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Abstract—The success of commercial image stitching tools often leads to the impression that image stitching is a “solved
problem”. The reality, however, is that many tools give unconvincing results when the input photos violate fairly restrictive imaging
assumptions; the main two being that the photos correspond to views that differ purely by rotation, or that the imaged scene
is effectively planar. Such assumptions underpin the usage of 2D projective transforms or homographies to align photos. In
the hands of the casual user, such conditions are often violated, yielding misalignment artifacts or “ghosting” in the results.
Accordingly, many existing image stitching tools depend critically on post-processing routines to conceal ghosting. In this paper,
we propose a novel estimation technique called Moving Direct Linear Transformation (Moving DLT) that is able to tweak or
fine-tune the projective warp to accommodate the deviations of the input data from the idealised conditions. This produces
as-projective-as-possible image alignment that significantly reduces ghosting without compromising the geometric realism of
perspective image stitching. Our technique thus lessens the dependency on potentially expensive postprocessing algorithms.
In addition, we describe how multiple as-projective-as-possible warps can be simultaneously refined via bundle adjustment to
accurately align multiple images for large panorama creation.

Index Terms—Image Stitching, Image Alignment, Projective Warps, Direct Linear Transformation, Moving Least Squares.
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1 INTRODUCTION

IMAGE stitching algorithms have reached a stage of ma-
turity where there are now an abundance of commercial

tools based on or incorporating image stitching. Most well-
known are image editing suites like Adobe Photoshop, web-
based photo organization tools like Microsoft Photosynth,
smartphone apps like Autostitch, as well as the built-
in image stitching functionality on off-the-shelf digital
cameras. Such tools are immensely useful in helping users
organize and appreciate photo collections. The successful
integration of image stitching may lead to the impression
that image stitching is solved, but, in fact, many tools fail
to give convincing results when given non-ideal data.

Most image stitching algorithms share a similar pipeline:
first, estimate the transformations or warping functions
that bring the overlapping images into alignment, then,
composite the aligned images onto a common canvas. Of
course, on real life data perfect alignment is rarely achieved,
thus most of the research efforts are put into devising better
alignment or compositing techniques to reduce or conceal
misalignment artifacts. An excellent survey of state-of-the-
art algorithms is available in [2]. Our work concentrates on
improving the image alignment stage of the pipeline.

It is pertinent to first briefly mention state-of-the-art
compositing techniques for image stitching. Chief among
these are the seam cutting methods [3], [4] that optimize
pixel selection among the overlapping images to minimize
visible seams, and advanced pixel blending techniques such
as Laplacian pyramid blending [5], [1] and Poisson image
blending [6] that minimize blurring due to misalignments

or exposure differences. Though vital to produce visually
acceptable results, such post-processing routines are never-
theless imperfect and may not work all the time (see [7] for
examples). It is thus strategic to attempt to reduce errors as
much as possible during the alignment step.

Research into image alignment for stitching has some-
what culminated into the usage of bundle adjustment [8] to
simultaneously optimize the relative rotations of the input
images [9], [1], which are then used to align all images to
a common frame of reference. This is the technique used in
Autostitch as described in [1]. Earlier works incrementally
warp multiple images, where for each image a sequence of
alignment functions are threaded to warp the image onto the
common reference frame [10], [11]. The focus is thus on
finding the optimal order of threading such that the errors
are not propagated and amplified excessively.

Interestingly, a majority of current techniques (including
Autostitch and Photosynth) model the alignment functions
as 2D projective transforms or homographies. Homogra-
phies are justified only if the images correspond to views
that differ purely by rotation, or if the imaged scene is
effectively planar (e.g., when the scene is sufficiently far
away [2]). Many commercial image stitching tools actually
specify this input condition, at least implicitly; see for
example the FAQ pages on Autostitch1 and Photosynth2.
Violations to this condition predictably yield parallax errors
or ghosting in the alignment which must be dealt with in
the compositing stage. Row 1 in Fig. 1 is a “raw” result (the

1. http://www.cs.bath.ac.uk/brown/autostitch/autostitch.html#FAQ
2. http://photosynth.net/faq.aspx
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Fig. 1: Row 1: Raw alignment result from Autostitch [1] with significant ghosting. Rows 2 and 3: Final results (with
advanced pixel compositing) from Autostitch and Photosynth, where glaring artifacts exist. Row 4: Raw alignment result
using the proposed as-projective-as-possible method, which exhibits little noticeable ghosting.

mosaic is composited only with simple intensity averaging)
from Autostitch that exhibits significant parallax errors —
note that this problem is due primarily to the inadequacy of
the projective model in characterising the required warp,
and not inaccuracies in the warp estimation. Fig. 2 depicts
this condition using a 1D analogy of image stitching.

Realistically, the prescribed imaging conditions are diffi-
cult to satisfy by casual users who are generally unfamiliar
with image stitching fundamentals. Secondly, the desire to
stitch a collection of images may be an afterthought, i.e.,
when it is not possible to revisit the scene to reshoot under
the required imaging conditions. Unfortunately, many state-
of-the-art techniques cannot produce convincing results
when given uncooperative data, even with advanced pixel
compositing or postprocessing. Rows 2 and 3 in Fig. 1
are the final (postprocessed) results from Autostitch and
Photosynth, where unwanted artifacts evidently still exist.

The above problem raises a strong motivation for improv-
ing alignment methods for image stitching. Specifically, we
argue that homography-based alignment must account for
images that do not satisfy the assumed imaging conditions.
To this end, we propose a novel homography estimation
technique called Moving DLT that is able to tweak or
fine-tune the homography to account for data that deviates

from the expected trend, thereby achieving as-projective-
as-possible warps; Fig. 2 shows what we mean by such a
warp, while Row 4 in Fig. 1 shows a raw alignment result.
Our method significantly reduces alignment errors without
compromising the geometric plausibility of the scene.

Note that it is not our aim to eliminate the usage of
deghosting algorithms, which are still very useful especially
if there are serious misalignments or moving objects. How-
ever, we argue that it is prudent to achieve accurate image
alignment since this imposes a much lower dependency on
the success of subsequent postprocessing routines.

An earlier version of our work [13] introduced Moving
DLT for stitching pairs of images. Here, we propose a novel
bundle adjustment technique to simultaneously refine mul-
tiple as-projective-as-possible warps for large panoramas.

The rest of the paper is organized as follows: Sec. 2 sur-
veys important related work. Sec. 3 introduces the proposed
method and its underlying principles, while Sec. 4 extends
the method for panorama creation. Results are presented in
Sec. 5, and we conclude in Sec. 6.

2 PREVIOUS WORK
There exist methods that consider image stitching under
arbitrary camera motions. A notable example is manifold
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(a) Projective warp.
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(b) As-affine-as-possible warp.
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(c) As-projective-as-possible warp.

Fig. 2: To generate a 1D analogy of image stitching, a set of 1D correspondences {xi,x′i}Ni=1 are generated by projecting
a 2D point cloud onto two 1D image “planes”. Here, the two views differ by a rotation and translation, and the data are not
corrupted by noise. (a) A 1D projective warp, parametrised by a 2×2 homography, is unable to model the local deviations
of the data. Note that these deviations are caused purely by model inadequacy since there is no noise in the data. (b) An
as-affine-as-possible warp, estimated based on [12], can interpolate the local deviations better, but fails to impose global
projectivity. This causes incorrect extrapolation in regions without correspondences. (c) Our as-projective-as-possible
warp interpolates the local deviations flexibly and extrapolates correctly following a global projective trend.

mosaicing [14] that is based on pushbroom cameras. Using
a standard perspective camera, a pushbroom camera can
be approximated by continuously “sweeping” the scene in
video. Therefore, the method may not be applicable to stitch
still images in a “discrete” photo collection, such as those
handled by Autostitch and Photosynth.

2.1 3D reconstruction and plane-plus-parallax
Theoretically, given a set of overlapping views of a scene,
it is possible to first recover the 3D structure and camera
parameters (e.g., via SfM and dense stereo), then repro-
jecting each scene point onto a larger reference image
to yield the mosaic. A notable approach is [15], which
produces panoramas from images taken along long street
scenes. However, a full 3D approach can be “overkill” if
our goal is just to stitch images; in fact, many advanced
compositing methods [3], [6] simply focus on creating
perceptually good mosaics with little regard to 3D structure.
Also, 3D reconstruction only works for scene points in the
overlapping regions. Further, SfM may be brittle in views
with small (but not exactly zero) baselines, which represents
many of the image stitching cases in real life.

An intermediate approach is to directly align images
using a planar projective mapping with a parallax com-
ponent [16]. Without engaging in full 3D reconstruction,
their method can only approximate the parallax at each
pixel [16], which still results in significant parallax errors.

2.2 Panorama creation
Given a set of overlapping images, state-of-the-art meth-
ods [9], [1] perform bundle adjustment [8] to optimise the
focal lengths and camera poses (relative rotations) of all
views, which then give rise to inter-image homographies
to perform alignment. While Shum and Szeliski [9] define
the error terms based on pixel values (at regularly sampled
patch positions), Brown and Lowe [1] use SIFT keypoint
correspondences [17]. Also, Brown and Lowe [1] introduce
a panorama recognition step based on SIFT matching that
is able to determine the subsets of images that belong to the
same panorama, given an unordered collection of photos.

A second refinement stage is also conducted in [9], to
account for local misalignments in the mosaic. For each
patch position, the average of the backprojected rays from
each view is taken, which is subsequently projected again
onto each view to yield the desired patch position in 2D.
The differences between the original and desired patch
positions are then interpolated (e.g., using splines) to form a
correction field for parallax error removal. However, such a
two step approach is cumbersome compared to our method
that directly improves the projective warp. A two step
approach also raises questions regarding the optimality of
the overall process, e.g., how to regularize the correction
field from overly distorting the original projective warps.
By directly estimating as-projective-as-possible warps, our
method avoids a separate refinement step.

Instead of estimating relative image rotations, other
works directly estimate inter-image homographies, then
chain or thread the homographies to stitch multiple images
onto a common reference frame [10], [11]. The focus is
thus on finding the optimal order of threading such that the
errors are not propagated and amplified excessively. The
homographies can also be refined by imposing geometric
consistency between triplets of homographies [11]. How-
ever the dependence on homographic alignment means that
such threading methods cannot handle non-ideal data.

2.3 Direct estimation of flexible warps

Closer to our work are recent methods that depart from
the conventional homography model. A smoothly varying
affine warp was proposed by [18] for image stitching. Start-
ing from the motion coherence-based point-set registration
method of [19], an affine initialization is introduced by [18]
which is then deformed locally to minimize registration
errors while maintaining global affinity. Conceptually, this
warp is similar to the as-affine-as-possible warp used in
image deformation [12]. Fundamentally, however, using
affine regularization may be suboptimal for extrapolation,
since an affinity is inadequate to achieve a perspective
warp [2], e.g., an affine warp may counterproductively
preserve parallelism in the extrapolation region. Therefore,
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while the method can interpolate flexibly and accurately due
to local adaptations, it may produce distorted results while
extrapolating; observe the image contents in the stitching
results of [18] in Row 2 of Figs. 6 and 7.

In the context of video stabilization, Liu et al. [20]
proposed content preserving warps. Given matching points
between the original and stabilized image frames, the novel
view is synthesized by warping the original image using an
as-similar-as-possible warp [21] that jointly minimizes the
registration error and preserves the rigidity of the scene.
The method also pre-warps the original image with a
homography, thus effectively yielding a locally adapted ho-
mography. Imposing scene rigidity minimizes the dreaded
“wobbling” effect in video stabilization. However, in image
stitching where there can be large rotational and trans-
lational difference between views, their method does not
interpolate flexibly enough due to the rigidity constraints.
This may not be an issue in [20] since the original and
smoothed camera paths are close (see Sec. 4 in [20]), i.e.,
the motion between the views to align is small.

By assuming that the scene contains a ground plane and
a distant plane, Gao et al. [22] proposed dual homography
warps for image stitching. Basically this is a special case
of a piece-wise homographic warp, which is more flexible
than using a single homography. While it performs well if
the required setting is true, it may be difficult to extend
the method for an arbitrary scene, e.g., how to estimate the
appropriate number homographies and their parameters.

It is also worth nothing that, unlike the proposed ap-
proach, the above flexible image alignment methods do not
provide a simultaneous refinement step for multiple image
stitching. Thus when creating large panoramas the quality
of the result is highly dependent on the accuracy of pairwise
stitching and the chaining order of alignment functions.

3 AS-PROJECTIVE-AS-POSSIBLE WARPS
In this section, we first review the 2D projective warp
customarily used in image stitching. We then describe the
underlying principles of our proposed method.

3.1 The 2D projective warp
Let x = [x y]T and x′ = [x′ y′]T be matching points across
overlapping images I and I ′. A projective warp transforms
x to x′ following the relation

x̃′ ∼ Hx̃, (1)

where x̃ = [xT 1]T is x in homogeneous coordinates, and
∼ indicates equality up to scale. The 3 × 3 matrix H is
called the homography. In inhomogeneous coordinates,

x′ =
r1[x y 1]T

r3[x y 1]T
and y′ =

r2[x y 1]T

r3[x y 1]T
, (2)

where rj is the j-th row of H. The divisions in (2) cause
the 2D function to be non-linear, which is crucial to allow
a fully perspective warp. Fig. 2(a) shows a 1D analogy.

Direct Linear Transformation (DLT) [23] is a basic
method to estimate H from a set of noisy point matches

{xi,x′i}Ni=1 across I and I ′ (e.g., established using SIFT
matching [17]). First, (1) is rewritten as the implicit condi-
tion 03×1 = x̃′ ×Hx̃ and then linearised as

03×1 =

 01×3 −x̃T y′x̃T

x̃T 01×3 −x′x̃T
−y′x̃T x′x̃T 01×3

h, h =

rT1rT2
rT3

 , (3)

where h is a obtained by vectorizing H into a vector. Only
two of the rows in (3) are linearly independent. Let ai be
the first-two rows of the LHS matrix in (3) computed for
the i-th point match {xi,x′i}. Given an estimate h, the
quantity ‖aih‖ is the algebraic error of the i-th datum.
DLT minimizes the sum of squared algebraic errors

ĥ = argmin
h

N∑
i=1

‖aih‖2 s.t. ‖h‖ = 1, (4)

where the norm constraint prevents the trivial solution. DLT
is thus also referred to as algebraic least squares [23].
Stacking vertically ai for all i into matrix A ∈ R2N×9,
the problem can be rewritten as

ĥ = argmin
h
‖Ah‖2 s.t. ‖h‖ = 1. (5)

The solution is the least significant right singular vector of
A. Given the estimated H (reconstructed from ĥ), to align
the images, an arbitrary pixel x∗ in the source image I is
warped to the position x′∗ in the target image I ′ by

x̃′∗ ∼ Hx̃∗. (6)

To avoid issues with numerical precision, prior to DLT the
data can first be normalized in the manner of [24], with the
estimated H then denormalized before executing (6).

3.2 Moving DLT

When the views I and I ′ do not differ purely by rotation
or are not of a planar scene, using a basic homographic
warp inevitably yields misalignment or parallax errors. To
alleviate this problem, our idea is to warp each x∗ using a
location dependent homography

x̃′∗ ∼ H∗x̃∗ (7)

where H∗ is estimated from the weighted problem

h∗ = argmin
h

N∑
i=1

‖wi∗aih‖2 s.t. ‖h‖ = 1. (8)

The scalar weights {wi∗}Ni=1 give higher importance to data
that are closer to x∗, and the weights are calculated as

wi∗ = exp(−‖x∗ − xi‖2/σ2). (9)

Here, σ is a scale parameter, and xi is the coordinate in the
source image I of one-half of the i-th point match {xi,x′i}.

Intuitively, since (9) assigns higher weights to data closer
to x∗, the projective warp H∗ better respects the local
structure around x∗. Contrast this to (6) which uses a
single and global H for all x∗. Moreover, as x∗ is moved
continuously in its domain I , the warp H∗ also varies
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Fig. 3: Results from Moving DLT without regularisation for
the 1D synthetic image stitching problem.

smoothly. This produces an overall warp that adapts flexibly
to the data, yet attempts to preserve the projective trend of
the warp, i.e., a flexible projective warp; Fig. 2(c) shows a
1D analogy. We call this method Moving DLT.

The problem in (8) can be written in the matrix form

h∗ = argmin
h
‖W∗Ah‖2 s.t. ‖h‖ = 1, (10)

where the weight matrix W∗ ∈ R2N×2N is composed as

W∗ = diag([ w1
∗ w

1
∗ w

2
∗ w

2
∗ . . . w

N
∗ wN∗ ]) (11)

and diag(·) creates a diagonal matrix given a vector. This
is a weighted SVD (WSVD) problem, and the solution is
simply the least significant right singular vector of W∗A.

Problem (10) may be unstable when many of the weights
are insignificant, e.g., when x∗ is in a data poor (extrapola-
tion) region. To prevent numerical issues in the estimation,
we offset the weights with a small value γ within 0 and 1

wi∗ = max
(
exp(−‖x∗ − xi‖2/σ2), γ

)
. (12)

This also serves to regularize the warp, whereby a high
γ reduces the warp complexity. In fact as γ approaches 1
the resultant warp loses its flexibility and reduces to the
original homographic warp. Fig. 3 illustrates a 1D analogy.

Conceptually, Moving DLT is the homogeneous version
of moving least squares (MLS) commonly used in surface
approximation [25]. In the context of warping points in 2D
for image manipulation [12], MLS estimates for each x∗
an affine transformation defined by a matrix F∗ ∈ R2×3

x′∗ = F∗

[
x∗
1

]
, where (13)

F∗ = argmin
F

N∑
i=1

∥∥∥∥wi∗(F [xi1
]
− x′i

)∥∥∥∥2 . (14)

Problem (14) is a weighted least squares problem. Including
nonstationary weights {wi∗}Ni=1 produces flexible warps, but
such warps are only as-affine-as-possible; Fig. 2 compares
Moving DLT and MLS in a 1D analogy of image stitching.

A homogeneous version of MLS (called algebraic mov-
ing least squares) was explored before in [26] for surface
approximation. In contrast to our formulation here which
is based on projective warps, in [26] an elliptical surface is
estimated at every weighted instance of DLT. In addition,
we also propose a novel bundle adjustment step (see Sec. 4)
to simultaneously refine multiple warps.

(a) Target image I′. (b) Source image I with 100×100
cells (only 25×25 drawn for clarity).

(c) Aligned images with transformed cells overlaid to visualise the
warp. Observe that the warp is globally projective for extrapolation,
but adapts flexibly in the overlap region for better alignment.
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Number of weights (out of 2100) greater than offset value

C
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l c
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nt Most cells are concentrated here (there
are a total of 10000=100x100 cells).

(d) Histogram of number of weights 6= γ for the cells in (b).

Fig. 4: Demonstrating image stitching with our method. The
input images correspond to views that differ by rotation and
translation. The images are both of size 1500×2000 pixels.
The number of SIFT matches {xi,x′i}Ni=1 (not shown) after
RANSAC is 2100.

3.3 Efficient computation for image stitching

So far we have assumed that no mismatches or outliers exist
among the data. Before invoking Moving DLT, we remove
outliers using RANSAC [27] with DLT as the minimal
solver. Although we consider data where the inliers them-
selves may deviate from the projective trend, in practice, the
outlier errors are orders of magnitude larger than the inlier
deviations [28], thus RANSAC can be effectively used.

3.3.1 Partitioning into cells

Solving (10) for each pixel position x∗ in the source image
I is unnecessarily wasteful, since neighboring positions
will yield very similar weights (9) and hence very similar
homographies. We thus uniformly partition the 2D domain
I into a grid of C1 ×C2 cells, and take the center of each
cell as x∗. Pixels within the same cell are then warped using
the same homography. Fig. 4 illustrates a stitched image
from the data in Fig. 1 using 100× 100 cells. Observe that
the warp is globally projective for extrapolation, but adapts
flexibly in the overlap region for better alignment.
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Partitioning into cells effectively reduces the number of
WSVD instances to C1×C2. Moreover, each of the WSVD
instances are mutually independent, thus a simple approach
to speed up computation is to solve the WSVDs in parallel.
Note that even without parallel processing, solving (10) for
all 100 × 100 cells in the images in Fig. 4 which contain
2100 SIFT matches (A is of size 4200×9) takes just about
3 seconds on a Pentium i7 2.2GHz Quad Core machine.

A potential concern is that discontinuities in the warp
may occur between cells, since cell partitioning effectively
downsamples the smoothly varying weights (12). In prac-
tice, as long as the cell resolution is sufficiently high, the
effects of warp discontinuities are minimal (100 × 100 is
adequate for all the images that we tested in Sec. 5).

3.3.2 Updating weighted SVDs.
Further speedups are possible if we realise that, for most
cells, due to the offsetting (12) many of the weights do not
differ from the offset γ. Based on the images in Figs. 4(a)
and 4(b), Fig. 4(d) histograms across all cells the number
of weights that differ from γ (here, γ = 0.0025). A vast
majority of cells (> 40%) have fewer than 20 weights (out
of a total of 2100) that differ from γ.

To exploit this observation a WSVD can be updated from
a previous solution instead of being computed from scratch.
Defining Wγ = γI, let the columns of V be the right
singular vectors of WγA. Define the eigendecomposition

ATWT
γWγA = VDVT (15)

as the base solution. Let W̃ equal Wγ except the i-th di-
agonal element that has value w̃i. The eigendecomposition
of ATW̃TW̃A can be obtained as the rank-one update

ATW̃TW̃A = VDVT + ρrir
T
i = V(D + ρr̄ir̄

T
i )VT ,

where ρ = (w̃2
i /γ

2 − 1), ri is the i-th row of A, and
r̄i = VT ri. The diagonalisation of the new diagonal matrix

D + ρr̄ir̄
T
i = C̃D̃C̃T ∈ Rm×m (16)

can be done efficiently using secular equations [29]. Multi-
plying VC̃ yields the right singular vectors of W̃A. This
can be done efficiently by exploiting the Cauchy structure in
C̃ [29]. The cost of this rank-one update is O(m2 log2m).

The WSVD for each cell can thus be obtained via a small
number of rank-one updates to the base solution, each cost-
ing O(m2 log2m). Overall this is cheaper than computing
from scratch, where for W∗A of size n×m, would take
O(4nm2 +8m3) even if we just compute the right singular
vectors [30]. Note that in (10), (n = 2N)� (m = 9).

4 SIMULTANEOUS REFINEMENT
To stitch multiple images to form a large panorama, pairs
of images can be incrementally aligned and composited
onto a reference frame. However, incremental stitching
may propagate and amplify alignment errors, especially at
regions with multiple overlapping images [2]. Such errors
can be alleviated by simultaneously refining the multiple
alignment functions, prior to compositing. Here, we show

how bundle adjustment can be used to simultaneously refine
multiple as-projective-as-possible warps.

4.1 Selecting the reference frame
Given a set of input images {Ik}Kk=1, the initial step is
to map all the keypoints in the images onto a common
reference frame IR. Though not necessary for bundle
adjustment, for simplicity we choose IR from one of the
input images. To this end we apply the keypoint-based
panorama recognition method [1, Sec. 3] to identify pairs
of overlapping images and construct an image connection
graph. The graph is traversed to find the node (image) with
the largest number of edges which we choose as IR.

The byproduct of the panorama recognition step is a
set of (rigid) homographies between overlapping images.
The homographies are then chained and used to warp
the keypoints in all the images onto IR. To minimise
propagation errors during this process, an optimal chaining
order can be estimated (e.g., the minimum spanning tree
of the connection graph [11]). Within IR, the coordinates
of keypoints that have the same identity (this is inferred
from the pairwise image matching conducted in panorama
recognition) are averaged. The result of this process is a set
coordinates {xRi }Ni=1 in IR, where each xRi is (potentially)
matched to a keypoint xki in the k-th image Ik.

4.2 Bundle adjustment
Given an arbitrary location x∗ in IR, we wish to estimate
a set of location dependent homographies {Hk

∗}Kk=1, where
each Hk

∗ maps x∗ from IR to Ik following

x̃k∗ ∼ Hk
∗x̃∗. (17)

The pixel intensity at x∗ in IR is composited from the
original intensity at x∗ in IR (if it exists) and the pixel
intensities (if they exist) at locations {xk∗}Kk=1 in {Ik}Kk=1.

To estimate the required homographies {Hk
∗}Kk=1 for

position x∗, we simultaneously minimize the transfer error
of all correspondences. Specifically, we minimize the cost

E∗(Θ) =

N∑
i=1

wi∗∑K
k=1 δik

K∑
k=1

δik‖xki − f(pi,H
k
∗)‖2, (18)

where Θ = [H1
∗, . . . ,H

K
∗ ,p1, ...,pN ] and f(p,H) is the

projective warp (in inhomogeneous coordinates) defined as

f(p,H) =

[
r1[pT 1]T

r3[pT 1]T
r2[pT 1]T

r3[pT 1]T

]T
, (19)

where r1, r2, r3 are the three rows of homography H.
The optimized parameters include the point coordinates

{pi}Ni=1, which are essential to “couple” the homogra-
phies in bundle adjustment [8]. The coordinates {pi}Ni=1

are initialized as the points {xRi }Ni=1 resulting from the
homography chaining in Sec. 4.1. The k-th homography
Hk
∗ is initialized using Moving DLT on the correspondences

between {xRi }Ni=1 and keypoints in Ik. Note that not all xRi
has a correspondence in Ik; if the correspondence {xRi ,xki }
exists, the indicator δik = 1, else δik = 0. The division of
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Algorithm 1 Simultaneous refinement of multiple as-
projective-as-possible warps for panorama creation.
Require: Input images {Ik}Kk=1 with overlaps.

1: Choose reference frame IR from {Ik}Kk=1.
2: Map all keypoints from {Ik}Kk=1 onto IR.
3: Match points {xRi }Ni=1 in IR with points in {Ik}Kk=1.
4: Define C1 × C2 cells in IR.
5: for each cell in IR do
6: Compute weights (20) for current cell center x∗.
7: for k = 1, . . . ,K do
8: Apply Moving DLT (10) to yield homography Hk

∗ .
9: end for

10: Refine all {Hk
∗}Kk=1 with bundle adjustment (18).

11: Using {Hk
∗}Kk=1, composite pixels in current cell.

12: end for

each error term in (18) by
∑K
k=1 δik ensures that points xRi

that are matched in many images do not dominate.
Note that we compute the local weights

wi∗ = max
(
exp(−‖x∗ − xRi ‖2/σ2), γ

)
(20)

by referring to the coordinates {xRi }Ni=1. This ensures that
the optimized homographies are locally adapted to x∗. One
could also refer the weights to the points {pi}Ni=1 which
are iteratively updated. However, our simple scheme is
sufficient to satisfactorily achieve the desired effect.

To reduce the number of instances of (18) to solve, as in
Sec. 3.3 we partition IR into cells. The center of each cell
is taken as x∗, and the estimated homographies for x∗ are
applied to the pixels within the same cell. Further, the Mov-
ing DLT initialization across the cells can be accomplished
as a series of efficient rank-one updates (see Sec. 3.3).
Algorithm 1 summarizes our method. Fig. 8 illustrates the
multiple as-projective-as-possible warps estimated.

To give an idea of the size of problem (18), the size
of the Jacobian is (9K+ 2N)× (

∑
i,k δik). However, each

error term includes only one point pi, hence the Jacobian is
extremely sparse. We use the sparse Levenberg-Marquardt
library of [31] to minimize (18). Invoking Algorithm 1 to
create the 7-image panorama in Fig. 11 (second row) took
≈ 10 mins (time includes pixel compositing), where each
image is of size 2000 × 1329 pixels, IR is partitioned in
100× 100 cells, and the number of points in IR is 13380.
Of course, since the problems (10) and (18) are independent
across the cells, they can be solved in parallel for speedups.

5 RESULTS

We compare our approach against state-of-the-art methods
for image alignment. In the following, we refer to our
method as APAP (as-projective-as-possible). In our exper-
iments, we select or generate input images that correspond
to views that differ by rotation and translation. While many
data have been tested (including those used elsewhere) with
convincing results, only a few can be included in this paper;
refer to the supplementary material for more results.

5.1 Comparisons with flexible warp methods

First we compare APAP against other flexible warp meth-
ods for image stitching, namely, content preserving warps
(CPW) [20], dual homography warps (DHW) [22], and
smoothly varying affine (SVA) [18]. As mentioned in
Sec. 2.3, these methods can only stitch two images at
a time, since they either cannot be easily extended to
simultaneous estimation, or no such extensions exist in the
literature. Our aim is to cogently compare the alignment
accuracy of the different image warping methods, thus, we
avoid sophisticated postprocessing like seam cutting [3] and
straightening [22], and simply blend the aligned images
by intensity averaging such that any misalignments remain
obvious. For completeness, we also compare with the
commercial tools of Autostitch3 [1] and Photosynth by
inputting two images at once. For Photosynth, the final
postprocessed results are used since “raw” alignment results
are not obtainable in the standard version of the software.

Preprocessing and parameter settings. Given a pair
of input images, we first detect and match SIFT keypoints
using the VLFeat library [32]. We then run RANSAC to
remove mismatches, and the remaining inliers were given
to CPW, DHW, SVA and APAP. The good performance of
these methods depend on having the correct parameters. For
CPW, DHW and SVA, we tuned the required parameters
for best results4; refer to the respective papers for the list
of required parameters. For APAP, we varied the scale σ
within the range [8 12] for images of sizes 1024 × 768
to 1500 × 2000 pixels. The offset γ was chosen from
[0.0025 0.025]. The grid sizes C1 and C2 were both taken
from the range [50 100]; on each dataset, the same grid
resolution was also used in the CPW grid. In addition, fol-
lowing [20], for CPW we pre-warp the source image with
the global homography estimated via DLT on the inliers
returned by RANSAC. For Photosynth and Autostitch the
original input images (with EXIF tags) were given.

Qualitative comparisons. Figs. 6 and 7 depict results on
the railtracks and temple image pairs (note: the results of
Autostitch, Photosynth and APAP on railtracks are already
shown in Fig. 1). The railtracks data is our own, while
temple was contributed by the authors of [22]. The baseline
warp (single homography via DLT on inliers) is clearly
unable to satisfactorily align the images since the views do
not differ purely by rotation. SVA, DHW and Autostitch
are marginally better, but significant ghosting remains.
Further, note the highly distorted warp produced by SVA,
especially in the extrapolation regions. The errors made by
Photosynth seem less “ghostly”, suggesting the usage of
advanced blending or pixel selection [2] to conceal the mis-
alignments. Nonetheless it is clear that the postprocessing
was not completely successful; observe the misaligned rail
tracks and tiles on the ground. Contrast the above methods
with APAP, which cleanly aligned the two images with few
artefacts. This reduces the burden on postprocessing. We

3. We used the commercial version of Autostitch: “Autopano”.
4. Through personal communication, we have verified the correctness of

our implementation of CPW, DHW and SVA and their parameter settings.
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have confirmed that feathering blending [2] is sufficient to
account for exposure differences in the APAP results.

While CPW with pre-warping is able to produce good
results, the rigidity constraints (a grid like in Fig. 4(b) is
defined and discouraged from deforming) may counterpro-
ductively limit the flexibility of the warp (observe the only
slightly nonlinear outlines of the warped images5). Thus
although the rail tracks and tiles are aligned correctly (more
keypoint matches exist in these relatively texture-rich areas
to influence the warp), ghosting occurs in regions near the
skyline. Note that although APAP introduces a grid, it is
for computational efficiency and not to impose rigidity.

Sec. A in the supplementary material shows qualitative
comparisons on more image pairs.

Run time information. For DHW, CPW, SVA and
APAP (without parallel computation and rank-1 updates),
we record the total duration for warp estimation (plus any
data structure preparation), pixel warping and blending. All
methods were run in MATLAB with C Mex acceleration for
warping and blending. DHW and APAP take in the order
of seconds, while CPW typically requires tens of seconds.
In contrast, SVA scales badly with image size (since larger
images yield more keypoint matches), most likely due to
the underlying point set registration method [19]. While 8
mins was reported in [18] for 500×500-pixel images, in our
experiments SVA takes 15 mins for temple (1024 × 768)
and 1 hour for railtracks (1500 × 2000). Autostitch and
Photosynth typically take < 7 seconds in our experiments.

Quantitative benchmarking. To quantify the alignment
accuracy of an estimated warp f : R2 7→ R2, we
compute the root mean squared error (RMSE) of f on
a set of keypoint matches {xi,x′i}Ni=1, i.e., RMSE(f) =√

1
N

∑N
i=1 ‖f(xi)− x′i‖2. Further, for an image pair we

randomly partitioned the available SIFT keypoint matches
into a “training” and “testing” set. The training set is used
to learn a warp, and the RMSE is evaluated over both sets.

We also employed the error metric of [33]: a pixel x in
the source image is labeled as an outlier if there are no
similar pixels in the neighbourhood of f(x) in the target
image. Following [33], neighbourhood is defined by a 4-
pixel radius, and two pixels are judged similar if their
intensities differ by less then 10 gray levels. The percentage
of outliers resulting from f is regarded as the warping error.
Note that pixels that do not exist in the overlapping region
are excluded from this measure. Also, in our experiments
f is estimated using only the data in the training set.

Table 1 depicts the average errors (over 20 repetitions) on
10 challenging real image pairs, 6 of which were provided
by the authors of [22], [18] (see Sec. C in the supp. material
for the data). It is clear that APAP provides the lowest errors
(RMSE and % outliers) in most of the image pairs.

To further investigate, we produce synthetic 2D images
by projecting 3D point clouds onto two virtual cameras.
The point clouds were laser scanned from parts of buildings

5. As explained in Sec. 2.3, imposing warp rigidity is essential to
prevent wobbling in video stabilisation [20]. Note that the original purpose
of CPW was for video stabilisation and not image stitching.

Dataset Base DHW SVA CPW APAP
railtracks -TR 13.91 14.09 7.48 6.69 4.51

-TE 13.95 14.12 7.30 6.77 4.66
-% outliers 21.14 20.48 16.73 16.42 16.86

conssite -TR 12.43 11.24 11.36 7.06 5.16
-TE 12.88 11.87 11.56 7.43 5.88

-% outliers 11.28 11.24 10.79 11.18 10.38
train -TR 14.76 13.38 9.16 6.33 5.24

-TE 15.16 13.52 9.84 6.83 6.06
-% outliers 18.17 21.01 10.61 11.83 11.11

garden -TR 9.06 8.76 8.98 6.36 5.19
-TE 9.12 9.01 9.47 7.06 5.31

-% outliers 14.03 16.01 13.20 13.54 13.15
temple -TR 2.66 6.64 12.30 2.48 1.36
(from [22]) -TE 2.90 6.84 12.21 2.54 2.04

-% outliers 11.65 12.27 12.29 12.65 11.52
carpark -TR 4.77 4.36 4.19 3.60 1.38
(from [22]) -TE 4.85 5.67 4.05 3.86 1.67

-% outliers 9.50 9.32 9.01 9.28 8.04
apartments -TR 10.23 9.06 9.84 6.86 6.23
(from [22]) -TE 10.48 9.76 10.12 7.02 6.40

-% outliers 4.16 3.10 3.69 3.27 2.83
chess/girl -TR 7.92 10.72 21.28 9.45 2.96
(from [18]) -TE 8.01 12.38 20.78 9.77 4.21

-% outliers 23.35 22.87 22.98 23.44 21.80
rooftops -TR 2.90 4.80 3.96 3.16 1.92
(from [18]) -TE 3.48 4.95 4.11 3.45 2.82

-% outliers 8.66 10.48 10.17 8.24 8.44
couch -TR 11.46 10.57 12.04 5.75 5.66
(from [18]) -TE 11.84 10.86 12.93 5.92 5.68

-% outliers 39.10 38.80 37.20 39.56 36.68
TABLE 1: Average RMSE (in pixels, TR = training set
error, TE = testing set error) and % outliers over 20
repetitions for 5 methods on 10 image pairs. See Sec. A of
the supp. material to view the qualitative stitching results.

in a university campus; see Column 1 in Fig. 5 for the
point clouds used. The camera intrinsics and poses were
controlled such that the projections fit within 200 × 200-
pixel images. The projections yield a set of two-view point
matches that permit the direct application of the various
warp estimation methods. For each point cloud, we fixed the
relative rotation between the cameras at 30◦, and varied the
distance between the camera centers along a fixed direction.

To generate different data instances, we randomly sample
1500 points per point cloud. Fig. 5 shows the average
(over 50 repetitions) training and testing RMSE plotted
against camera distance (% outlier measure [33] cannot be
used here since there are no image pixels). Expectedly, all
methods deteriorate with the increase in camera distance.
Note that the errors of SVA and CPW do not diminish as
the translation tends to zero. For SVA, this is due to its
affine instead of projective regularization (in other words,
the affine model is the incorrect model, even with no cam-
era translations). For CPW, this indicates that its rigidity
preserving distortions may sometimes overly perturb the
pre-warping by the homography. In contrast, APAP reduces
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gracefully to a global homography as the camera centers
coincide, and provides overall the lowest error.

5.2 Comparisons with bundle adjustment
Here, we compare our novel APAP bundle adjustment
scheme against Autostitch [1] in simultaneously refining
multiple alignment functions. Autostitch uses bundle adjust-
ment to optimize the relative rotations and homographies
between a set of overlapping images. Again, to directly
compare alignment accuracy, we avoid any advanced com-
positing, and simply blend the aligned images with intensity
averaging (the Autopano commercial version of Autostitch
allows postprocessing to be switched off). Since Autostitch
prewarps the images onto a cylindrical surface, we also
conduct the same prewarping for APAP.

Figs. 9, 10 and 11 show the alignment results respectively
on the construction site, garden and train image sets.
The images correspond to views that differ by more than
pure rotation, as one would expect from a typical tourist’s
photo collection. The Autostitch results exhibit obvious
misalignments; these are highlighted with red circles in the
figures. Fundamentally, this is due to being restricted to
using homographies for alignment. In contrast, our APAP
method (Moving DLT initialization and bundle adjustment
refinement) produced much more accurate alignment that
maintains a geometrically plausible overall result.

However, both methods (without photometric postpro-
cessing) cannot handle moving objects, which give rise to
motion parallax in the mosaic. This is evident in the train
scene (Fig. 11), where there are many walking pedestrians.
Nonetheless, our APAP method handles the static compo-
nents of the scene much better than Autostitch.

5.3 Stitching full panoramas with postprocessing
Our premise is that more accurate image alignment im-
poses lower dependency on deghosting and postprocessing.
Therefore, methods that can align more accurately tend to
produce more satisfactory final results. To demonstrate this
point, we stitch full panoramas by incrementally stitching
multiple images onto a canvas using Moving DLT. After
each image is warped onto the canvas, we apply seam
cutting and feathering blending to composite the pixels. The
resulting mosaic allows us to compare on an equal footing
with Autostich and Photosynth, which by default conduct
postprocessing. Sec. B in the supplementary shows results
on the construction site, garden and train image sets.

It is evident that our results show much fewer artifacts
than Autostitch and Photosynth. In particular, in train
the motion parallax errors have been dealt with by seam
cutting after Moving DLT, without introducing noticeable
alignment errors in the other parts of the scene. Photo-
synth’s results show signs of seam cutting and sophisticated
pixel blending methods. While noticeable artifacts exist,
given the potentially very bad errors from using basic
homography alignment, the results of Photosynth show the
remarkable ability of postprocessing methods to reduce or
conceal much of the misalignment artifacts. Nonetheless

our contributed method allows the remaining errors to be
eliminated thoroughly via improved image alignment.

6 CONCLUSION

We have proposed as-projective-as-possible warps for im-
age stitching. The warps are estimated using our novel
Moving DLT method. Our method was able to accurately
align images that differ by more than a pure rotation. We
also propose a novel locally weighted bundle adjustment
scheme to simultaneously align multiple images. The re-
sults showed that the proposed warp reduces gracefully to
a global homography as the camera translation tends to
zero, but adapts flexibly to account for model inadequacy
as the translation increases. Combined with commonly used
postprocessing methods, our technique can produce much
better results than state-of-the-art image stitching softwares.
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Fig. 6: Qualitative comparisons (best viewed on screen) on the railtracks image pair. Red circles highlight errors. List of
abbreviations: SVA-Smoothly Varying Affine, DHW-Dual Homography Warps, CPW-Content Preserving Warps. Note
that results for Autostich, Photosynth and APAP are shown in Fig. 1.
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Fig. 7: Qualitative comparisons (best viewed on screen) on the temple image pair. Red circles highlight errors. List of
abbreviations: SVA-Smoothly Varying Affine, DHW-Dual Homography Warps, CPW-Content Preserving Warps, APAP-
As Projective As Possible Warps.
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Fig. 8: Aligned images with transformed cells overlaid to visualize the multiple as-projective-as-possible warps refined
using our novel bundle adjustment scheme (Sec. 4).

Fig. 9: Alignment results on the construction site image set (best viewed on screen). Red circles highlight errors. Note
that photometric postprocessing was not applied on Autostitch and APAP.
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Fig. 10: Alignment results on the garden image set (best viewed on screen). Red circles highlight alignment errors. Note
that photometric postprocessing was not applied on Autostitch and APAP.

Fig. 11: Alignment results on the train image set (best viewed on screen). Red circles highlight errors. Note that
photometric postprocessing was not applied on Autostitch and APAP.


