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Abstract—Rain streaks impair visibility of an image and
introduce undesirable interference that can severely affect the
performance of computer vision and image analysis systems.
Rain streak removal algorithms try to recover a rain streak free
background scene. In this paper, we address the problem of rain
streak removal from a single image by formulating it as a layer
decomposition problem, with a rain streak layer superimposed
on a background layer containing the true scene content. Ex-
isting decomposition methods that address this problem employ
either sparse dictionary learning methods or impose a low rank
structure on the appearance of the rain streaks. While these
methods can improve the overall visibility, their performance
can often be unsatisfactory, for they tend to either over-smooth
the background images or generate images that still contain
noticeable rain streaks. To address the problems, we propose
a method that imposes priors for both the background and rain
streak layers. These priors are based on Gaussian mixture models
learned on small patches that can accommodate a variety of
background appearances as well as the appearance of the rain
streaks. Moreover, we introduce a structure residue recovery step
to further separate the background residues and improve the
decomposition quality. Quantitative evaluation shows our method
outperforms existing methods by a large margin. We overview
our method and demonstrate its effectiveness over prior work
on a number of examples.

Index Terms—Rain removal, image decomposition, visibility
recovery, image prior, Gaussian mixture models.

I. INTRODUCTION

MOST computer vision and image processing algorithms
assume that the input image is of scene content that is

clear and visible. However, for outdoor images, undesirable
interference from rainy weather is often inevitable. Rain in-
troduces several different types of visibility degradation. Rain-
drops that fall and flow on a camera lens or a windscreen can
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Fig. 1: Upper Row: An example rain image and a zoomed-in
patch that mainly contains an annoying effect of rain streaks.
Our method learns a rain streak layer prior on this region and
used it for layer separation. Lower Row: The background
and rain streak layers recovered by our proposed method,
respectively. Note the rain streak layer is amplified for better
visualization.

obstruct, deform, and/or blur the imagery of the background
scenes. Distant rain streaks accumulated throughout the scene
reduce the visibility in a manner similar to fog–namely by
scattering light out and into the line of sight, creating a veiling
phenomenon. Nearby rain streaks, where the individual rain
streaks are visible, can also significantly degrade visibility
due to their specular highlights, scattering, and blurring effect.
Figure 1 shows an example of visibility degradation due to rain
streaks and our attempt to remove them.

Mathematically, the observed rain image O ∈ RM×N can
be modeled as a linear superimposition [1], [2] of the desired
background layer B ∈ RM×N and the rain streak layer
R ∈ RM×N , expressed as O = B+R. The goal of rain streak
removal is to decompose the rain-free background B and the
rain streak layer R from an input image O, and hence enhance
the visibility of the image. This layer separation problem is
ill-posed, as the number of unknowns to be recovered is twice
as many as that of the input. One common strategy is to use
multiple images, or a video sequence, to mitigate the difficulty
of the background scene recovery given the rich temporal
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information. In this paper, however, we focus on the problem
of rain streak removal given a single image only.

While removing rain streaks in a single image is challenging
as less information is available, single image approaches are
desired for two main reasons. First, in many situations, the
input is only a single image captured in a rainy environment
(e.g., archived images, images available on the Internet, images
taken by still cameras). Second, for dynamic scenes, such as
when the camera moves and some part of the scene also
moves, temporal information might not be reliable. As a
result, being able to remove rain streaks for each frame will
benefit the overall final result, since most existing video-based
methods assume a static background.

To make the problem well-posed and tractable, we enforce
layer priors on both the background and rain components.
More specifically, the idea of using patch-based priors is
inspired by Zoran and Weiss [3], who used Gaussian mix-
ture models (GMMs) to model natural image patches. This
approach is simpler to compute than the existing prior models,
such as FoE [4] or Weiss-Freeman’s priors [5]. Recent works
from Shih et al. [6] shows the superiority of using GMMs as
priors in solving the reflection removal problems [7].

In our rain removal approach, to model the background
patch priors, we use a GMM trained on patches from natural
images. An additional gradient sparsity constraint is imposed
to further regularize the background. As for the rain layer, we
do the same: we train a GMM from small image patches of
rain streaks. The difference in rain GMM learning is that we
use only the input image and select a region with textureless
background to generate the rain patches. Unlike existing
methods in single-image rain streak removal ([2], [1], [8]), our
method is straightforward and generates considerably better
results qualitatively and quantitatively. To our knowledge, this
is the first method to use GMM patch priors for the purpose
of rain streak removal.

A shorter version of this work appeared in [9]. This journal
version presents the algorithm in more technical details and
includes a new structure residue recovery step to recover
the additional background residue in the rain streak output
from our optimization. This step can further improve layer
separation quality over our original method in [9]. In addition,
we evaluate the proposed method on a synthetic data set by
measuring the quality of both the recovered background and
the rain streak layer. We also add a comparison to a recent
work of [8]. Experiments show that our method, particularly
with the structure residue recovery step, can outperform the
existing methods by a large margin in terms of both SSIM and
PSNR metrics.

The remainder of this paper is organized as follows. Section
II discusses the related methods that deal with rain, including
video-based rain streak removal and single image-based rain
streak removal. Section III details our method, including the
problem formulation and optimization. Section IV shows the
results and analyzes them in comparison with the results of
other methods. The paper is concluded in Section V.

II. RELATED WORK

There are a number of methods proposed to improve the
visibility of images captured in bad weather like haze and
fog (e.g. [10], [11], [12]), rain, or snow (e.g., [13], [1], [2]).
Methods specifically dealing with rain streak interference fall
into two categories: multiple image/video-based and single
image methods.

A. Video-Based Methods

Early methods to remove rain streaks include work by
Garg and Nayar [14], [13], which introduces a rain streak
detection and removal method from a video sequence. The
detection is based on two constraints: first, since rain streaks
are dynamic, their changes in intensity within a few frames are
relatively large. Second, since other objects are also possibly
dynamic, rain streaks can be differentiated from these objects
by verifying whether the intensity changes along the streak are
photometrically linearly related to the background intensity.
This second constraint will reduce the false alarms introduced
by the first constraint. Having detected the rain streaks, the
method removes them by taking the average intensity of the
pixels taken from the previous and subsequent frames.

Garg and Nayar [15] propose another method that exploits
the ability to control a video camera’s operational parameters
when capturing a rainy scene. To this end, they show that
rain visibility in images relies significantly on the exposure
time and depth of field of the camera. Thus adjusting these
parameters while taking the video will allow us to reduce the
appearance of the rain streaks. Zhang et al. [16] added an
additional constraint called the chromaticity constraint. They
found the intensity changes in the RGB color channels are the
same for pixels representing rain streaks.

More recently, Bossu et al. [17] propose a rain detection
algorithm based on the histogram of streak orientations. The
main idea is to fit a Gaussian distribution on rain streak
histograms, such that rain streaks can be differentiated from
other dynamic objects. It uses background subtraction to obtain
the rain histograms. Barnum et al. [18] develop a model of the
rain profiles in a frequency domain and analyze the properties
of rain in the domain. Their frequency analysis allows for
detection and removal of rain or snow streaks. Santhaseelan
and Asari [19] apply phase congruency features to detect rain
streaks, and then reconstruct the background scene using the
registration of phase information obtained from optical flow (to
account for moving objects present in the scene). There are
also methods that treat rain removal in video as a low-rank
tensor completion problem–for example, [20], [21], assuming
a constant background (see [22] for a complete review on the
existing video-based rain streak removal).

B. Single Image Methods

For single-image rain streak removal, Kang et al. [1]
propose a method that decomposed an input image into its
low-frequency component (the structure layer) and a high-
frequency component (the texture layer). The high-frequency
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part contains rain streaks and edges of background object-
s. They separate the rain streak frequency from the high-
frequency layer via sparse coding-based dictionary learning
with HoG features. The output is obtained by combining back
the low-frequency and processed high-frequency layers. While
the decomposition idea is elegant, the overall framework in [1]
is complex. The results are not optimal either, particularly as
the background tends to be blurry, which is caused by too few
high-frequency component in the background found using the
dictionary. These problems remain in the follow-up works of
this method–for example, [23], [24].

More recently, Chen and Hsu [2] introduce a single objec-
tive function to decompose the background and rain streak
layers. They formulate a cost function with three terms: the
likelihood, a smoothed background layer, and a low-rank rain
streak layer. Although the idea of posing the problem into
an objective function is attractive, the constraints seem not
sufficiently strong. In our experiments, we still observe a
large amount of rain streaks in the output. Kim et al. [25]
detect rain streaks by assuming the elliptical shape and the
vertical orientation of the rain, and remove the detected streaks
using nonlocal mean filtering. This idea works for some
cases of rain streaks, but unfortunately detecting individual
streaks is challenging, because they can possibly have different
orientations, scales, and densities. The most recent work of [8]
proposes a discriminative sparse coding framework to remove
rain streaks in a single image. While effective, the approach
often still leaves noticeable thin structures from the rain streaks
in the final output.

Aside from dealing with rain streaks, several methods have
been proposed to address artifacts that arise when raindrops
adhered to the camera lens or a windscreen in front of
the camera (e.g., [26], [27], [28], [29], [30]). The problems
specific to adherent raindrops, however, are notably different
from the interference caused by rain streaks. In particular,
static adherent raindrops, which is the problem most existing
methods target, are generally less dense than rain streaks. In
addition, their size in an image is generally much larger than
rain streaks, and they tend to completely occlude parts of the
background scene.

III. OUR METHOD

A. Problem Formulation

As introduced, the observed rain image O ∈ RM×N can be
modeled as a linear superimposition of the desired background
layer B ∈ RM×N and the rain streak layer R ∈ RM×N , such
that:

O = B + R. (1)

Hence, the goal of rain streak removal is to decompose the
rain-free background B and the rain streak layer R from
a given input image O. As previously stated, this problem
is ill-posed. To resolve it, we propose to maximize the
joint probability of the background layer and the rain layer
using the MAP (maximum a posteriori): that is, maximize
p(B,R|O) ∝ p(O|B,R) · p(B) · p(R) with the assumption
that the two layers B and R are independent. Equivalently,

with slight algebraic manipulation on its negative log function,
we obtain the following energy minimization problem:

min
B,R

‖O−B−R‖2F + Φ(B) + Ψ(R)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi,
(2)

where ‖ · ‖F represents the Frobenius norm and i is the
pixel index. The first term ‖O − B − R‖2F is essentially
concerned with the fidelity between the observed and the
recovered signals, while Φ(B) and Ψ(R) designate the priors
that will be respectively imposed on B and R to regularize the
inference. The inequality constraint ensures that the desired B
and R are positive images. More importantly, this inequality
constraint plays a critical role in estimating reliable solutions
as it regularizes the DC component of the recovered layers as
verified in recent works by [31], [6].

Focusing our discussion on the priors, we first define the
priors of the background layer as:

Φ(B) := −γ
∑

i

log GB(P(Bi)) + α‖∇B‖1, (3)

where γ(= 0.01) and α(= 0.05) are two non-negative coeffi-
cients balancing the corresponding terms. The function P(Bi)
is to extract the n × n (pre-defined size) patch around pixel
Bi and reshape it into a vector of length n2 with the DC
component removed. The term G(x) stands for the GMM of
x–that is, G(x) :=

∑K
k=1 πkN (x|µk,Σk), where K is the

total number of Gaussian components, πk is the component
weight such that

∑K
k=1 πk = 1, while µk and Σk are the

mean and covariance corresponding to the kth component,
respectively. As the function P(·) has removed the mean of
every patch, µk = 0 for all k. The benefit of this patch
regularizer based on GMM has been demonstrated in [3]. In
addition, it has been widely recognized that natural images
are largely piecewise smooth and their gradient fields are
typically sparse. Therefore we employ ‖∇B‖1 to achieve such
a functional, where ∇ denotes the gradient operator and ‖ · ‖1
is the `1 norm.

As for the priors of the rain layer, we write it in the
following form:

Ψ(R) := −γ
∑

i

log GR(P(Ri)) + β‖R‖2F , (4)

where GR(P(Ri)) is similar with GB(P(Bi)). Note that we
use two different GMMs for the background and rain layers,
termed GB, and GR, respectively (we discuss further this
GMM modeling in Section III-C). Since the rain component
tends to make up a small fraction of the observation, we
impose ‖R‖2F to penalize it, the importance of which is
controlled by the parameter β(= 0.01).

Putting all terms together leads to the complete formulation
of the energy function:

min
B,R

‖O−B−R‖2F + α‖∇B‖1 + β‖R‖2F−

γ
∑

i

log
(
GB(P(Bi)) + log GR(P(Ri))

)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi.

(5)

The optimization approach to minimize this energy function
is discussed in the next section.
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Fig. 2: (Upper left) The input image and the selected region used to learn the rain streak GMM. (Bottom left) Visualization
of the eigenvectors of covariance of three randomly picked rain GMM components, sorted by their eigenvalues in descending
order. The visualization helps to reveal that the GMM can capture the rain orientation and structure information. (Right) Some
example natural images and the visualization of the eigenvectors of covariance of three randomly picked GMM components.

B. Optimization

As noticed in Eq. (5), the cost function is non-convex
due to the patch GMM priors. A commonly used scheme
to solve this kind of problem is the half-quadratic splitting
technique [32]. To cast our problem into the half-quadratic
splitting framework, we need to make the objective function
separable. Hence, auxiliary variables gBi

, gRi
and H are

introduced to replace P(Bi), P(Ri) and ∇B, respectively.
By doing so, the optimization problem turns out to be in the
following form:

min ‖O−B−R‖2F + α‖H‖1 + β‖R‖2F−
γ
∑

i

(
log GB(gBi

) + log GR(gRi
)
)

+ ω‖∇B−H‖2F

+ ω
∑

i

(
‖P(Bi)− gBi

‖22 + ‖P(Ri)− gRi
‖22
)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi,
(6)

where ‖ ·‖2 represents the `2 norm. Notice that ω is a positive
parameter that monotonically increases after each iteration (
starting from ω0 = 0.02). As ω grows, the solutions to Eq. (6)
infinitely approach those to Eq. (5). The proposed algorithm
iteratively updates the variables as described in the following.

a) Solving H: Discarding the variables unrelated to H
yields:

H(t+1) = argmin
H

α‖H‖1 + ω‖∇B(t) −H‖2F . (7)

This is a classic LASSO problem. Its closed-form solution can
be efficiently obtained by the shrinkage operator, the definition
of which on scalars is Sε>0[x] := sgn(x) max(|x|− ε, 0). The
extension of the shrinkage operator to vectors and matrices is
simply applied element-wise. As a result, we have:

H(t+1) = Sα/2ω[∇B(t)]. (8)

b) Solving {B, R}: By fixing H, gBi
, and gRi

, the
optimization problem corresponding to {B, R} becomes:

{B(t+1),R(t+1)} = argmin
B,R

‖O−B−R‖2F + β‖R‖2F+

ω
∑

i

(
‖P(Bi)− g

(t)
Bi
‖22 + ‖P(Ri)− g

(t)
Ri
‖22
)

s. t. ∀i 0 ≤ Bi,Ri ≤ Oi.
(9)

Following [6], we use L-BFGS [33] to minimize this con-
strained L2 problem. L-BFGS is an effective solver for this
problem, since the involved terms in this problem are all
quadratic.

c) Solving gBi
(gRi

): Since the gBi
and gRi

sub-
problems share the same formulation with the other variables
given, we detail only the solver of gBi

here, while gRi
can

be updated analogously. The optimization problem associated
with each g

(t+1)
Bi

is expressed as:

g
(t+1)
Bi

= argmin
gBi

ω‖P(B
(t+1)
i )− gBi‖22 − γ log GB(gBi).

(10)
The approximate optimization suggested by [3] is used. This
approach applies Wiener filtering using only the component
with the largest likelihood in the GMM. The whole process is
summarized in Algorithm 1.

Note that we first convert the RGB input image to the YUV
space and remove rain streaks on the luminance (Y) channel.
We get the final output by converting the rain streak removal
result in YUV back to RGB space.

C. Gaussian Mixture Model Learning

In this section, we describe how to obtain the two GMMs
for the background and rain layers– namely GB and GR. To
obtain GB, we utilize a pre-trained GMM model provided by
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Fig. 3: Rain streak removal example for heavy rain. We found that first applying a dehazing method (3rd column), followed
by the rain streak removal, helps improve results.

Algorithm 1 Rain Streak Removal Using Layer Priors

Input: input image O; GMMs for two layers: GB and GR;
Initialization: B← O; R← 0; ω ← ω◦;

repeat
update H using Eq. (8);
solve {B, R} by Eq. (9);
solve {gBi

,gRi
} by Eq. (10);

ω = 2 ∗ ω;
until convergence or maximum iteration number;

Output: The estimation of two layers B and R;

[3] with 200 mixture components and patch size 8 × 8. This
model is learned using Expectation–Maximization (EM) from
a set of 2 × 106 patches sampled from 300 natural images
with their DC removed. The images are all rain streak-free
images and thus can directly serve our purpose of modeling
the background layer.

To obtain GR, existing methods attempt to extract the
internal properties of rain streaks within the input image itself,
like [2], [1]. This means we do not require building a dataset
of rain streaks to learn the rain streak model. Instead, we
directly learn the priors from the specific input image. Doing
this guarantees the correctness of the rain streak appearance,
which otherwise can be considerably different from one image
to another image. Unlike [2], [1], which work on the entire
image, we found that GR requires only small regions (e.g. , a
region with size 100 × 100 contains about 10K overlapping
8×8 patches inside), since rain streaks mostly form repetitive
patterns.

We observe that most natural images contain regions that
are relatively homogenous background–for instance, sky and
walls. The image patches within these regions can be treated
as pure rain streaks, and used to train GR. To select such
regions, we calculate the variance within every possible region
in a sliding window fashion and pick the ones with the least
variances. We further remove uniformly bright regions where
rain streaks are hardly observed by removing the candidates

with mean intensity higher than a threshold (0.8). This strategy
of using local patches for global image restoration shares the
similar spirit in [34].

After detecting the pure rain streak region (e.g., see the
rectangular box in Figure 1), we samples 8× 8 small patches
from this region and perform EM to learn the parameters of
GR. We set the cluster number for GR to a small one–that is,
20–compared with 200 for GB, as the rain streak appearance
of one single image has less variance than the background
layer.

Figure 2 (left) shows the eigenvectors of the three randomly
selected mixture components from the learned GR. Note that
they have rain streak structures that contribute much to the
expressive power of the model for the rain streak layer. On the
right side of Figure 2, we also visualize the eigenvectors of the
three randomly selected mixture components from GB, learned
on natural image patches. As can be seen, the components in
GB show clear differences with those in GR, as they contain
more diversity.

D. Dealing with Heavy Rain

For images taken in scenes with heavy rainfall, the density
of the rain streaks accumulated throughout the environment
and partially occludes the scene content. As a result, the rain
streaks scatter the atmosphere light and produce a ‘washed-
out’ effect similar to haze and fog [11]. In such cases,
the individual streaks, mainly nearby rain streaks, cannot be
observed anymore. For this case, we found that applying a
dehazing method–for example, [35]–as a preprocessing step
can be useful. Two examples are shown in Figure 3. We can
see the individual rain streaks are clearer after the dehazing
preprocessing step. Having applied the dehazing, we then run
our rain streak removal method, which produces clearer results
in terms of visibility, as shown in Figure 3. This preprocessing
step could be an option to the users when they want to handle
heavy rain cases.
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Fig. 4: Background-structure-residue recovery illustration. We can effectively retrieve the background structure residues B̂ in
the initial recovery of the background. Finding these residues helps separate the two layers, further as shown in B̃ and R̃.
(Rain streak and structure residue layers are amplified for better visualization.)

E. Recovering the Background Structure Residue

While our proposed layer decomposition method can effec-
tively separate most background components from rain streak,
a closer look at our rain streak layer may still reveal weak
background structure residues in some cases, as shown in
Figure 4. These background structure residues, which should
belong to the background layer, are falsely assigned to the
rain streak layer in our optimization. To address this prob-
lem, we introduce a refinement step to further retrieve these
background structure residues from the rain streak layer.

To achieve this, we use the background output B after the
optimization as guidance to further clean the rain streak output
R, using the guided image smoothing framework [36], [37].
Specifically, we attempt to obtain the background structure
residues B̂ by optimizing the following objective function:

min
B̂

∑

i

(B̂i −Ri)
2 + τ

∑

i

∑

j∈N4(i)

φi,j(B)(B̂i − B̂j)
2 (11)

where i is the pixel index. N4(i) represents the four neighbors
for pixel i. The spatially varying weight function φi,j measures
how similar two pixels i and j are at the guidance image B.
The first term is the data constraint, which forces the closeness
of residue B̂ to R, while the second term encourages the
smoothness under the guidance of B. The weight τ balances
the data term and the regularization term. We use the fast
guided image smoothing techniques [37] to solve Eq. (11).

Having obtained the background structure residues B̂, we
remove it from the rain streak layer R and add it back to
the background layer B. The final background layer and rain
streak layer are denoted as B̃ and R̃ respectively and can be
computed as

R̃ = max(R− B̂, 0);

B̃ = B + B̂.
(12)

Figure 4 shows the results of this background structure
residue recovery step. As can be seen, this step can more
successfully recover the background residues and make the
rain streak cleaner. An improvement in the Structure Similarity
Index (SSIM) is also demonstrated.

IV. EXPERIMENTAL RESULTS

We evaluate our method using both synthetic and real
images, and compare our results with the state-of-the-art
methods, including the sparse representation-based dictionary
learning method [1] (denoted as SR), the low-rank appearance
method [2] (denoted as LRA), and the discriminative sparse
coding approach [8] (denoted as DSC). For SR and DSC,
we use the codes provided by the author with their default
parameter settings. We have implemented LRA by strictly
following the procedure described in [2] and the parameters
are fixed to get the best overall performance in the quantitative
evaluation. For the quantitative experiments on synthetic data,
the ground truth images are available, and we can evaluate
and compare the results using SSIM [38] as well as PSNR on
the luminance channel (in both two metrics, a larger number
indicates a closer proximity to the ground truth).

Our Matlab implementation takes 93s (5 iterations) / 370s
(20 iterations) to process one 480 × 640 color image on a
PC with Intel I7 CPU (3.4GHz) and 8GB RAM, and most of
the time is spent on solving Eq. (9) using L-BFGS. Note that
in all the results presented in the section, we do not apply
the dehazing processing as described in Section III-D for fair
comparison with other methods.

A. Synthetic Data

1) Study on parameters: First we present a quick study
on the convergence and parameter settings of our method. We
tested the effect on the SSIM of recovered layers to the ground
truth on our synthetic dataset and plotted in Figure 7. It can
be seen from Figure 7(a) that our method converges fast such
that it can get to a good solution after about 10 iterations.
Figure 7(b)(c)(d) shows the layer recovery results on different
parameter setting of α, β, and γ. Our method is not sensitive to
the parameter settings and is quite stable when the parameters
are within a proper range.

From the objective function in Eq. (5), one can notice that
by simply disabling the terms related to gBi and gRi (set
γ = 0), our model becomes dominated by the gradient sparsity
term α‖∇B‖1, which is the Total Variation (TV) model
[39]. To reveal the benefit of the GMM priors, a comparison
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the initial recovery of the background. Finding these residues helps separate the two layers, further as shown in B̃ and R̃.
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successfully recover the background residues and make the
rain streak cleaner. An improvement in the Structure Similarity
Index (SSIM) is also demonstrated.

IV. EXPERIMENTAL RESULTS

We evaluate our method using both synthetic and real
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methods, including the sparse representation-based dictionary
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method [2] (denoted as LRA), and the discriminative sparse
coding approach [8] (denoted as DSC). For SR and DSC,
we use the codes provided by the author with their default
parameter settings. We have implemented LRA by strictly
following the procedure described in [2] and the parameters
are fixed to get the best overall performance in the quantitative
evaluation. For the quantitative experiments on synthetic data,
the ground truth images are available, and we can evaluate
and compare the results using SSIM [38] as well as PSNR on
the luminance channel (in both two metrics, a larger number
indicates a closer proximity to the ground truth).
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A. Synthetic Data
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that it can get to a good solution after about 10 iterations.
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the parameter settings and is quite stable when the parameters
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From the objective function in Eq. (5), one can notice that
by simply disabling the terms related to gBi

and gRi
(set

γ = 0), our model becomes dominated by the gradient sparsity
term α‖∇B‖1, which is the Total Variation (TV) model
[39]. To reveal the benefit of the GMM priors, a comparison
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Fig. 5: Illustration of the effect of the GMM. Our objective without the GMM components (second column) cannot distinguish
the rain streaks and the image details like the one with GMM (left two columns). The Structure Similarity Index (SSIM) for
each result is shown below the image.
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Fig. 6: Rain streak removal results for the two data sets in [1]. The numbers below images are the SSIM wrt ground truth.
Ours shows better background recovery both quantitatively and qualitatively.

between the result with and without the GMM is conducted.
The effect is shown in Figure 5, from which, we can see
that the result without GMM part is able to filter out the rain
streaks but also falsely removes many details that belong to the
background as it will have the behavior similar to the of TV
filter. The GMM term greatly helps distinguish the rain streaks
from other scene details in the recovering rain layers. The
result of SSIM score increases from (0.7777, 0.7116) without
the GMM to (0.9290, 0.8791) with the GMM. This increase
demonstrates the effectiveness of the GMM model.

2) Comparison: We compare our method with SR [1],
LRA [2], and DSC [8]. Figure 6 shows the results of these
methods on the data set provided in [1]. This is the only
dataset we can find that is provided by previous work and
has ground truth for quantitative evaluation. As observed, our
method considerably outperforms the other three methods in
terms of both visual quality and SSIM. SR [1] tends to over-
smooth the image content, LRA [2] sometimes fails to capture
the rain streaks, and DSC [8] leaves a noticeable amount of

rain in the outputs. Our proposed method removes the rain
streaks while keeping image details in the background layer.

For more comparison, we synthesize a new data set with 12
images using the photorealistic rendering techniques proposed
by Grag and Shree [41]. The background images are from the
BSD300 Dataset [42], which are all natural images. Table
I lists the performance of the methods. Our method with
the background structure residue recovery step described in
Section III-E is denoted as ‘Ours+BSR,’ while our original
method is denoted as ‘Ours.’ We have also added a generic
edge-aware smoothing filter, the guided filter (GF) [40], here
for comparison. The numerical performance using SSIM and
PSNR metrics of different methods is listed in Table I. Figure 8
shows the visual results of two examples.

We first compare the background recovery quality. It is
expected that the performance of the generic filtering method
(GF) is inferior to those task-specific rain streak removal
methods. It is surprising to find that the background recovery
of GF has an even higher SSIM and PSNR (0.8179 / 29.43 dB)

Fig. 6: Rain streak removal results for the two data sets in [1]. The numbers below images are the SSIM wrt ground truth.
Ours shows better background recovery both quantitatively and qualitatively.

between the result with and without the GMM is conducted.
The effect is shown in Figure 5, from which, we can see
that the result without GMM part is able to filter out the rain
streaks but also falsely removes many details that belong to the
background as it will have the behavior similar to the of TV
filter. The GMM term greatly helps distinguish the rain streaks
from other scene details in the recovering rain layers. The
result of SSIM score increases from (0.7777, 0.7116) without
the GMM to (0.9290, 0.8791) with the GMM. This increase
demonstrates the effectiveness of the GMM model.

2) Comparison: We compare our method with SR [1],
LRA [2], and DSC [8]. Figure 6 shows the results of these
methods on the data set provided in [1]. This is the only
dataset we can find that is provided by previous work and
has ground truth for quantitative evaluation. As observed, our
method considerably outperforms the other three methods in
terms of both visual quality and SSIM. SR [1] tends to over-
smooth the image content, LRA [2] sometimes fails to capture
the rain streaks, and DSC [8] leaves a noticeable amount of

rain in the outputs. Our proposed method removes the rain
streaks while keeping image details in the background layer.

For more comparison, we synthesize a new data set with 12
images using the photorealistic rendering techniques proposed
by Grag and Shree [41]. The background images are from the
BSD300 Dataset [42], which are all natural images. Table
I lists the performance of the methods. Our method with
the background structure residue recovery step described in
Section III-E is denoted as ‘Ours+BSR,’ while our original
method is denoted as ‘Ours.’ We have also added a generic
edge-aware smoothing filter, the guided filter (GF) [40], here
for comparison. The numerical performance using SSIM and
PSNR metrics of different methods is listed in Table I. Figure 8
shows the visual results of two examples.

We first compare the background recovery quality. It is
expected that the performance of the generic filtering method
(GF) is inferior to those task-specific rain streak removal
methods. It is surprising to find that the background recovery
of GF has an even higher SSIM and PSNR (0.8179 / 29.43 dB)



88

Input + Ground truth GF SR LRA DSC Ours+BSR

Fig. 8: Visual comparison of different rain streak removal methods on a synthetic data set.
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Fig. 7: Study on the parameter settings.

than that of SR [1] (0.7437 / 27.69 dB). An inspection of the
recovered image in Figure 8 shows the drawback of SR [1] that
it tends to over-smooth the background layer. LRA [2] fails
to remove the rain streaks in these two examples in Figure 8.
While DSC [8], with a higher overall SSIM and PSNR (0.8657
/ 30.96 dB), can obtain slightly better visual results, it still
leaves many thin rain structures in the background images. Our
original method obtains SSIM = 0.9143 and PSNR = 32.85
dB overall, which is far better than SR [1], LRA [2], and
DSC [8]. Our method with the background-structure-residue
recovery step shows further improvement over our original
method, and obtains the best background recovery on most
cases, and also obtains the best overall performance (0.9228

/ 33.91 dB). Visually, our full method with background-
structure-residue procedure (Ours+BSR) obtains much cleaner
background recovery than other methods.

For the rain streak layer recovery, GF gets the lowest
numerical scores (0.6977 / 28.87 dB). This point also reflects
in Figure 8 that GF [40] falsely assigns many image details
into the rain streak layer. In contrast, the rest of the rain
streak removal methods [1], [2], [8] capture the rain streaks
better than GF [40]. It is observable that LRA [2] obtains less
accurate rain streak recovery (0.7089 / 29.86 dB) among all
rain streak removal methods, indicating that low rank may not
be a sufficient prior for this task. The visual example reveals
the limitation of using the low rank prior to model the rain
streak layer [2] because it may treat other repetitive patterns in
the image as rain streaks (e.g., the bricks, the building facades).
SR [1] (0.7454 / 30.58 dB) can capture some rain streaks in
the scene but cannot distinguish rain streaks in highly textured
regions. Ours (0.8462 / 32.10 dB) and Ours+BSR (0.8483 /
32.58 dB) show noticeable advantages over existing methods
both numerically and visually.

B. Results on Real Images

Figure 9 and Figure 10 show the results and comparisons
using real images where the images in Figure 9 are from [8]
and the images in Figure 10 are found on the Internet.

Similar to the previous experiments, the drawbacks of
SR [1], LRA [2], and DSC [8] are still present. SR [1]
always produces over-smooths backgrounds. LRA [2] either
over-smooth the background (case 1 in Figure 9 and case 3
in Figure 10) or fails to remove the rain streaks as the low
rank assumption is not always met. DSC [8] exhibits good
results when the rain streaks are sparse (Figure 9) but the rain
streak removal performance will drop in the cases with more

Fig. 8: Visual comparison of different rain streak removal methods on a synthetic data set.
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TABLE I: Quantitative comparison of rain streak removal results on our synthetic data sets (12 images).

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 Average

B
ac

kg
ro

un
d SS

IM
GF[40] 0.7643 0.8335 0.8792 0.7793 0.7815 0.8552 0.8929 0.8165 0.8126 0.8156 0.7553 0.8287 0.8179
SR[1] 0.7309 0.7859 0.8349 0.7617 0.6229 0.7347 0.8169 0.7661 0.7331 0.7410 0.6326 0.7637 0.7437

LRA[2] 0.8277 0.8686 0.7910 0.8478 0.8797 0.8993 0.9245 0.8182 0.8734 0.8252 0.8514 0.8104 0.8514
DSC[8] 0.8245 0.8816 0.7550 0.9534 0.9150 0.9340 0.9439 0.8108 0.8974 0.8218 0.8487 0.8027 0.8657
Ours[9] 0.8844 0.9288 0.9279 0.9327 0.8956 0.9525 0.9574 0.8970 0.9122 0.8989 0.8638 0.9205 0.9143

Ours+BSR 0.8911 0.9380 0.8759 0.9676 0.9319 0.9693 0.9716 0.9002 0.9396 0.9023 0.8846 0.9015 0.9228

PS
N

R

GF[40] 30.33 30.49 28.03 30.77 27.23 29.42 31.03 29.02 29.41 29.47 27.99 30.00 29.43
SR[1] 29.89 28.99 26.42 29.94 25.11 25.68 27.52 27.94 27.85 28.09 26.42 28.37 27.69

LRA[2] 31.04 31.88 25.79 32.46 28.56 30.85 33.38 28.96 30.87 29.71 29.33 29.80 30.22
DSC[8] 31.31 31.37 26.53 36.00 29.50 31.67 34.83 28.90 32.66 29.46 29.11 30.17 30.96
Ours[9] 33.44 34.65 30.47 36.90 29.86 33.48 35.11 31.72 33.16 32.12 30.41 32.84 32.85

Ours+BSR 33.40 35.30 29.90 39.50 30.42 37.13 39.32 31.94 34.25 32.26 30.71 32.85 33.91

R
ai

n
st

re
ak

SS
IM

GF[40] 0.7499 0.7358 0.6980 0.6939 0.5499 0.6455 0.7561 0.7268 0.6891 0.7258 0.6423 0.7591 0.6977
SR[1] 0.7207 0.7750 0.6007 0.8769 0.7294 0.8361 0.9012 0.7552 0.8090 0.7015 0.5548 0.6846 0.7454

LRA[2] 0.7135 0.7509 0.5931 0.8059 0.7122 0.8247 0.8674 0.6997 0.7528 0.6341 0.5599 0.5925 0.7089
DSC[8] 0.7020 0.7587 0.5194 0.8836 0.6917 0.8072 0.8809 0.7035 0.7796 0.6750 0.5784 0.6288 0.7175
Ours[9] 0.8506 0.8802 0.7679 0.9267 0.7753 0.8866 0.9264 0.8612 0.8661 0.8340 0.7385 0.8405 0.8462

Ours+BSR 0.8485 0.8793 0.7920 0.9268 0.7757 0.8872 0.9266 0.8597 0.8659 0.8327 0.7387 0.8462 0.8483

PS
N

R

GF[40] 29.65 30.00 27.01 30.64 26.65 29.21 30.85 28.13 28.93 28.75 27.35 29.25 28.87
SR[1] 30.14 31.89 26.74 33.72 28.61 33.51 36.04 28.92 31.40 29.21 27.47 29.32 30.58

LRA[2] 29.45 31.00 26.03 33.76 28.16 33.52 35.17 27.44 30.08 28.19 27.45 28.06 29.86
DSC[8] 29.98 30.05 25.05 34.52 27.91 30.10 33.31 27.59 31.33 28.03 27.75 28.87 29.54
Ours[9] 32.35 34.00 28.74 37.78 29.10 33.30 34.93 30.25 32.69 31.18 29.41 31.51 32.10

Ours+BSR 32.14 34.11 28.80 38.33 29.17 35.69 37.75 30.31 32.70 31.01 29.35 31.61 32.58
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Fig. 11: Rain streak removal on raw data using our method.

rain streaks (Figure 9). Our method provides more favorable
results by effectively removing the rain streaks and meanwhile
retaining image details.
Results on raw data In the previous results, we do not
assume anything on the camera response function, which is the
common practice in the field of rain removal. According to our
rain model in Eq.( 1), as long as the input image is the linear
combination of rain layer and background layer, our proposed
method should work properly. However, one might argue that
Eq.( 1) assumes linearity of the camera response function. To
address this concern, we also tested our method on raw image
that has linear camera response function. Figure 11 shows that
our method works effectively under such a response function.
Application in computer vision Besides visually pleasing

Before: labeled as rain After: labeled as vehicle

Fig. 12: Image recognition results on the images before and
after rain streak removal.

output, our method is also helpful in computer vision tasks,
such as image recognition. Figure 12 (left) shows an input
that is supposed to be a car on the road, but with rain streaks
presented. This is a typical example of images taken outside on
a rainy day. We use Clarifai,1 an advanced image recognition
system based on a deep convolutional network. This system
classifies the input image as rain. After the rain streak removal
using our method, the output in Figure 12 (right) is correctly
labeled as vehicle.

V. CONCLUSION

We have introduced a novel approach for solving the de-
composition problem of a background scene and rain streaks
using a single image. Unlike existing methods, we impose
constraints on both the background and rain layers. These
constraints are simple Gaussian mixture models (GMMs)

1https://www.clarifai.com/.
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Fig. 11: Rain streak removal on raw data using our method.

rain streaks (Figure 9). Our method provides more favorable
results by effectively removing the rain streaks and meanwhile
retaining image details.
Results on raw data In the previous results, we do not
assume anything on the camera response function, which is the
common practice in the field of rain removal. According to our
rain model in Eq.( 1), as long as the input image is the linear
combination of rain layer and background layer, our proposed
method should work properly. However, one might argue that
Eq.( 1) assumes linearity of the camera response function. To
address this concern, we also tested our method on raw image
that has linear camera response function. Figure 11 shows that
our method works effectively under such a response function.
Application in computer vision Besides visually pleasing

Before: labeled as rain After: labeled as vehicle

Fig. 12: Image recognition results on the images before and
after rain streak removal.

output, our method is also helpful in computer vision tasks,
such as image recognition. Figure 12 (left) shows an input
that is supposed to be a car on the road, but with rain streaks
presented. This is a typical example of images taken outside on
a rainy day. We use Clarifai,1 an advanced image recognition
system based on a deep convolutional network. This system
classifies the input image as rain. After the rain streak removal
using our method, the output in Figure 12 (right) is correctly
labeled as vehicle.

V. CONCLUSION

We have introduced a novel approach for solving the de-
composition problem of a background scene and rain streaks
using a single image. Unlike existing methods, we impose
constraints on both the background and rain layers. These
constraints are simple Gaussian mixture models (GMMs)

1https://www.clarifai.com/.
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such as image recognition. Figure 12 (left) shows an input
that is supposed to be a car on the road, but with rain streaks
presented. This is a typical example of images taken outside on
a rainy day. We use Clarifai,1 an advanced image recognition
system based on a deep convolutional network. This system
classifies the input image as rain. After the rain streak removal
using our method, the output in Figure 12 (right) is correctly
labeled as vehicle.

V. CONCLUSION

We have introduced a novel approach for solving the de-
composition problem of a background scene and rain streaks
using a single image. Unlike existing methods, we impose
constraints on both the background and rain layers. These
constraints are simple Gaussian mixture models (GMMs)
learned from image patches. Based on our experiments, we

1https://www.clarifai.com/.
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Fig. 9: Visual comparisons of different rain streak removal methods on real images in [8].

learned from image patches. Based on our experiments, we
showed that these two constraints prove to be more effective
than methods based on sparse dictionary learning and low rank
constraints.

Our constraint on the rain layer is particularly interesting
as rain streaks have special appearances and structures. GMM
can effectively capture a considerably narrower distribution
to describe rain streaks and distinguish them from the wider
range of texture for the background layer. We have verified
that this GMM prior for rain streaks is a critical part of
the decomposition. Without the GMM priors, the estimated
background is much more blurred, and the rain layer contains
too much high-frequency textures from the background layer.
Our proposed method not only is simple and effective but also
does not assume the rain streak orientations, sizes, or scales.
It clearly demonstrates the usefulness of the GMM priors
to the decomposition framework, which is a step forward in
addressing rain streak removal.

In addition, we have proposed a background-structure-
residue recovery step to retrieve the incorrectly assigned
background details in the rain layers. This step can make
the rain streak layer cleaner and also further improve the
separation quality. Experimental results have shown that our
method quantitatively and qualitatively outperforms existing
rain streak removal methods in terms of both background
recovery and rain streak recovery.
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showed that these two constraints prove to be more effective
than methods based on sparse dictionary learning and low rank
constraints.

Our constraint on the rain layer is particularly interesting
as rain streaks have special appearances and structures. GMM
can effectively capture a considerably narrower distribution
to describe rain streaks and distinguish them from the wider
range of texture for the background layer. We have verified
that this GMM prior for rain streaks is a critical part of
the decomposition. Without the GMM priors, the estimated
background is much more blurred, and the rain layer contains
too much high-frequency textures from the background layer.
Our proposed method not only is simple and effective but also
does not assume the rain streak orientations, sizes, or scales.
It clearly demonstrates the usefulness of the GMM priors
to the decomposition framework, which is a step forward in
addressing rain streak removal.

In addition, we have proposed a background-structure-
residue recovery step to retrieve the incorrectly assigned
background details in the rain layers. This step can make
the rain streak layer cleaner and also further improve the
separation quality. Experimental results have shown that our
method quantitatively and qualitatively outperforms existing
rain streak removal methods in terms of both background
recovery and rain streak recovery.
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