
Fast Rotation Search for Real-Time Interactive Point Cloud Registration

Tat-Jun Chin∗ Álvaro Parra Bustos∗ Michael S. Brown† David Suter∗

School of Computer Science, The University of Adelaide, Australia∗

School of Computing, National University of Singapore†

Figure 1: A set of partially overlapping 3D laser scans (viewed from the top) from an underground mine and their correct registration.

Abstract

Our goal is the registration of multiple 3D point clouds obtained
from LIDAR scans of underground mines. Such a capability is cru-
cial to the surveying and planning operations in mining. Often, the
point clouds only partially overlap and initial alignment is unavail-
able. Here, we propose an interactive user-assisted point cloud reg-
istration system. Guided by the system, the user’s role is simply to
identify and search for overlapping regions across the point clouds.
Specifically, given two point sets, the user clicks on a point in one
set, then simply hovers the mouse on the other set to find a match-
ing point. Each mouse position gives rise to a translation, and our
system instantly optimises the rotation that aligns the point clouds.

Assuming that each individual point set is horizontally levelled with
the ground by the level compensator on the LIDAR device, given
a candidate 3D translation only one angular parameter needs to be
estimated to rotationally align two 3D point sets. We propose a
fast rotation search algorithm that delivers globally optimal results
in real time. Our method conducts branch-and-bound optimisation
with a novel bounding function whose evaluation amounts to simple
sorted array operations. This provides smooth and accurate feed-
back to the user’s search for overlapping regions. Our system is
intuitive and helps to accelerate the registration of multiple scans.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms

Keywords: Point cloud registration, geometric matching, rotation
optimisation, real-time interaction.

1 Introduction

Mining is the key economic driver in many countries, such as Aus-
tralia where mining contributes almost 20% of the GDP or 300 bil-
lion dollars. As the industry expands there is continual pressure to

maximise yield, minimise cost and maintain safety standards. To
achieve these, accurate surveying of mines is crucial, and the us-
age of LIDAR scanning is prevalent. Due to the large expanse of
the mines, there is the need to take multiple scans and then register
the point clouds later. In this paper, our target application is align-
ing multiple 3D point clouds from LIDAR scans of underground
mining sites. Fig. 1 shows a set of point clouds from an actual un-
derground mine and their correct registration. Observe the small
partial overlaps between the point clouds. This occurs frequently
in practice, since a surveyor will economise the work by spreading
the scans over the scene uniformly, thus reducing scan overlaps.

Despite significant efforts, fully automatic registration of multiple
point clouds remains challenging [Tam et al. 2013]. Globally op-
timal methods do not require human input [Breuel 2003; Li and
Hartley 2007], but they can be very slow. Approximate methods are
fast, such as those based on randomised heuristics [Chen et al. 1999;
Aiger et al. 2008; Papazov and Burschka 2011] or feature match-
ing [Gelfand et al. 2005; Li and Guskov 2005; Gal and Cohen-Or
2006; Pottmann et al. 2009]. However, approximate methods do
not guarantee good results. Moreover, the small partial overlaps
and “self-similar” nature of the kind of data in Fig. 1 greatly raise
the difficulty, e.g., feature matching may not be reliable.

Many practical systems still depend on ICP [Besl and McKay
1992], which is fast but requires careful initialisation. In practice,
this means arranging the point clouds such that they are close to
alignment already, and ICP simply refines the transformation pa-
rameters to “lock in” the fit. For underground scans, GPS locali-
sation of the LIDAR devices cannot be used to intialise the regis-
tration. This leaves manual initialisation, which can be tricky and
laborious when there are multiple point sets to align. We seek an
approach that is less cumbersome and time-consuming for the user.

To this end, we propose a novel user-assisted point cloud registra-
tion system with real-time interaction. Guided by the system, the
user’s role is to identify overlapping regions across the point clouds.
More specifically, given two input point clouds, the user first selects
a point p in one point cloud, then hovers the mouse over the second
point cloud to look for a matching point. Each mouse position gives
rise to a potential corresponding point q, and the first point cloud is
translated by vector q−p such that p and q coincide. In real time,
the system calculates the rotation centred on q that best aligns the
point clouds, providing instant verification to the match p ↔ q. If
the result is not satisfactory, the user can simply move the mouse to



a different location, or restart by reselecting point p. Please watch
the supplementary video or Figs. 7, 8 and 9 for sample results.

Our system takes advantage of the level compensator on board most
LIDAR devices to simplify rotation search. Level compensators
horizontally aligns each individual scan with respect to the ground
plane, and they are commonly used in surveying. Thus, given the
translation component of a 3D rigid transform, only one angular pa-
rameter (i.e., the azimuth) needs to be obtained to rotationally align
the point sets. The crux of our system is a rotation search algo-
rithm that delivers globally optimal results in real time. We propose
a method based on branch-and-bound (bnb) optimisation [Horst
and Tuy 2003] with a novel bounding function, whose evaluation
amounts to very simple sorted-array insertions. This yields an in-
teractive system that gives smooth and accurate feedback.

From a user’s standpoint, identifying corresponding regions across
point clouds is much easier than initialising their alignment as re-
quired in ICP. Arguably, manually initialising alignment involves
first finding where the point clouds overlap. Our system thus re-
quires much less effort on the part of the user; for example, the
point sets in Fig. 1 can be aligned in mere minutes. Note that p,q
need not be salient points or points with high curvature [Gal and
Cohen-Or 2006; Pottmann et al. 2009]. A human observer can draw
upon structural characteristics of the scene (e.g., end points or in-
tersections of tunnels; see Figs. 7 and 8) to quickly find overlaps.

Finally, although we concentrate on LIDAR scans of underground
mines, our system is certainly applicable to other kinds of objects
or structures, as long as each point cloud is level with respect to the
ground plane. Examples include the Stanford range data [Curless
and Levoy 1996] where the objects seem to have been rotated on a
turntable; see the supplementary video or Fig. 9.

The rest of the paper is as follows: in Sec. 2, we formulate the
rotation search problem, and describe our algorithm in detail in
Sec. 3. Sec. 4 experimentally compares our rotation search algo-
rithm against other techniques, and show sample results of our in-
teractive point set registration system. We then conclude in Sec. 5.

2 Rotation search for point set registration

LetM = {mi}Mi=1 and B = {bj}Bj=1 be two sets of 3D points.
We assume that M and B have been translated such that the cor-
responding points p ∈ M and q ∈ B are at the origin in R3. We
seek the rotation matrix R ∈ SO(3) that best alignsM and B. Fol-
lowing Breuel’s method [Breuel 2003], we maximise the geometric
matching criterion

Q(R) =
∑
i

max
j
b‖Rmi − bj‖ ≤ εc, (1)

where b·c equals 1 if the condition · is true and 0 otherwise, and ε is
the error threshold. Intuitively, Q(R) counts the number of points
in {Rmi}Mi=1 that are matched (within distance ε) to a point in B.
This amounts to a nearest neighbour search problem.

Optimising over the space of 3D rotations R still presents a major
problem, as observed in other works. For example, the box-and-ball
algorithm presented by Li and Hartley requires more than 150s to
rotationally align two point clouds of size of just 100 points each [Li
and Hartley 2007]. Moreover, they considered an easier problem
with no outliers, i.e., each point inMmust have a matching point in
B. Rotation search has also been investigated for other applications,
e.g., for estimating camera poses [Hartley and Kahl 2009; Seo et al.
2009; Bazin et al. 2012; Bazin et al. 2013]. Most of these methods
are not amenable to real time performance.

It is thus necessary to simplify (1). As mentioned earlier, we rely on
the level compensator existing on many LIDAR devices to remove
two angular degrees of freedom from R, leaving only the azimuth
θ unknown. The criterion (1) now takes the form

Q(θ) =
∑
i

max
j
b‖Rz(θ)mi − bj‖ ≤ εc, (2)

where Rz(θ) is a rotation matrix of θ radians about the z-axis. We
assume in (2) that eachM and B is level with respect to the ground
plane. Secondly, given a correct correspondence p ↔ q, it is un-
necessary to try to rotationally align all the points, since the point
clouds only partially overlap. Thus, we exclude from (2) points in
M and B whose norm is greater than a threshold εn. While this re-
duces the size of the problem, on dense point clouds such as those
in Fig. 1, the size of the remaining point sets can still be large.

To account for potential inaccuracies in level compensation, for
each mi we optionally add to ε an extra tolerance εi, defined as

εi =
√

2‖mi‖2 − 2‖mi‖2 cosφ (3)

where φ is the angular uncertainty of the plumb-line (the z-axis);
see Fig. 2. To illustrate the resulting Q(θ), Fig. 3 plots the function
for two of the point clouds from Fig. 1.

Figure 2: If the angular deviation of the z-axis is within φ, then all
possible variations of Rz(θ)mi due to the uncertainty lie within a
ball of radius εi, where εi can be obtained based on the cosine rule.

0 1 2 3 4 5 6
0

50

100

θ (radians)

 

 

Objective value

Discrete evaluations

Figure 3: The top figures show M,B with p,q indicated by red
crosses. Only the points (coloured green) with distance ≤ εn to
p,q are used. The objective function (2) is plotted at the bottom,
where the sampling of (2) at 20 discrete positions is also shown.

It is clear that Q(θ) has multiple local maxima, and a simple strat-
egy to maximise the function by sampling at discrete intervals is
unlikely to be successful and efficient. Recall that each evaluation



Algorithm 1 Bnb rotation search to solve (2).

Require: Point setsM and B, threshold ε.
1: Set Qmax = 0, T0 = [0, 2π], and list = (T0, Q̂(T0)).
2: while list is not empty do
3: Remove from list the interval T with the highest Q̂(T).
4: if Q̂(T) > Qmax then
5: θc ← centre of T.
6: if Q(θc) = Q̂(T) then
7: θ∗ ← θc and terminate algorithm.
8: else if Q(θc) > Qmax then
9: Qmax ← Q(θc) and θ∗ ← θc.

10: end if
11: Tl ← [min(T), θc] and Tr ← [θc,max(T)].
12: list← list ∪ (Tl, Q̂(Tl)) ∪ (Tr, Q̂(Tr)).
13: end if
14: end while

of (2) requires checking whether each Rz(θ)mi matches a point
in B, which can be an expensive nearest neighbour problem ifM
and B are large. Moreover, as exemplified in Fig. 3 many of the
evaluations will be wasted on totally unpromising values of θ. The
existence of multiple local maxima in (2) also rules out the usage
of line search or iterative optimisation methods (e.g., gradient de-
scent) to find the best θ, since these can only converge to a local
maximum.

3 Bnb rotation search

A more promising approach is bnb optimisation [Horst and Tuy
2003], which was previously applied by Breuel [Breuel 2003]. The
method recursively explores and prunes the search space [0, 2π] by
maintaining a list of intervals. Given an interval, we test whether
a better rotation than the best found so far exists in the interval. If
the test fails then the whole interval is discarded; else the interval is
divided into smaller subintervals. The process is repeated until the
global maximum is found. Algorithm 1 summarises the procedure.

A key component of Algorithm 1 is the bounding function Q̂(T),
which gives the upper bound of Q(θ) in the interval T ⊆ [0, 2π]:

Q̂(T) ≥ max
θ∈T

Q(θ). (4)

As shown in Algorithm 1, Q̂(T) plays the crucial of pruning
unpromising search intervals. Applying the Breuel’s geometric
matching bounding function [Breuel 2003] for rotational transform
yields

Q̂gm(T) =
∑
i

max
j
b‖Rz(θc)mi − bj‖ ≤ ε+ δic, (5)

where θc is the centre value of T, and

δi =
√

2‖mi‖2 − 2‖mi‖2 cos(max(T)− θc), (6)

where the additional tolerance δi arose due to the actions of all pos-
sible rotations in T. It has been proven that (5) satisfies (4) [Breuel
2003]. As we will show in the experiments in Sec. 4, applying (2)
and (5) in Algorithm 1 does not produce real-time performance.

3.1 A novel rotational bounding function

Clearly, the run time of Algorithm 1 depends on the total number
of angular intervals that are tested before the optimal θ is found. A
tighter bounding function will reduce the number of intervals that

Figure 4: Top view illustration of our rotation search problem. For
simplicity, only a point mi fromM is shown. Under all possible
rotation angles in a range T, a direct application (5) of Breuel’s
bounding function conservatively assumes mi may lie anywhere
within a δi-sphere centred at Rz(θc)mi. In reality, mi can only lie
on an arc. Our bounding function (7) exploits this knowledge. Fur-
ther, if b ∈ B can possibly match with mi, then an ε-ball centred
at b intersects with circular trajectory of mi at an arc. In Sec. 3.2,
we describe a method that indexes the set of possible matches with
mi in a simple array for rapid evaluations of (2) and (7).

needs to be tested, since it can conduct a more aggressive pruning.
Our core insight is that a direct application in (5) of Breuel’s bound-
ing function ignores the limited range of rotational transforms, i.e.,
a point can only lie a circular arc under all possible Rz(θ) for
θ ∈ T. Thus, it is unnecessary to expect that mi may lie anywhere
within the δi-ball centred at Rz(θc)mi, as assumed in (5).

To crystalise our idea, we propose the new bounding function

Q̂arc(T) =
∑
i

max
j
bd(arc(mi,T),bj) ≤ εc, (7)

where we define arc(mi,T) as the circular arc formed when mi is
rotated about the z-axis by all possible angles in T,

arc(mi,T) = {Rz(θ)mi | θ ∈ T }, (8)

while d(arc(mi,T),bj) is the shortest distance of bj to the arc,

d(arc(mi,T),bj) = min
x∈arc(mi,T)

‖x− bj‖. (9)

Fig. 4 illustrates this idea. Next, we prove that Q̂arc(T) is a valid
bounding function that is also tighter than Q̂gm(T).

Lemma 1. The condition

Q̂arc(T) ≥ max
θ∈T

Q(θ) (10)

is satisfied for all intervals T within [0, 2π].

Proof. To prove the lemma, it is sufficient to show that, if it is pos-
sible for a pair mi and bj to be matched under angle θ ∈ T, then
the same pair of points must contribute 1 to the function Q̂arc(T).
This can be trivially demonstrated, since if the condition

‖Rz(θ)mi − bj‖ ≤ ε (11)

is true, i.e., mi and bj are matched under a θ ∈ T, then

d(arc(mi,T),bj) ≤ ε (12)

must be true, since we know that there exists an x ∈ arc(mi,T)
such that ‖x− bj‖ ≤ ε is satisfied, i.e., set x = Rz(θ)mi.



Another important condition for a valid bounding function is that
Q̂(T) approaches Q(θ) as the volume of T approaches zero [Horst
and Tuy 2003]. This can be easily seen in Q̂arc(T), since as
T collapses to a single point θc (volume of T becomes 0), then
d(arc(mi, θc),bj) = ‖Rz(θc)mi−bj‖ =⇒ Q̂arc(θc) = Q(θc).

Lemma 2. The condition

Q̂gm(T) ≥ Q̂arc(T) (13)

is satisfied for all intervals T within [0, 2π], i.e., Q̂arc(T) is a tighter
bounding function than Q̂gm(T).

Proof. Showing that Q̂gm(T) at least equals Q̂arc(T) can be done
by simply appealing to be fact that both functions satisfy (4).

To show that Q̂gm(T) can be greater than Q̂arc, it is sufficient to
show that there exist hypothetical points mi and bj that contribute
1 to Q̂gm(T), but may not contribute 1 to Q̂arc. An example is

mi and bj = Rz(θc)mi

(
1 +

ε+ δi
‖mi‖

)
(14)

which clearly satisfy ‖Rz(θc)mi − bj‖ ≤ ε + δi. However, the
point-to-arc distance for this pair is

d(arc(mi,T),bj) = ε+ δi (15)

which violates the required condition d(arc(mi,T),bj) ≤ ε. Of
course, this assumes that T is not a point θc, else δi = 0 and all
Q̂gm(θc) = Q̂arc(θc) = Q(θc) by design.

3.2 Efficient evaluations for real-time search

The efficiency of evaluating the objective and bounding functions
is also crucial to the speed of Algorithm 1, since these func-
tions are called repeatedly. Kd-trees are the workhorse in Breuel’s
method [Breuel 2003] for speeding up the function evaluations. As
Sec. 4 will show, this is still insufficient for real-time performance.

We propose a much faster method for evaluating (2) and (7). Based
on the same insight in Sec. 3.1, as mi is subjected to all allow-
able rotations Rz(θ), only a subset Bmi of B can possibly match
with mi, since Rz(θ)mi is limited to lie on a circular arc. Define
circmi as the trajectory resulting from rotating mi about the z-axis
by 2π radians. An ε-ball centred at a point b ∈ Bmi intersects with
circmi at a circular arc; see Fig. 4. Intuitively, solving the query

max
j
b‖Rz(θ)mi − bj‖ ≤ εc (16)

amounts to testing if Rz(θ)mi lies within any of the circular arcs
due to the intersections between ε-balls centred onBmi and circmi .
Note that this test does not involve nearest neighbour searches.

To implement the above idea, let [α, β] be the angular interval sub-
tended by the intersection between an ε-ball and circmi ; see Fig. 4.
We store the intervals relating to all b ∈ Bmi in the array

intmi = [α1, β1, α2, β2, . . . ] (17)

which is maintained to be sorted. If an ε-ball intersects circmi

at one point, then α equals β (there may exist repeated values in
intmi ). Also, overlapping intervals in intmi are merged into a
single interval; for example, in Fig. 4 [α4, β4] and [α5, β5] will be
merged. An efficient algorithm to compute intmi will be given

(a)

(b)

Figure 5: (a) An illustration of our modified sweep plane algo-
rithm. The sweep plane is rotated about the z-axis for 2π radi-
ans. (b) This is the top view of (a) which is unrolled to lie flat on
the plane. In this example, “status” in Algorithm 2 has the con-
tent [‖m1‖xy, ‖m3‖xy, ‖m2‖xy], ‖m4‖xy]. Like in the classical
sweep plane algorithm, our algorithm visits a finite set of “events”,
corresponding to the points B, in the order of their azimuth. In this
example, bj has the potential to match m2 and m4.

later. To compute (16) we simply find the position of the angle
θ + θmi in intmi , where the offset θmi is the azimuth of mi

θmi = arcsin

(
mi(2)√

mi(1)2 +mi(2)2

)
∈ [0, 2π]. (18)

If θ + θmi lies within any neighbouring [α, β], then the solution to
(16) is 1; else, it is 0. A similar idea can be used for the range query

max
j
bd(arc(mi,T),bj) ≤ εc (19)

contained in (7), where T = [θ1, θ2]. If θ1+θmi and θ2+θmi both
lie in the same position in intmi , and that position is not within any
neighbouring [α, β], then the solution to (19) is 0; else it is 1. We
have thus reduced (2) and (7) to a series of sorted array insertion
operations, which are extremely simple and efficient.

We now discuss how to build the arrays {intmi}Mi=1 given point
sets M and B. Since M and B change rapidly in our real-time
interactive system, it is vital to compute {intmi}Mi=1 very quickly.
Our proposed solution is inspired by the classical sweep plane al-
gorithm [O’Rourke 1998, Sec. 7.7]. We rotate a sweep plane about
the z-axis, and each time the sweep plane “hits” a point bj ∈ B,
we insert the angular intervals corresponding to bj into the relevant
arrays; Fig. 5 illustrates the idea, and Algorithm 2 summarises the
method. Note that the subsets {Bmi}Mi=1 are implicitly contained
in {intmi}Mi=1, thus they are not output by Algorithm 2.

Similar to the original sweep plane algorithm, the key to Algo-
rithm 2’s efficiency is the maintenance of a status array, which al-
lows to avoid exhaustively checking all M × B potential matches



Algorithm 2 Modified sweep plane algorithm.

Require: Point setsM and B, threshold ε.
1: Set intmi = ∅ for all i = 1, . . . ,M .
2: Reorder the points in B based on their azimuth (18).
3: status← sort {‖mi‖xy}Mi=1 for all mi ∈M; see (20).
4: Reorder the points inM based on their position in status.
5: for j = 1, . . . , B do
6: il ← smallest i such that status(i) ≥ ‖bj‖xy − ε.
7: iu ← largest i such that status(i) ≤ ‖bj‖xy + ε.
8: if both il and iu are not null then
9: for i = il, . . . , iu do

10: if (‖mi‖xy − ‖bj‖xy)2 ≤ ε2 − (mi(3) − bj(3))
2

then
11: arc← intersect circmi and ε-ball centred at bj .
12: [α, β]← angular interval subtended by arc.
13: Insert (or, if required, merge) [α, β] into intmi .
14: end if
15: end for
16: end if
17: end for
18: return Set of arrays {intmi}Mi=1.

between M and B. Here, status contains the sorted norms
{‖mi‖xy}Mi=1, where ‖mi‖xy is the norm of mi on the xy-plane

‖mi‖xy =
√

mi(1)2 +mi(2)2. (20)

Essentially ‖mi‖xy is the radius of circmi , and this quantity is
“perpendicular” to the sweep direction; see Fig. 5(b). In addition,
analogous to the sorting of intersection events in the original al-
gorithm, Algorithm 2 visits the points in B in the order of their
azimuth angle (18). This ensures that in Step 13 the intervals are
inserted in sorted order into intmi . Merging potentially overlap-
ping intervals on-the-fly can be done efficiently by maintaining a
stack along with each sorted interval array intmi ; since this is a
very common problem we will not discuss the details here.

Using similar analysis from computational geometry [O’Rourke
1998, Sec. 7.7], for each point in B we need to query the sorted
array status of length M twice. The complexity of Algorithm 2 is
O(B logM + k), where k is the total number of possible matches
betweenM and B. We will demonstrate in Sec. 4 that Algorithm 2
consumes very little overhead. In turn this enables very efficient
evaluations of functions (2) and (7), leading to real-time optimal
rotation search.

4 Results

We first test and benchmark the performance of our rotation search
algorithm by evaluating the following methods:

• bnb-M-circ: the proposed algorithm.

• bnb-1-tree: Algorithm 1 using Breuel’s original bounding
function Q̂gm (5). Given M and B, a kd-tree is used to in-
dex B to speed-up the evaluation of (2) and (5).

• bnb-M-tree: same as bnb-1-tree but to further speed up (2)
and (5), for each mi ∈ M, we presearch the set of possible
matches Bmi and index Bmi in a kd-tree. This yields M kd-
trees in total. To check if Rz(θ)mi matches a point in B, only
the kd-tree associated with mi needs to be queried.

• icp-rotate: a special case of ICP whereby given M and B,
the optimised transformation is restricted to Rz(θ).

Theoretically, since in bnb-M-tree only the possible matches Bmi

of mi are searched for a match, the bound Q̂gm is equal to Q̂arc,
i.e., bnb-M-circ and bnb-M-tree will take the same number of it-
erations in Algorithm 1. The fundamental difference is thus the ef-
ficiency required to evaluate the objective and bounding functions.
The performance metrics used to compare the above methods are:

• Total run time, which includes all data structure preparation
time (kd-trees, sorted arrays, etc.) and searching for θ until
convergence (all methods compared can provably converge).
All the methods were implemented in C and run on a machine
with an Intel Core i7 3.40GHz CPU.

• Number of matched points (2) at convergence. All the bnb
methods will yield the same globally maximal value. For icp-
rotate, we simply use the converged θ value to evaluate (2).

Further, to evaluate the metrics for icp-rotate we run the method
with 10 different random initialisations and take the average result.

To simulate the user-assisted search for matching regions, given two
input point clouds we sample local point setsM and B as follows:

1. On each point cloud, 3D keypoints are detected. While many
methods are applicable, for convenience we use ISS [Zhong
2009] as implemented on Point Cloud Library (PCL)1.

2. We randomly sample 100 keypoint matches across the two
point clouds. For each match, the local point cloud (within
radius εn) around each keypoint are taken asM and B.

3. ISS also gives the surface normal at the keypoints. We orient
eachM and B pair such that the normals are pointing up. We
then optimise the rotation Rz(θ) that best alignsM and B.

Note that the sampled keypoint matches here need not be genuine
matches; our purpose is to examine the speed of various methods
in rotation search, not their accuracy in matching keypoints. Also,
we vary εn across ten different values for each keypoint match, thus
yieldingM and B of different sizes. In total, for each pair of input
point clouds, we have 100× 10 = 1000 rotation search problems.

To conduct our experiment, we choose the following pairs of point
clouds from the underground mine data in Fig. 1, namely Set 1 vs
Set 2, Set 2 vs Set 3, and Set 1 vs Set 4 (the numbering is taken in
the left-right order in Fig. 1). As output by the LIDAR device, these
point clouds are individually level with respect to the ground plane.
For completeness, we also use the range data from the Stanford 3D
Scanning Repository [Curless and Levoy 1996], namely, Bunny,
Dragon and Armadillo (for each object, we choose point clouds
from two different views). The objects seem to have been rotated
on a turntable so the data satisfies our assumption; see Fig. 9.

Fig. 6 shows the overall result on all datasets. We plot both run time
and number of matches against problem size. To enable a consistent
way of measuring problem size, before performing rotation search,
for eachM and B we ensure thatM is smaller than B by swapping
the point sets if required. We then take M as the size of each rota-
tion search problem. Doing this also ensures that the quality value
is bounded by M , as defined in the objective function (2).

The run time results in Fig. 6(a) clearly show that bnb-M-circ
has a much better computational complexity than bnb-1-tree. It
is also evident that bnb-1-tree cannot provide real-time perfor-
mance. Fig. 6(b) gives a closer comparison between bnb-M-circ,
bnb-M-tree and icp-rotate. The two methods bnb-M-circ and
bnb-M-tree show a clear divergence starting from small problem
sizes. Taking 20 frames-per-second (0.05s per rotation search) as
real time, bnb-M-tree can only handle up to 800 points, whereas

1http://pointclouds.org/

http://pointclouds.org/


0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

problem size

to
ta

l 
ru

n
 t
im

e
 (

s
)

 

 

bnb−1−tree

bnb−M−tree

bnb−M−circ (proposed)

icp−rotate

(a) Total run time versus problem size.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

problem size

to
ta

l 
ru

n
 t
im

e
 (

s
)

 

 

bnb−M−tree

bnb−M−circ (proposed)

icp−rotate

0.05s

(b) Total run time versus problem size (up to size 2500 only).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

700

800

problem size

n
u
m

b
e
r 

o
f 
m

a
tc

h
e
d
 p

o
in

ts

 

 

bnb methods

icp−rotate

(c) Number of matched points versus problem size.

Figure 6: Comparing run time and quality (number of matched
points) of various rotation search methods.

bnb-M-circ is good up to 2500 points. This indicates the superior
efficiency of our novel bound evaluation techniques in Sec. 3.2 (re-
call that since both methods theoretically evaluate the same bounds,
their core difference is in the bound evaluation time). In problems
involving high resolution LIDAR scans such as surveying the un-
derground mines in Fig. 1 (e.g., an individual scan can contain up to
500, 000 points), extremely fast rotation search is crucial for align-
ing the local point clouds M and B with sizes up to the range of
thousands. Somewhat surprisingly, the results show that icp-rotate
is slower than bnb-M-circ (note that the plot in Fig. 6 show the
average time and quality for icp-rotate over 10 repetitions). This
implies that the number of iterations required in icp-rotate is typi-
cally higher than our bnb method. In any case, as Fig. 6(c) shows,
the quality of icp-rotate is lower than bnb (note that all the bnb
methods return the same globally optimal result), and its quality
will vary more erratically without the averaging conducted here.

optimal with respect to the set of discrete correspondences between
M and B, and not to all the available points.

Other globally optimal methods. As surveyed in Sec. 1 there
exist other methods that promise global optimality in point cloud
registration. Most of them tackle full 3D rigid transforms, thus a
direct comparison is only possible if significant changes are made
to those methods. For an indication of how the other methods com-

pare, Li and Hartley [Li and Hartley 2007] used their method to
optimise pure rotation in an experiment, where one of the Bunny
point clouds was downsampled and then rotated to yield two point
sets M and B (their method requires M and B to have the same
size and each point in M must have a matching point in B). For
point clouds of size 200 their method requires more than 1000s. A
globally optimal rotation search algorithm was proposed by Bazin
et al. [Bazin et al. 2012], however, they require 3D point corre-
spondences to be estalished between the point cloudsM and B to
guide the search. Thus, they are tackling a different problem to
ours. Moreover, their method is only optimal with respect to the set
of discrete correspondences betweenM and B, and not to all the
available points.

4.1 Overall system

Based on our rotation search method, we construct a user-assisted
3D registration system that provides real-time feedback. Figs. 7, 8
and 9 show several screenshots of our system in action. As de-
scribed in the introduction, the user’s role is to identify potential
overlapping areas. First, a point p is selected in the first point cloud,
then the user hovers the mouse pointer over the second point cloud
to seek a matching point q of p. Each mouse pointer location gives
rise to a candidate q and triggers the rotation search kernel to vali-
date the correspondence by aligning the local point clouds around p
and q. This provides instant guidance to the user to either continue
searching for q, or restart by reselecting p. As described in Sec. 2,
the rotation optimisation step only considers points within a neigh-
bourhood (of radius εn) of the tentative point match p ↔ q. Once
a satisfactory rotational alignment based on p ↔ q is obtained,
the user can refine the overall alignment by using ICP to estimate a
full 3D rigid transform using all the points. Our full system (shown
in the accompanying video) allows to register multiple overlapping
point clouds by simply repeating the steps above.

5 Conclusions

We have proposed a novel user-assisted point cloud registration sys-
tem that provides real-time interaction. Our system is useful for
aligning multiple point clouds for large-scale 3D modelling and sur-
veying. In particular, in settings where fully automatic registration
may not be feasible due to large problem sizes or lack of informa-
tion for initialisation, our system provides an efficient means for
registering the point clouds with minimal user effort. At the core of
our system is a novel rotation search algorithm that is able to glob-
ally optimise the rotation in real time. To construct this algorithm,
we devised a highly efficient bounding function for use in a bnb
algorithm. We have also experimentally showed that our system is
orders of magnitude faster than previous approaches.

Possible extensions. Although here we focus on LIDAR scans
of underground sites, our system is applicable to other settings
where each point set is individually level with respect to a refer-
ence plane. Nonetheless, it would be useful to extend our rotation
search algorithm to optimise full 3D rotations, such that assump-
tions on level compensation on LIDAR devices may be removed.
Globally optimising full 3D rotations in real-time is challenging.
Another possible extension is to leverage on 3D keypoint detectors
to provide suggestions to the user on how to align the point clouds.

Acknowledgements

We thank our industry partner Maptek Pty Ltd for generously pro-
viding the LIDAR scan data used in this paper.



60
40

20
0

20
40

60

20

0

20

40

20
24
6

(a) Point p (green cross) selected by the user in the first point cloud.
60

40
20

0
20

40
60

20

0

20

40

5
0
5

M 191, B 91, setup 0.017505s, align 0.001117s, match 18

(b) Point q (green cross) selected by the user in the second point cloud
and the optimised rotational alignment.

60
40

20
0

20
40

60

20

0

20

40

5
0
5

M 191, B 110, setup 0.017477s, align 0.001132s, match 18

(c) A better point q and the rotational alignment.
60

40
20

0
20

40
60

20

0

20

40

5
0
5

icp match 93

(d) ICP refinement of the result in (c).

Figure 7: Sample result of our interactive 3D registration system on underground mine scans.

References

AIGER, D., MITRA, N., AND COHEN-OR, D. 2008. 4-points
congruent sets for robust pairwise surface regisration. In Pro-
ceedings ACM SIGGRAPH 2008.

BAZIN, J.-C., SEO, Y., AND POLLEFEYS, M. 2012. Globally
optimal consensus set maximization through rotation search. In
Proceedings ACCV 2012.

BAZIN, J.-C., LI, H., KWEON, I. S., DEMONCEAUX, C.,
VASSEUR, P., AND IKEUCHI, K. 2013. A branch and bound
approach to correspondence and grouping problem. IEEE Trans.
PAMI 35, 7, 1565–1576.

BESL, P., AND MCKAY, N. 1992. A method for registration of 3d
shapes. IEEE Trans. PAMI 14, 2, 239–256.

BREUEL, T. 2003. Implementation techniques for geometric
branch-and-bound matching methods. CVIU 90, 3, 258–294.

CHEN, C.-S., HUNG, Y.-P., AND CHENG, J.-B. 1999. RANSAC-
based DARCES: A new approach to fast automatic registration
of partially overlapping range images. IEEE Trans. PAMI 21, 11,
1229–1234.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images. Computer Graph-
ics (SIGGRAPH 1996 Proceedings).

GAL, R., AND COHEN-OR, D. 2006. Salient geometric features
for partial shape matching and similarity. ACM Trans. Graph.
25, 130–150.

GELFAND, N., MITRA, N., GUIBAS, L., AND POTTMANN, H.
2005. Robust global registration. In Proc. Eurographics 2005.

HARTLEY, R., AND KAHL, F. 2009. Global optimization through
rotation space search. IJCV 82, 64–79.

HORST, R., AND TUY, H. 2003. Global optimization: determinis-
tic approaches. Springer.

LI, X., AND GUSKOV, I. 2005. Multi-scale features for ap-
proximate alignment of point-based surfaces. In Proc. ACM
SIGGRAPH/Eurographics Symposium on Geometry Processing
2005.

LI, H., AND HARTLEY, R. 2007. The 3d–3d registration problem
revisited. In Proceedings ICCV 2007.

O’ROURKE, J. 1998. Computational geometry in C. Cambridge
University Press.

PAPAZOV, C., AND BURSCHKA, D. 2011. Stochastic global opti-
mization for robust point set registration. CVIU 115, 1598–1609.

POTTMANN, H., WALLNER, J., HUANG, Q.-X., AND YANG, Y.-
L. 2009. Integral invariants for robust geometry processing.
Computer Aided Geometric Design 26, 1, 37–60.

SEO, Y., CHOI, Y.-J., AND LEE, S. W. 2009. A branch-and-
bound algorithm for globally optimal calibration of a camera-
and-rotation-sensor system. In Proceedings ICCV 2009.

TAM, G. K. L., CHENG, Z.-Q., LAI, Y.-K., LANGBEIN, F. C.,
LIU, Y., MARSHALL, D., MARTIN, R. R., SUN, X.-F., AND
ROSIN, P. L. 2013. Registration of 3d point clouds and meshes:
a survey from rigid to non-rigid. IEEE Trans. Visual. Comp.
Graph. 19, 7, 1199–1217.

ZHONG, Y. 2009. A shape descriptor for 3d object recognition. In
Proceedings ICCV 2009 Workshop 3DRR.



30
20

10
0
10

20
30

40
50

30
20

10
0

10
20

30
40

20
24

(a) Point p selected by the user in the first point cloud.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

M 550, B 704, setup 0.018551s, align 0.012746s, match 19

(b) Point q (green cross) selected by the user in the second
point cloud and the optimised rotational alignment.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

M 550, B 725, setup 0.024549s, align 0.009360s, match 17

(c) A better point q and the rotational alignment.

20

0

20

40

30
20

10
0

10
20

30
40

5
0
5

icp match 180

(d) ICP refinement of the result in (c).

Figure 8: Sample result of our interactive 3D registration system on underground mine scans.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(a) Point p selected by the user in the first point cloud.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M 168, B 291, setup 0.028600s, align 0.001153s, match 6

(b) Point q (green cross) selected by the user in the sec-
ond point cloud and the optimised rotational alignment.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M 168, B 270, setup 0.026510s, align 0.001321s, match 23

(c) A better point q and the rotational alignment.

0.06
0.04

0.02
0

0.02
0.04

0.06
0.08

0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

icp match 120

(d) ICP refinement of the result in (c).

Figure 9: Sample result of our interactive 3D registration system on the Stanford Dragon (views 96◦ and 120◦).


