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Abstract. There are a number of processing steps applied onboard a
digital camera that collectively make up the camera imaging pipeline.
Unfortunately, the imaging pipeline is typically embedded in a camera’s
hardware making it difficult for researchers working on individual com-
ponents to do so within the proper context of the full pipeline. This not
only hinders research, it makes evaluating the effects from modifying an
individual pipeline component on the final camera output challenging, if
not impossible. This paper presents a new software platform that allows
easy access to each stage of the camera imaging pipeline. The platform
allows modification of the parameters for individual components as well
as the ability to access and manipulate the intermediate images as they
pass through different stages. We detail our platform design and demon-
strate its usefulness on a number of examples.

Keywords: camera processing pipeline, computational photography, color
processing

1 Introduction

Digital cameras are the cornerstone for virtually all computer vision applica-
tions as they provide the image input to our algorithms. While camera images
are often modeled as simple light-measuring devices that directly convert in-
coming radiance to numerical values, the reality is that there are a number of
processing routines onboard digital cameras that are applied to obtain the final
RGB output. These processing steps are generally performed in sequence and
collectively make up the camera imaging pipeline. Examples of these processing
steps include Bayer pattern demosiacing, white-balance, color space mapping,
noise reduction, tone-mapping and color manipulation. Many of these processing
steps are well-known research topics in their own right, e.g. white-balance, color
space mapping (colorimetry), and noise reduction.

Although cameras are the most prominent hardware tools in computer vision,
it is surprisingly difficult to get access to the underlying imaging pipeline. This is
because these routines are embedded in the camera’s hardware and may involve
proprietary image manipulation that is unique to individual camera manufac-
turers. This is a significant drawback to the research community. In particular, it
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Fig. 1. This figure (adapted from [22]) overviews the common steps applied onboard a
camera. Different camera hardware implementations can vary, however, most of these
components will be included and in a similar processing order.

forces many researchers to work on topics outside the proper context of the full
imaging pipeline. For example, much of the work targeting white-balance and
color constancy is performed directly on the camera-specific raw images without
the ability to demonstrate how it would affect the final output on the camera.
Another example includes noise reduction (NR) targeting sensor noise. On a
camera, NR is applied before many of the non-linear photo-finishing routines
(e.g. tone-curve manipulation), however, researchers are generally forced to ap-
ply NR on the final non-linear sRGB image due to a lack of access to the camera
pipeline. This presents a significant mismatch between assumptions made in the
academic literature and real industry practice.

Contribution We present a software platform to allow easy access to each stage
of the imaging pipeline. Our approach operates on images saved in DNG raw
image format which represents the unprocessed sensor response from the camera
and the starting point for the camera processing pipeline. Our platform allows
images to be opened and run through a software rendering API that parallels the
onboard processing steps, including the individual processing components and
their associated parameters. More specifically, our platform provides API calls
that allow the modification of processing components’ parameters and full access
to the intermediate images at each processing stage. Such intermediate images
can be modified and inserted back into the pipeline to see the effect on the final
output. The proposed software platform is easily integrable with other softwares
such as Matlab and provides a much needed environment for improving camera
imaging, or performing experiments within the proper context of the full camera
imaging pipeline.

The remainder of this paper is organized as follows: Section 2 discusses related
work; Section 3 overviews our platform and the ways the pipeline can be accessed
and manipulated; Section 4 provides a number of examples that use the platform
on various routines. The paper is concluded with a short discussion and summary
in Section 5.

2 Related Work

The basic steps comprising the camera processing pipeline are illustrated in Fig-
ure 1 and may vary among different cameras’ make and model. Full details to
each component are outside the scope of this paper and readers are referred to
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[22] for an excellent overview. As mentioned in Section 1, many of the com-
ponents in the pipeline (e.g. white-balance, noise reduction) are stand alone
research topics in the computer vision and image processing community. Unfor-
tunately, the hardware implementation of the camera pipeline and closed nature
of proprietary cameras makes it difficult for most researchers to directly access
the individual components.

To address this issue, open hardware platforms have been proposed. Early
work included the CMU-camera [23] targeting robotic vision. While individual
components (e.g. white-blanance) were not accessible, the camera provided low-
level image access and subsequent hardware releases allowed capture of the raw
sensor response. A more recent and comprehensive hardware platform was the
FrakenCamera introduced by Adams et al. [1]. The FrankenCamera was designed
as a fully operational camera that provided full access to the underlying hard-
ware components, including control of the flash and shutter, as well as the un-
derlying imaging pipeline. The FrankenCamera platform targeted computational
photography applications, however, the platform was suitable for modifying in-
dividual components in the imaging pipeline. While the FrankenCamera project
has officially stopped, much of the platform’s functionality has been incorpo-
rated into the recent Android’s Camera2 API [15] that is available on devices
running Android OS. The proposed work in this paper is heavily inspired by
the FrankenCamera open design and aims to provide similar functionality via a
software-based platform. The benefits of a software framework over a hardware
solution is that it can work on images saved from a variety of different cameras
and in an off-line manner. Moreover, a software platform allows greater flexibility
in processing the image at intermediate stages than possible on fixed hardware
implementations.

There have been a number of works that have targeted modeling the camera
processing pipeline beyond simple tone-curves for radiometric calibration (e.g.
[10, 20,19, 18, 30]). These methods use input pairs of raw and sRGB images to
derive a mapping to convert an SRGB image back to the raw linearized sensor
response. In some cases, this mapping closely follows the underlying imaging
pipeline [10, 20, 18, 30], however, in other cases the mapping is approximated by
a 3D look up table [19]. Another noteworthy example is the work by Baek et al. [4]
that incorporated a fast approximation of the camera pipeline for displaying raw
images in the camera’s view finder. While this work focused on translating sparse
user interaction applied on the view finder to control the final photo-finished
image, it elucidated the need to incorporate the non-linear processing steps to
give a more realistic representation of the final output to the user. While these
methods are useful for simulating the onboard camera imaging process, they
only provide a proxy for a real camera pipeline.

The benefits of considering the full camera pipeline in various computer vision
and image processing tasks have been demonstrated in prior works. For example,
Bianco et al. [6,7] showed that the overall color rendition of an image can be
improved by considering white-balancing and color space conversion together
in the pipeline. Work by Tai et al. [25] showed that the non-linear mapping
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Fig. 2. The camera processing pipeline routines accessible by our software platform
are shown in (A). Each component is denoted by the type of parameters it takes, e.g.
scalar values, 2D Arrays, 3 X 3 matrices [MAT], function calls [func], or 1D or 3D Look
up tables [LUT]. In addition, the software platform API supports direct access and
manipulation to the intermediate images at each stage as shown in (B).

applied onboard cameras had a significant impact on image deblurring results.
Recent works by by Nam et al. [21] and Wong and Milanfar [27] demonstrated
improvements in image denoising when the non-linear processing steps in the
camera pipeline are considered in the noise model. These prior works often have
to motivate their arguments via synthetic imagery generated using relatively
simple camera processing models. This lack of access to a complete software
platform that is able to emulate the full camera imaging pipeline is the impetus
for our work.

3 Platform Overview

Our platform uses images that are saved in the Adobe Digital Negative (DNG)
format. While this format is not yet supported by many of the DSLR cameras,
it is currently being supported by the newer Android phones that implement the
Camera 2 API. With Android’s adoption of DNG, the number of raw images
captured by mobile devices are expected to increase significantly. However, in
the event that images are not captured in DNG, camera-specific raw formats
can be converted to DNG using the Adobe DNG conversion software tool [3].
The DNG image format not only contains the raw image data but also contains
meta-data that specifies parameters (e.g. scalar values or a 1D or 3D look up
table (LUT)) intended to be used by different stages in the processing pipeline.
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Our platform is made possible by rewriting the interface of the open source
Adobe DNG SDK software [2] that provides a full software implementation of a
camera pipeline to convert the DNG raw image to its final sSRGB output. While
this is an engineering feat, the implementation is non-trivial. The stand alone
Adobe DNG SDK is not designed to allow changes to the parameters of the
individual stages, instead the SDK uses the values in the DNG files meta-data
directly. Thus the processing pipeline had to be decomposed into its individual
stages and API calls designed to access and modify the underlying parameters.
In addition, the unmodified SDK uses a multi-threaded design that breaks the
image into a number of small tiles and processes them separately. This makes it
difficult to access coherent intermediate images in the pipeline using the native
SDK. Our modification changes this tiling structure to allow access to the inter-
mediate image at each stage. We have also added API calls to allow customized
demosaicing and noise reduction which is not supported in the native SDK.

Figure 2-(A) overviews the processing steps that are available in the proposed
camera imaging platform. The top shows the steps with the associated parame-
ters used by each of the components while Figure 2-(B) shows the intermediate
images at each stage in the pipeline. In the following, we detail each stage and
its associated parameters that can be modified. The type of parameters used by
the individual stages are also discussed. In the case of a 1D LUT, the same LUT
is applied to each color channel individually.

Stage 1: Reading the raw image (Params: None) The unmodified raw image
is read from the DNG image file. This is the unprocessed image produced by the
sensor that is still in its mosaiced Bayer pattern format.

Stage 2: Black light subtraction and linearization (Params: Level values or 1D
LUT) The unmodified raw image is linearized such that its values range from
[0-1] in the processing pipeline. Many cameras provide a BlackLevel parameter
that represents the black level of the sensor that deviates from 0 due to sensor
noise. This is often image specific and related to other camera settings, including
ISO, gain, etc. An additional WhiteLevel (maximum value) can also be specified.
If nothing is provided, the min and max value of all intensities in the image is
used to normalize the image. Another alternative is to provide a 1D LUT to
perform the linearization. The 1D LUT shown in the Figure 2-(A) is from an
Nikon D40.

Stage 3: Lens/Flat Field correction (Params: 4 X Array,, ;) Many cameras
provide a spatially varying correction that compensates for lens distortion and
uneven light fall. For example, the Motorola Nexus 6 provides four (one for each
Bayer pattern pixel where G is repeated twice) scene dependent 13 x 17 2D
arrays that are used to provide this flat field correction. These arrays are scaled
and bilinearly interpolated to the image size, then multiplied to the mosaiced
image.

Stage 4: Demosaicing (Params: func) The demosiacing step converts the single
channel raw image to three full-size R/G/B color channels by interpolating the
missing values in the Bayer pattern. We denote this operation as an arbitrary
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function, func. The default interpolation is a standard bilinear interpolation
based on the Bayer pattern layout.

Stage 5: Noise reduction (Params: func) Similar to the demosaicing stage, noise
reduction is denoted as an arbitrary function, func. This function (not provided
in the Adobe SDK) has access to the intermediate image and returns back a
filtered image to the pipeline.

Stage 6: White-balancing and color space conversion (Params: Two 3x3 ma-
trices) This stage performs the necessary color space conversion between the
camera specific RGB color space and a standard color space (e.g. CIE XYZ or
ProPhoto RGB). This colorimetric procedure involves a 3x3 white-balance ma-
trix (generally a diagonal matrix) and a 3x3 color space transformation matrix.
The default color space used by the Adobe SDK is the ProPhoto RGB, which is
a wide gamut color space commonly used for photographic color manipulation.

Stage 7: Hue/Sat map application (Params: 3D LUT) This optional proce-
dure is intended to be part of the color space conversion to allow a non-linear
transformation to be incorporated to improve the color rendition. While this is
referred to as a ‘hue’ and ‘saturation’ modification, it is implemented as a 3D
LUT applied directly to the RGB values obtained in Stage 6. For example, when
saving a DNG file using the X-Rite camera calibration software [28], X-Rite adds
a6 x 6 x 3 LUT to the DNG meta-data. From our experience, most cameras
DNG files do not include this step.

Stage 8: Exposure compensation (Params: EV value, 1D LUT) The exposure
compensation is a digital exposure adjustment. While the input is given as an
exposure value (EV) that is used to control shutter and aperture settings on a
camera, in the digital case, this simply applies a linear gain (either up or down)
to the intensities values. The EV value passed as a parameter will generate a 1D
LUT with 4096 values. Alternatively, a 1D LUT can be provided directly.

Stage 9: Color manipulation (Params: 3D LUT) Cameras often apply their
own proprietary color manipulation that is linked to different picture styles on
the camera [18]. Like the Hue/Sat map, this is applied as a 3D LUT where RGB
values are interpolated based on the table’s entries. The size of this table can
be arbitrary, for example, images saved using Nikon D40’s Camera Vivid setting
have a 36 x 16 x 16 LUT added in the DNG meta-data.

Stage 10: Tone-curve application (Params: 1D LUT) A camera-specific tone-
map can be specified. This is part of the photo-finishing process on board the
camera. For example, the Nikon D40’s Camera Vivid profile includes a LUT
with 248 entries. If no tone-curve is specified, the Adobe DNG has a default
tone-curve that is shown in Figure 2).

Stage 11: Final color space conversion (Params: 3 x 3 Matrix) This color space
conversion converts the internal camera working color space into the final output-
referred color space. This is done using a 3x 3 matrix and is assumed to be related
to color space used at stage 6. The most common color space for cameras is the
standard RGB (sRGB) and Adobe RGB. In this paper, the SRGB color space is
used for all examples.
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Stage 12: Gamma curve application (Params: 1D LUT) The final stage is a
gamma curve that is applied as a 1D LUT with 4096 entries. This is intended
to represent the sSRGB gamma correction that is part of the sRGB specification,
however, it can also be used for additional color modification and photo-finishing.

These twelve steps make up the collective stages that can be controlled via
API calls or direct image modification to intermediate images. Access to this
suite of components provides a comprehensive means for manipulating the image
from the input raw to its final SRGB output. Note that it is not necessary that all
steps be applied. For example, exposure compensation, noise reduction, hue/sat
map modification, etc, can be skipped as necessary.

4 Results

We have developed a fully functioning software platform for use on a Windows-
based PC. The software framework is developed in C++, however, it has also
been modified such that API calls can be made directly from Matlab. In this
section, we demonstrate several examples that serve to illustrate the various
benefits our platform. The examples are divided loosely into three categories:
1) basic functionality; 2) evaluating stages at certain points in the pipeline; and
3) evaluating stages within the proper context of the full pipeline. Specifically,
Section 4.1 demonstrates several examples that show the basic ability to ma-
nipulate the pipeline components (e.g. EV levels, tone-curve modification, and
demosiacing). Section 4.2 provides an example to evaluate the color conversion
stage, a task that is currently difficult to do with existing tools. Section 4.3
provides examples targeting white-balance, image denoising and image blurring
that show the benefits of considering these tasks within the full pipeline.

4.1 Basic Processing

Exposure Compensation & Tone-mapping Figure 3 starts with a simple
example showing the effects of manipulating parameters for the exposure com-
pensation and tone-mapping stages. Figure 3-(A) shows a number of EV values
that are passed directly to our platform’s API which generates the 1D LUT
shown. In the case of the tone-mapping, the 1D LUTSs are directly passed to
the API as shown in Figure 3-(B). The images shown represent the final sSRGB
output obtained using these parameters in the full camera pipeline.
Demosaicing Figure 4-(A,B) demonstrates examples of two different demo-
saicing procedures applied to an image. In particular, we use the default bilinear
interpolation and the work by Gunturk et al. [16] that uses alternating pro-
jections. Interestingly, in the work by [16], the results were demonstrated by
simulating a mosaiced image by using an sRGB image and arranging its colors
into a Bayer pattern structure. In our example, their approach is applied directly
to a real mosaiced raw image and then returned back to the pipeline to produce
a realistic result.
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(B) Different 1D LUT applied to stage 10 (tone-curve application)

Fig. 3. (A) Examples of applying different EV and 1D LUTSs for exposure compensation
(stage 8) and (B) tone-mapping (stage 10).

(A) Demosaicing results (B) 7l
Bilinear interpolation Alternating projections [16]

Fig. 4. Demonstrating the results of two different demosiacing algorithms, in particular
(A) bilinear interpolation and (B) [16]. In this example, the intermediate image passed
to stage 4 (demosiacing) is modified using [16] and inserted back into the imaging
pipeline to obtain the final SRGB output.

4.2 Evaluation of components

Colorimetry Example One challenge for existing computer vision and image
processing research is the ability to obtain intermediate images in the camera
pipeline to evaluate the effectiveness at individual stages. An excellent example
of this is the color conversion component (stage 6). This stage is crucial in making
sure that different camera-specific color spaces align to the same canonical color
space after color conversion. Examining this stage in the camera pipeline is
essentially evaluating the quality of the colorimetric calibration of the camera.
To demonstrate our platforms ability to assist with this task, we captured
standard color rendition charts with four different mobile cameras (LG-G4, Mo-
torola Nexus 6, Samsung S6-Edge, and an HTC One M9) under different illu-
minations. These mobile device cameras all support the DNG file format and
have embedded in their DNG meta-data the camera’s onboard parameters for
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Fig. 5. This figure demonstrates the ability to evaluate different color space conversion
(stage 6) methods applied to four cameras. See Section 4.2 for details.

this color conversion. This allows us to compare the results of the native cam-
era’s colorimetric ability with two other approaches: 1) the widely used X-Rite
calibration software [28], and 2) a recent method by Bastani and Funt [5].

We use the 24 patch color rendition chart to calibrate the color space conver-
sion parameters using the X-Rite software and the method by [5]. In this case,
the color space conversion is computed from the camera raw color space to the
ProPhoto color space. For all methods, including the camera native, the white-
balance matrix is estimated using the neutral colors on the color chart under a
specific illumination. In order to compare these three methods, we need to apply
the 3 x 3 color conversion matrices to stage 6. In the case of X-Rite, we also
apply the additional hue/sat map (stage 7) that is used by X-Rite to provide a
further non-linear correction for the color space mapping. The color pipeline is
stopped at the appropriate location for each method and the intermediate image
is obtained and the color patches’ average chromaticity values are compared.

The results are shown in Figure 5-(A) for color rendition charts captured
under two different illuminations. The plots show the average chromaticity of
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the 24 color patches from the four different cameras. Under ideal colorimetric
mapping, the chromaticity values should all lie at the exact same location in the
chromaticity plot, however, due to errors in the color conversion matrices, they
are not the same. To help with the visualization, we fit a Gaussian ellipsoid to
show the spread for each color patch among the four cameras. Our experiment
shows that the method by Bastani and Funt [5] provides the most consistent
color space mapping.

For the example in Figure 5-(A), X-Rite and [5] have an unfair advantage
as they were calibrated using the same 24 color rendition chart that is used to
show the results. To test these methods ability on additional materials, we use
their estimated color space conversion parameters on a new set of color patches
consisting of 81 different types of materials. This is shown in Figure 5-(B), where
again we see the work by Bastani and Funt [5] obtain the best results.

We further evaluated these three methods by computing quantitative errors
with respect to the ground truth color values of the color rendition chart [29] in
the ProPhoto RGB color space. In this case, we follow the procedure common in
color research and consider the angular error €gngie(€color) Of a color ecoor from
the ground truth color e, is computed as follows:
€color * €gt (1)

6angle(ez:olor) = COS_l(m .
color gt

Table 1 shows the angular errors for the color chart (CC) and the addi-
tional 81 materials (AM). As demonstrated in the plots in Figure 5-(A,B), the
method by Bastani and Funt [5] provides the best results. This type of analysis
is challenging without the support of our platform.

Error Incandescent Fluorescent Outdoor
CC |AM#1|AM#2|| CC [AM#1|AM#2|| CC |AM#1[{AM#2
Camera 0.84| 1.67 | 3.43 ||0.97| 2.37 | 4.49 |/0.68| 1.80 | 3.01
X-Rite 0.33| 1.06 | 1.57 ||0.48| 1.68 | 2.72 |/0.15| 0.74 | 0.95
Bastani and Funt [5]|0.14| 0.75 | 1.07 ||0.25| 1.16 | 1.38 ||0.12| 0.70 | 0.70

Table 1. The table shows the comparisons of error between native cameras, X-Rite’s,
and [5] color calibration (CC: color chart, AM: additional materials).

4.3 Evaluating tasks within the full pipeline

In the following, we show several tasks that benefit from having access to the
full processing pipeline.

White-balancing/color constancy One of the key processing steps applied
to virtually all images is white-balancing. This procedure falls into the larger
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research of color constancy that mimics our human perceptual ability to per-
ceive materials under different illuminations as the same color. White-balance
approximates this ability by attempting to ensure that at least the neutral scene
materials appear achromatic in the camera color space. White-balance is applied
directly to the camera raw image while the image values are still in the camera’s
RGB color space.

A number of research papers on this topic (e.g. [9] [12]) provide subjective
results of their white-balance result directly on the camera raw images. Such
results, however, have little visual meaning as they provide a visual comparison
in an non-standard camera-specific color space. A more appropriate way to sub-
jectively evaluate the results would be to run the white-balanced result through
the full camera pipeline to produce a realistic output that would be produced by
the camera. Figure 6 shows the difference in these two approaches. In particular,
two well known white-balance methods, Grey world [8] and Grey edge [26] are
applied to an input image. Figure 6-(A) shows the results on the raw image and
Figure 6-(B) shows the sSRGB outputs. The sSRGB output provides a much more
realistic comparisons of the two algorithms.

Noise Reduction Similar to white-balancing, another research area that is at a
disadvantage by not having access to the full camera pipeline is image denoising.
Noise reduction is a well-suited research topic and interested readers are referred
to [11] for an excellent overview. One of the major sources of image noise is what
is collectively referred to as sensor noise and is attributed to underlying imaging
sensor (CMOS or CCD). Because this noise is present on the sensor, it is present
in the raw image at the start of the pipeline. As such, noise reduction is often
applied before the non-linear stages in the camera pipeline. However, since few
researchers have access to the camera pipeline, noise reduction methods, e.g. the
popular BM3D method by Dabov et al. [13], are typically applied and evaluated
on the SRGB output. Figure 7 demonstrates the disadvantages of applying image
denoising outside the proper context of the full imaging pipeline. Our example
works from a synthetic image to provide a ground truth input to compute the
peak signal to noise ratio (PNSR). Figure 7-(A) shows a raw image that has been
corrupted with zero-mean Gaussian noise. The noise profile for three different
homogenous patches with increasing intensity values are shown. We can see
that this Gaussian noise profile appears uniform over the different patches in
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the raw image, with only a shift by the mean intensity. Below this, we show
the corresponding noisy raw image that has been processed through the whole
imaging pipeline, including the non-linear stages (e.g. stage 9, 10, 12). We can
see that the noise distribution for different patch is significantly affected by
the non-linear processing stages. In fact, it is not possible to make a uniform
noise assumption for the sSRGB image as the non-linear process has changed this
property of the noise.

Figure 7-(B) demonstrates BM3D applied at two different places in the
pipeline. The top shows BM3D applied to the raw image. The filtered result
is then processed through the remaining pipeline. This represents the proper
application of NR. The bottom shows BM3D applied directly to the noisy sSRGB
image as done in most academic literature. The PSNR, for both results in the
sRGB final output is computed against the ground truth (noise free) sRGB im-
age. The PSNRs are drastically different, where the denoising applied at the
right place in the pipeline is 58.27, while the application on the final non-linear
sRGB stage is only 30.49.

This example serves to motivate the need for having access to the full camera
pipeline when examining image denoising. Even in the inevitable case that noise
reduction must be applied to the non-linear sSRGB image, our software platform
provides an excellent means to study sensor noise and how it is affected by the
camera processing steps as done in Figure 7-(A).

Deblurring We conclude with a final example that was mentioned in Section 2
as a motivating factor for developing this software platform. In particular, the
work by Tai et al. [25] demonstrated that the non-linear processes on the camera
have a negative impact on image deblurring. Similar to the denoising example,
[25] showed that the non-linear tone-mapping function (stage 10 and/or 12)
changes the distortion profile, in this case the blur’s point-spread-function (PSF),
such that the PSF was no longer spatially uniform over the image. Tai et al. used
this to argue that deblurring should be applied either directly to the raw image,
or that care must be taken to undo any non-linear processing applied to the
image before deblurring is applied. In that work, Tai et al. used a very simple
camera model that applied a single 1D LUT to the raw images. This is equivalent
to only applying stage 1 and 10 in our software platform.

With our platform, we are able to provide a much more realistic demonstra-
tion of Tai et al. [25] argument. Figure 8-(A) shows a raw image that has been
blurred with a PSF modeling linear motion across 50 pixels and its correspond-
ing sSRGB output. This is applied directly to a demosaiced raw image (available
at stage 4 in our pipeline). We then apply deconvolution via Wiener filtering
[14] in two manners as shown in Figure 8-(B). The first, as advocated by [25], is
on the raw image that is then processed through the full pipeline. In the second
example, we apply Wiener filter directly to the sSRGB image. As expected, the
results applied on the raw image are significantly better than those applied on
the sRGB image. As with the prior noise reduction experiment, this example
demonstrates the benefit of being able to perform various computer vision and
image processing tasks within the appropriate context of the camera pipeline.
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Fig. 7. (A) Noise profiles for three color patches for a raw image and corresponding
sRGB image. (B) PSNR comparison of application of BM3D [13] on the raw image at
stage 5 and on the final sSRGB output.

5 Discussion and Summary

This paper has presented a new software platform that allows low-level access
to the individual components in the camera imaging pipeline. Specifically, our
platform leverages the Adobe Digital Negative (DNG) image file format and
makes the necessary modifications to the available DNG SDK to provide an
extensive API for modifying the parameters of the pipeline, as well as allowing
access and modification to intermediate images that can then be inserted back
into the pipeline to compute the final output that would be obtained on a camera.

The usefulness of this platform has been demonstrated on a number of ex-
amples, including white-balance, noise reduction, and colorimetry. While this
work is engineering in nature, we believe this platform provides a much needed
mechanism for researchers to modify individual components in the pipeline and
demonstrate their results within the appropriate context of the full camera imag-
ing pipeline. Furthermore, with the adoption of the DNG raw image format by
the Android OS via the Camera 2 API, the availability of DNG files is going to
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(A) raw image with SRGB output of the (B) Wiener [14] filtered SRGB output of de- Wiener [14] filtered
1-D motion blur blurred image raw image blurred raw image sRGB image

Fig. 8. (A) Motion blur is applied on the raw image and then run through the full
pipeline to obtain the sSRGB output. (B) Deblurring applied to the raw image and then
its output usng the camera pipeline, and the results obtained by directly deblurring
the blurred sRGB image.

significantly increase, further adding to the timeliness of this platform into the
computer vision community.

One limitation of our approach is that it can only operate from the captured
DNG image saved by the camera. This means camera parameters such as ISO
settings that directly affect analog amplification on the sensor hardware or the
image’s exposure at capture time cannot be modified with our platform. This
can impact work targeting tasks such as high dynamic imaging (e.g. [24]). For
such cases, it will be necessary to capture a number of DNG images with varying
ISO or exposure settings to simulate the manipulation on the camera.

We also note that this paper represents the current camera architecture where
each stage in the pipeline is self-contained. Recent work by Heide et al.[17]
demonstrated the benefits of considering a re-engineered onboard camera pro-
cessing system that provides a holistic consideration to image formation that
is more readily able to incorporate known priors about nature images. We also
envision that in the coming years the traditional pipeline described in this paper
will likely see significant changes. Once again, it will be important for researchers
to have access to a software platform that allow research to be performed in the
proper context of the onboard imaging system.
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