0
= M , )

B
pl=(xi'y1) Ll

(x3y3.3)
P2=02y2) u

Basis change

N=AxB/AXB|
X = NxB/|NxB|
Y = XxB/|XxB|

pl=(xI'y1')=(0,0)
p2=(x2',y2) = (B*X, BeY)
P3=(x3, y3) = (AsX, AeX)

Figure 2: For each triangle, we convert its global
(x4, yi, 2;) representation to its local coordinate system.
The system is defined with the triangles normal as the z-
axis, so the triangle is embedded in the local z-y plane. We
now consider the mapping of the 2D z-y local coordinates
to the corresponding triangle in the u-v plane.

where AIl = (Ig — .IQ), AZCQ = (Il — Ig), AIg =
(o — 1) and Ay; is defined similarly from equation 3;
Ar is the area of the triangle defined by T, p,p,. Solving
this equation will find the appropriate (u;, v;), that are con-
formal on f(z,y) — (u,v). Working from this equation,
we can write a global system of equations, Ax = b, that
incorporates all the vertices and triangles in mesh M, such
that matrix A and vector x are defined as:

[ug

Ax ifos . Ay ifp. . .
_Jza npleTJ TA ll'p,LET] :
@g,i = J @j,2i J .
0, otherwise. 0, otherwise. un
. vo
“2aL WP ETy TAE R ET;
agj i = aj 2i J :
0, otherwise. 0, otherwise. .
v

Lvn d

The entries, a;; of matrix A can be described as follows:
each triangle, T, occupies two matrix row entries located
at row j and 2j. For each triangle row pair, six entries per
row will result from the vertices p;, € T} occupying the
columns k and 2k with their corresponding Ax and Ayy,
as defined in equation 4. This results in A being a 2m X 2n
matrix. The entries for vector x are the desired conformal
points (u;, v;).

3.1 Solving the system

To obtain a unique solution for the system Ax = bupto a
similitude, some vertices must be constrained — otherwise
the (u;, v;) could have any arbitrary orientation in the 2D
plane. Fixing at least two values will give a unique solu-
tion and constrains the orientation in the resulting confor-
mal map. For example, if we want to constraint [ vertices,
P&, to map to specified conformal locations qy, we modify
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the matrix A and vector b to reflect this constraint, such
that A’s [ columns entries, a; and agy, are removed from
the matrix A. A new b is constructed to incorporate this
constraint in the solution, such that:

Mg ]

Uk
b=- [akl a2k, akl agkl} l 5
Vi,

Lvg,

where a; are the columns removed from A, and (ug, and
v, ) represent the constrained conformal values.

After computing the new A and b, we can solve the
linear system. Since, the solution is exact for only truly
conformal surfaces, the vector x is computed to minimize
|| Ax — b||2. This linear system can be solved using sparse
solvers such as Conjugate Gradient. The resulting x vector
contains the corresponding (u, v) values for the conformal
parameterization.

3.2 Deskewing Procedure

Our input consists of a triangulated 3D mesh of the non-
planar document’s surface and a 2D image of that surface.
The 3D mesh is typically acquired using a structured-light
scanner [2, 16]. In these approaches, the imaging camera
is used together with an active lighting device (e.g. a light
projector) to reconstruct the 3D surface. As a result, the lo-
cation of each reconstructed 3D point, p;, on the 3D mesh
has an associated 2D location in the camera’s image plane
(84, t;). These 2D points correspond to the distorted image
we want to correct.

After the conformal map has been constructed, we now
have a mapping of the 3D mesh points to their confor-
mal locations (u;,v;). This implies that we also have a
mapping from the distorted image 2D points to the confor-
mal parameterization, such that (s;,t;) — (u;,v;). The
restoration procedure is now a matter of warping the 2D
points between the distorted image to their locations in the
restored image. In practice, this non-planar deskewing is
realized by piecewise affine warps between triangles in the
distorted images to their corresponding triangles in the re-
stored image, as shown in figure 3.

4 Results

We demonstrate our approach on printed patterns that have
been arbitrarily distorted. A control image is available for
comparison with our restored images. For each experi-
ment, the document’s 3D surface was reconstructed us-

Restoration Procedure
Distorted Input Image

“Restored” Image

Figure 3: The restoration procedure is performed by piece-
wise warping 2D points in the original distorted image to
the locations defined by the conformal map.

ing a structured-light scanner with an estimated reconstruc-
tion accuracy of 0.31mm, over a surface of approximately
20cm x 15c¢m. A 3D surface mesh is constructed from
46 x 46 3D points, resulting in 2116 vertices and 4050
triangles. Corresponding images are captured using a stan-
dard NTSC camera, with (640 x 480) resolution. For more
information on the 3D acquisition setup used for these ex-
periments see [2].

The experiments are performed on a Pentium III 1Ghz
machine with 512MB. The procedure is implemented in
Matlab and computes the conformal mapping and cor-
rected image a matter of seconds.

4.1 Pixel Distances and Surface Area

Change

Figure 4 shows five test cases. A document was imaged
before it was warped (i.e. planar) and serves as the ex-
periment’s control. The five documents are restored using
the conformal mapping procedure described in the previ-
ous section. Since illumination artifacts are not corrected,
we cannot make a pixel-wise comparison, such as PSNR,
between the restored images to the experimental control.
Instead, we compare the distances between the corners of
the checkerboard pattern in the restored and controlled im-
ages. There are 96 corners in total. A homography is used
to align the restored document’s and control’s extracted
point! corners. Our experiments show that the corner fea-
tures in the restored images are within a pixel of the control
patterns checkerboard corners.

We also report the similarity (ratio) between the doc-
ument’s 3D surface area and the conformal map’s area.
Scale is normalized by scaling the conformal maps edges
to a fixed edge length in the input mesh. Our results show

'While the orientation of the mapping can be controlled by fixing ver-
tices, the conformal map cannot account for the perspective projection of
the control image and a homography in needed to align the two patterns.
In practice, this additional homography is not used.
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Distorted Documents

i

3D Surfaces

Control Image and Quantitative Results

Testcass 1 Testcase 2 Testcase 3 Testcase 4 Testcase 5
IWean Pixel Distance 0.71 0.79 045 1.00 040
Standard Deviation 0.44 0.48 0.271 0.62 0.21
Surface area similarity 987 .988 991 .989 .982
{between 3D and 20 mesh |

Figure 4: Results of our restoration algorithm applied to five test cases. The figure shows the imaged documents and their
corresponding 3D shape as a triangulated mesh. The conformal mapping and resulting restored images are shown. The last
row shows the experimental control and quantitative results. The mean pixel distance (and standard deviation) between the
checkerboard corners of the restored and control images are given. Also the ratio of the surface areas between the 3D mesh
and its flattened representation are given.
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Distorted Input Image
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Figure 5: Example using a lettered document. The top row
shows the original and restored image. The bottom row
shows the control image and the restored image thresh-
olded for clarity.

that the overall surface area change between the input and
restored area is very small, less than 2% for all testcases.

4.2 Lettered Document

The distorted lettered document presented in figure 1 of
this paper has been corrected in figure 5. In figure 5(top)
shading effects have not been removed and may give the
impression that the document is still warped, closer obser-
vation, however, will show that the document is restored.
Figure 5(bot) row compares the restored image with a
undistorted control image. The restored image was con-
verted to a bi-tonal representation for clarity. The bi-tonal
images shows the document’s content has been corrected.

4.3 Vertex Placement

Figure 6 shows how prior knowledge of the document sur-
face can be used to control orientation. Three different ver-
tex selections have been used to constrain the conformal
map as discussed in section 3.1. The first example has no
prior knowledge about the 3D points and two corner points
on the 3D mesh are chosen to mapped to conformal loca-
tions [0, 0] and [1, 1]. In the second example, we constrain
the points corresponding to the bottom checkerboard cor-
ners to map to [0, 0] and [1, 0], resulting in a horizontal ori-
entation. In the third example, we constrain three vertices,
the top corners and the lower left corner. The aspect ratio
of the checkerboard pattern is known (11 horizontal blocks
and 7 vertical blocks, i.e. 7/11 or 0.63), so we set the cor-
responding vertices to [0, 0], [0, 1] and [—.63, 0], which re-
sults in a rotated orientation. Incorporating constraints for
controlling orientation is another benefit offered by confor-
mal mapping over the existing techniques. Previous work

by [2, 16] required an additional user-specified transforma-
tion to bring the restored image into a desired alignment.

5 Discussion

Our results show that the conformal parameterizations of
the document’s 3D surface can be used to restore arbitrar-
ily distorted documents to within a single pixel of their true
planar representation. These results are virtually identi-
cal to previous techniques based on relaxation algorithms;
however, the conformal map can be computed in a matter
of seconds. Furthermore, the conformal map technique al-
lows us to incorporate prior knowledge into the mapping
process to control orientation.

While the algorithm can correct geometric distortion,
it cannot fill in missing intensity information lost due to
projection. Therefore, regions of high deformation may
appear blurry in the restored image due to a lack of inten-
sity information. To address this problem, multiple images
of the distorted document would be need to be captured
and registered to fill in missing intensity information. This
is an interesting issue for further research. We also note
that shading artifacts are not addressed. The presence of
these in the restored image can give a strong impression of
distortion. While this can be lessened with intensity adjust-
ments, it should be possible to remove the shading artifacts
given the approximation of the document’s surface and is
a subject for future work. Initial results on shading by [19]
and [21] are promising, but are not yet applicable to arbi-
trary surfaces.

6 Conclusion

We have presented a novel technique to deskew non-planar
documents using conformal mapping. By parameterizing
the 3D surface to a 2D plane using the conformal con-
straint, we can compute a corrective map between the orig-
inal image and a restored representation. This approach is
significantly faster than previous algorithms, allows ver-
tices to be constrained to control orientation, and can re-
store arbitrarily distorted document’s to within a single
pixel of their true planar format in image-space.
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Input Image and 3D Surface Mesh

”

Results

g 22

Figure 6: Example of different constraints on the vertices. Orientation can be controlled by specifying where certain 3D
points show map to in the u-v plane. Arrows point to the constrained vertices.
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