
Interactive Degraded Document Binarization:

An Example (and Case) for Interactive Computer Vision

Zheng Lu Zheng Wu Michael S. Brown

School of Computing; National University of Singapore

luzheng|wuz|brown@comp.nus.edu.sg

Abstract

This paper describes a user-assisted application to per-

form adaptive thresholding (i.e. binarization) on degraded

handwritten documents. While existing adaptive threshold-

ing techniques purport to be automatic, they in fact require

the user to perform non-intuitive parameter tuning to obtain

satisfactory results. In our work, we recast the problem into

one where the user needs only to coarsely markup regions

in the thresholded image that have unsatisfactory results.

These regions are then segmented and processed locally –

no parameter tuning is necessary. Our user study shows

that not only do the majority of users prefer our applica-

tion over parameter tuning, but our final results are bet-

ter than existing algorithms due to the more targeted pro-

cessing. While our main contribution is an effective user-

assisted application for document binarization, we use this

as an example to advocate the need to rethink how many

computer vision solutions, notoriously reliant on parameter

tuning, can be reworked to exploit meaningful user interac-

tion.

1. Introduction and Motivation

This paper focuses on an application for thresholding

degraded documents to separate foreground text from the

background. Such image binarization is essential for sub-

sequent post-processing and to enhance readability. Due

to adverse handling and storage conditions, as well as age

and poor scan quality, the document images exhibit vari-

ous degradations including non-uniform intensities, shad-

ows, smears and poor contrast. For such degraded images,

adaptive thresholding techniques are needed.

Adaptive thresholding methods generally claim to be au-

tomatic, however, in actuality, they require the user to tune a

parameter, typically referred to as k in the related literature

(e.g [5, 7, 10, 13]). To complicate matters, the parame-

ter k has no discernable meaning with respect to the input

image or the algorithm itself; obtaining a satisfactory result

therefore is a matter of trial and error. Such reliance on pa-

rameter tuning represents a major hurdle when developing

a real world application and is the impetus of our work.

In our application, we remove the need for parameter

tuning and replace it instead with user interaction in the

form of coarse scribble marked up on the image by the user.

While we do not remove the user from the loop, our studies

show that asking the user to perform meaningful interaction

on the image is greatly preferred to tuning a “magic num-

ber”.

The main focus of this paper is to show how we con-

verted a traditional algorithm that requires parameter tuning

into one that instead exploits user interaction that is easy,

and more importantly intuitive, for the user to perform. In

particular, we show how we established a statistical rela-

tionship between the input images such that we can com-

pute an initial binarization that is reasonable, but not op-

timal. User interaction is then used to mark up regions in

the image that were incorrectly thresholded, something that

currently cannot be automated. Based on the user-supplied

markup, we segment out the erroneous region and thresh-

old it individually using regional statistics. Our user study

found that not only do users prefer this type of interaction,

they also prefer our results.

Although our adaptive thresholding application is a spe-

cific one in computer vision, the problem of parameter tun-

ing is general. Thus, the secondary focus of this paper is

to advocate the need for many computer vision algorithms

to reconsider the reliance on user-tuned parameters and opt

instead for meaningful interaction. While this may seem ob-

vious, the use of user interaction is still considered tabooed

in computer vision even though the research community is

aware of the endemic problem that parameter tuning has on

real world applications. As such, we offer this paper an ex-

ample of one type of problems where interactive computer

vision can be successfully applied.

The remainder of this paper is organized as follows: sec-

tion 2 discusses related work; section 3 describes how we

reformulate the adaptive thresholding task to remove the

reliance on a parameter and instead incorporate interac-

tion; section 4 shows results including feedback from a user

study of 20 participants; section 5 concludes our work.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Part of a degraded document image and its binarization results obtained by different thresholding methods. (a) Original image, (b)

Otsu’s method, (c) Niblack’s method (k=-0.2), (d) Niblack’s method (k=-1.5), (e) Sauvola and Pietikainen’s method (k=0.5), (f) Sauvola

and Pietikainen’s method (k=0.05), (g) Gatos et al.’s method (k=0.05) and (h) our proposed method (no k).

2. Background and Related Work

A short background on this work is discussed followed

by an overview of related work pertaining to both document

binarization and interactive computer vision.

2.1. Application Background

This work started when we were approached to develop

a software application to make a series of journals from the

1920s more legible for transcription by archivists. Each

journal page has an entry for the same day over five years.

The original primary source has undergone aging and slight

water damage and appears spatially discolored. In addition,

the text written for each year often appears in a different in-

tensity. We were given access to high-resolution scans of

a Xeroxed version of the journal as shown in Fig. 1(a). It

was obvious from the beginning that adaptive thresholding

would be necessary. Once it was apparent that this would

require the user to tune a parameter per page, we opted to

find a more meaningful way to engage the user.

2.2. Related Work

Adaptive Thresholding Global thresholding techniques

are ineffective to binarize document images exhibiting spa-

tially varying degradation. For example, the widely used

Otsu’s global method [11] can not give satisfactory result

for our images as shown in Fig. 1(b) where the light text in

the middle part is removed, while the dark shadow at the top

remains. To deal with degraded images, various adaptive

methods have been proposed. For example, Niblack [10]

calculates a pixelwise threshold by shifting a window across

the image. For a pixel (x, y), its local threshold T (x, y) is

computed using the local mean m(x, y) and the local stan-

dard deviation s(x, y) of the intensities inside a window

centered at (x, y), and is written as:

T (x, y) = m(x, y) + k · s(x, y), (1)

where k is a negative user-tuned parameter. Sauvola and

Pietikainen [13] modified Niblack’s method and propose

the following formula:

T (x, y) = m(x, y) · (1 − k · (1 − s(x, y)/R)), (2)

where R is usually fixed to 128 and k is a positive parameter

that needs be tuned by the user. Gatos et al. [5] proposed a

technique that first uses Sauvola and Pietikainen’s method

to estimate rough foreground regions (and therefore needs

to tune the k in Eq. 2), then estimates the background after

foreground removal. The final thresholds are determined

using the estimated background.

Non-intuitive Parameter On careful examination of Eq. 1

and Eq. 2, it is apparent that thresholding is based on the lo-

cal mean and the local standard deviation (std). The local

std serves as a measurement of noise, and the parameter k
needs to be tuned to control how much of the std should

be used to adjust the local mean. From a user’s point of

view, there is nothing discernable from the input image to

suggest what the exact value of k should be. For exam-

ple, in Fig. 1(c), Niblack’s formula with k = −0.2 is used.

Although −0.2 is the recommended value [10], Fig. 1(c)

is exposed to severe background noise. When k is set to

−1.5 we can still observe background noise in Fig. 1(d),

while part of the light text is removed. This also happens

to Sauvola and Pietikainen’s method [13] when using the

recommended parameter value k = 0.5. This is shown in

Fig. 1(e) where light text is discarded, while using a much

smaller value 0.05 in Fig. 1(f), light text emerges together

with distracting background noise. Based on the result of

Sauvola and Pietikainen’s method with k = 0.05, Gatos

et al.’s method successfully removes background noise in

Fig. 1(f), as shown in Fig. 1(g), but the light text becomes

fragmented. Additional noise-removing abilities of Gatos et

al.’s method can be achieved by tuning three more parame-

ters [5], which we do not attempt.

Contrary to these parameter-tuned methods, our pro-

posed interactive method performs good binarization with

no parameter as shown in Fig. 1(h). Note that the local win-

dow size about each pixel can be considered as a parameter,

but it can be intuitively set to contain 1–2 characters.

Interactive Computer Vision Interactive computer vision

algorithms exploit user assistance to provide visual infor-

mation that is difficult to derive automatically. In many

cases, the user only needs to denote the regions for pro-

cessing such as for inpainting or matting (e.g. [1, 3, 14]).

In some cases, e.g. object scene extraction, the interaction

takes the form of training-data collection [9, 12].

The work most similar to our approach is the ink-bleed

reduction algorithm in [6]. In this approach, the authors also

opted for interaction over parameter tuning used by related

work. The strategy taken in [6] was to avoid parameter-

tuned approaches altogether by recasting the problem into

a classification problem where markup provided training

samples. Our approach does not rely on training data, but

instead has the user identify erroneous regions, which is a

simple and meaningful task for the user to perform.

3. Interactive Binarization Framework

This section discusses our overall framework. Specifi-

cally, we discuss how to compute an initial thresholded im-

age based on global image statistics that gives a reasonable,

but not optimal, result for the input image. We then show

how regional statistics can be used to significantly improve

localized regions. User interaction is exploited to detect

these local regions to segment them from the initial result.

3.1. Thresholding based on image global/regional
statistics

We first show how we can remove the reliance on the

parameter k by using global and regional statistics. Not sur-

prising, our formulation is similar format to Eq. 1, however

we do not require a parameter.

Globally-Determined Threshold In order to determine a

suitable global threshold for an input image, multiple win-

dows were randomly selected across several example im-

ages from our document collection. Each window is of size

59 × 59 and covers at least 1–2 written characters1. For

each window, we manually selected the optimal threshold

and recorded the value. For patches where a continuous in-

terval of threshold-values provided good binarization, the

median value was recorded. At the same time, the local

area statistics used in various adaptive thresholding meth-

ods [10, 13, 7], including intensity mean, std and average

gradient, were also recorded. For images with a uniform

signal-to-noise ratio (e.g. Fig. 2(a)) we observed that there

1Our images are approximately 2K × 3K in resolution.

(a) (b)

(c)

Figure 2. Part of a document image and its binarization obtained

by the proposed formula in Eq. 3. (a) Image is representative of

examples where text intensity changes mildly. (b) Threshold re-

sult by Eq. 3 based on the global statistic sbG
. (c) Relationship

between the mean of intensities inside a window (x-axis) and the

local threshold (y-axis). Symbol ‘+’ is the point for each optimal

threshold (selected manually) plotted against the local window’s

intensity mean. The blue line corresponds to Eq. 3 and shows a

good fit to the manually selected thresholds.

is a linear relationship between the optimal thresholds and

the local intensity means. This is shown in Fig. 2(c) which

plots the manually selected threshold against the local inten-

sity mean of each window. This relationship is not too sur-

prising because existing adaptive thresholding techniques

utilize local intensity mean. What is interesting is that we

observed the local intensity mean itself (plotted as T = m)

appears to be globally shifted from the optimal threshold.

This suggests that a single global correction could help.

We found that a suitable choice for the global offset is the

overall global std of the background. Referring to Fig. 2(c),

we can see that by translating the local intensity means by

the image’s background std, the T = m line shifts to the

optimal thresholds. Thus, a reasonable global threshold is:

T (x, y) = m(x, y) − sbG
, (3)

where sbG
is the std of the background intensity of

the entire image. To estimate the background, the im-

age is roughly segmented by Otsu’s global thresholding

method [11] and then sbG
is computed from the background

pixels only. Here the subscript G is used to note that term

sbG
is a global statistic obtained from the entire input im-

age.

While Eq. 3 has the similar form with Niblack’s Eq. 1,

Niblack’s method uses the local std and requires the user to

tune that by the parameter k. One may wonder if the similar

result will be obtained if k = −1 in Eq. 1, however, in our

experiments we found that the local std used in Eq. 1 is

not a good estimate of the global std and requires k to be

tuned. However, unlike Niblack’s method, our Eq. 3 is only

suitable on images with a uniform signal-to-noise ratio, i.e.

the background noise and foreground text (i.e. the signal)

are similar throughout the image.

Regionally-Determined Threshold As mentioned, Eq. 3

works for images with mild degradations, but it does not

work globally well for images with spatially varying back-

ground noise or foreground text intensity. For example, the

result of Fig. 1(a) obtained by Eq. 3 is given in Fig. 3(a).

The result generates fragmented text for the region with

very low foreground-background contrast (i.e. inside the

red rectangle). For this low-contrast region, the relationship

between the thresholds and the local intensity means are re-

checked and displayed in Fig. 3(c). We can see that there

is a cluster of △ points that represent the optimal threshold

in the red rectangular region shown in Fig. 3(c). These △
points are clearly far away from the line fitted by Eq. 3 and

thus erroneously thresholded. For such regions, we adjusted

the thresholds by regional statistics, again trying the std of

the regional background. This can be expressed as:

T (x, y) = m(x, y) − sbR
, (4)

where sbR
is the std of the regional background. The term

sbR
is computed from the regional background pixels which

are extracted by applying Otsu’s method [11] to the region.

Updating the result inside the red rectangle in Fig. 3(b) us-

ing Eq. 4, we obtain a significantly better result.

Region Extraction via User Interaction Regional adap-

tive thresholding needs to extract the regions that share sim-

ilar intensity characteristics. This fits well with our goal, as

user-assisted region segmentation is a well known interac-

tive computer vision task. As a result, for our particular ap-

plication we can reduce the adaptive thresholding problem

to one without parameters and that relies on user to only

help identify regions where the initial binarization was not

successful.

(a) (b)

(c)

Figure 3. (a) Binary result obtained by using Eq. 3 with the

globally-determined parameter sbG
(image is from Fig. 1(a)). (b)

The region enclosed by the red rectangle in (a) is updated by us-

ing Eq. 4 with the parameter sbR
estimated from the region. (c)

Shows the relationship between the intensity mean and optimal

thresholds in the image (’+’) and in the red rectangle (’△’). The

blue line corresponds to Eq. 3. The dashed green line corresponds

to Eq. 4.

3.2. User Interaction

Our user interaction is as follows. An global result is first

obtained by Eq. 3. In the initial result, the background pix-

els are set as white and the foreground is in its original col-

ors. If there are regions that are not thresholded correctly,

the user can then specify the erroneous region by drawing

coarse scribbles on the image in these regions. Based on

the user’s markup, we extract the erroneous region automat-

ically and then process it using Eq. 4.

(a) (b)

Figure 4. Region segmentation aided by user markup. (a) Original

image with markups (red line). (b) Initial large region dilated from

user markups (surrounded by blue line) and actual segmented re-

gion (highlighted in yellow). Red stroke and blue contour are used

as seeds for MRF in order to obtain the segmented region.

3.3. Region Segmentation Based on Markup

Our region segmentation approach is similar to that used

in [9] (Lazy Snapping). The significant difference is that

we utilize the results from the initial binarization in the seg-

mentation process, as opposed to relying only on input pixel

intensities. In addition, we only require the user to give ex-

amples (i.e. markup) in the “bad region”, where Lazy Snap-

ping would require markup in the “good” and “bad” region.

For lack of more descriptive terms, we express the pixels

in the region we desire to segment as Bad and the region that

does not require improvement as Good. Their correspond-

ing labels are denoted as {B,G} respectively. The segmen-

tation problem is formulated as a binary labeling Markov

Random Field (MRF) where each pixel p is assigned a la-

bel lp ∈ {G,B} (see [8] for details on MRFs). To solve the

MRF, the following energy terms are minimized in order to

find optimal pixel labels:

E = Ed + λEs, (5)

where Ed is the data-cost energy reflecting the likelihood

of assigning a lp to each pixel and Es is smoothness energy

representing the cost of assigning different labels to adja-

cent pixels. We fixed the weight λ as 0.5.

User-supplied Labels The pixels marked by the user are

assigned the label B and serve as the seeds of the Bad set.

We do not require the user to provide examples of the Good

set. Instead, we dilated the user markup and use pixels

along this dilated boundary as the seeds points with label

G. The rational is that pixels far from the user markups

(i.e. the pixels outside the dilated region) are most likely

well-thresholded. Here the diameter of the round-shaped

structuring element used for dilation is set as 4× the width

of the window used for adaptive thresholding. If the initial

region does not cover the entire “bad” region, the user can

simply supply more markup and generate a bigger region.

Fig. 4 shows an example of the seeds of Bad set (red-line)

and Good set (blue-line), together with the initial dilated

region. Segmentation is applied to those pixels within the

dilated region.

Data Features Two features are used to compute the data

and smoothness costs of the MRF. The background feature,

denoted as BGp is obtained by averaging all the pixels in

the local window used for thresholding that are considered

background pixels by Eq. 3. The other feature is computed

using the binarization result itself, and is therefore termed

the result feature (denoted as REp). This feature is com-

puted by averaging all intensities of the initial binary result

using a window 1.5× larger than the window used to av-

erage the background. This slightly larger window allows

characteristics of the thresholded text to be captured.

Data Cost For each pixel p, the result feature, REp is uti-

lized to define the data cost. The average result feature of

the user-labeled Bad set is denoted as REB . We assume

that the erroneous region we want to segment will have

very similar REp. However, unlike the Bad set, the Good

set may have more diversity in its characteristics about the

boundary. Therefore, the seeds (i.e. boundary pixels around

the dilated region) are clustered using K-means cluster-

ing [4], where K is set empirically to four and cluster cen-

ters are denoted as REG
n, n = 1, 2, 3, 4. For each pixel p,

we define the distance from its REp to those of Bad seeds

as dBp = ‖REp − REB‖ and define its minimum distance

to those of Good seeds as dGp = min
n

‖REp − REG
n‖. The

data cost Ed is then computed as follows:

Ed(lp = G) = 0 Ed(lp = B) = ∞ p ∈ {G}

Ed(lp = G) = ∞ Ed(lp = B) = 0 p ∈ {B}

Ed(lp = G) =
dGp

dGp + dBp

Ed(lp = B) =
dBp

dGp + dBp

p ∈ {U}, (6)

where {U} contains all the pixels to be labeled in the dilated

region.

Edge Cost For adjacent pixels p and q, the distance

between their background features is defined as dBG
pq =

‖BGp − BGq‖. We define the edge cost Es as a function

between two pixels p and q, as Es(lp, lq) = 0 if lp = lq, or,

Es(lp, lq) = 1/(1 + (dBG
pq)2) if lp 6= lq.

To provide interactive speeds, the MRF described is per-

formed on a 3 : 1 down-sampled version of the image. The

optimization result of the MRF is then up-sampled to give

the full-size segmentation result. We used the Middlesbury

MRF code [15] with the graph-cuts solver [2]. Fig. 4(b)

shows a region obtained by using the above approach. Once

we have extract the erroneous region, the parameter sbR
is

estimated and the new binarization result is computed ac-

cordingly by Eq. 4. This entire procedure takes roughly 1s
to perform and is interactive such that the user can quickly

adjust the markup “on the fly” to segment the region they

want.

4. Results

We first show results obtained by our application on rep-

resentative images. This is followed by results from a user

study involving 20 participants who used applications based

both on our approach and parameter-tuning.

Fig. 5 and Fig. 6 show two representative images from

our collection – these also serve as excellent examples of

documents that require adaptive thresholding. The top row

shows the initial binarization result. Note that faint text is

fragmented or even totally removed. The user markup and

segmented region are shown in the bottom. The segmented

regions are correctly segmented and the new results show a

significant improvement.

We performed a user study to substantiate our claims that

our interactive approach is desirable over parameter tuning.

We asked 20 participants to perform binarization on doc-

uments using two different applications: App1-[parameter-

tuning] (using Sauvola and Pietikainen [13] method) and

App2-[our interactive markup]. Users were not told which

application was ours, instead they were told the purpose of

the study was to determine which application was preferred.

Users were given a short training session on how to use

both applications. App1 involved an interface that allowed

the user to adjust k (only called “parameter” in the actual

application) using either a slider, spin-dial, or manual entry.

Due to the authors handwriting style, the text in the journals

are very difficult to read, even after binarization, thus we

asked the users to only perform the binarization to what they

felt was the best quality they could obtain. After a training

session, each participant performed binarization on three (3)

complete documents.

For each participant we recorded: 1) average time re-

quired to obtain a result; 2) which application the user

preferred; 3) which result they preferred (i.e. result ob-

tained by App1 or App2). Both apps took user roughly the

same amount of time (App1=90s) vs. (App2=100s) with the

parameter-tuning being slightly faster, see Fig. 7. However,

even though slightly faster, 90% of the participants (18 out

of 20) preferred our approach in App2, and 80% felt our re-

sults were better (16 out of 20), see Fig. 8. Note that two

of the participants who felt the parameter-tuning produced

better results still preferred using our application.

In addition, we had feedback from two archivists who are

involved with these materials. A formal user study was not

performed on the archivists, however, we gave them the op-

portunity to use both applications. Both archivists agreed,

without hesitation, that our interactive tool was significantly

better. One archivist commented that the interactive tool

also fits how text transcription would be performed, “chunk

by chunk” – thus providing the ability of regional process-

ing is inline with the real usage pattern.

Figure 5. (Top): First image shows the input image. The initial binarization result is shown in the second image. (Bottom) User markup

within segmented region, new binarization result. Zoomed comparison are shown on the right.

Figure 6. (Top): First image shows the input image. The initial binarization result is shown in the second image. (Bottom) User markup

within segmented region, new binarization result. Zoomed comparison are shown on the right.

Figure 7. Timing results from 20 users. On average App1

(parameter-tuning, 90s) is slightly faster than our App2 (interac-

tive markup, 100s).

5. Discussion and Summary

We have demonstrated an effective user-assisted ap-

proach for document binarization. While some computer

vision tasks must be fully automated (e.g. real-time appli-

cations), there are many that do not. The degraded nature

of documents targeted in our application are not suitable for

batch processing and existing parameter-based techniques

require fine-tuning for each input. This makes our appli-

cation an excellent case for exploiting interactive computer

vision. As our user study shows, asking the user to perform

meaningful mark up on the input image was greatly pre-

ferred to tuning a “magic number”. In addition, when the

user’s help is enlisted to localize regions, local processing

may be an option to produce better results, as done in our

application.

We also point out two potentially non-obvious insights

exploited in this paper that may be useful when converting

existing parameter-tuned algorithms to ones relying on user

interaction. First is the strategy of trying to relate the pa-

rameter(s) to the input data even if only sub-optimal results

can be obtained. This strategy allows the problem to be re-

duced into one where the user needs to only mark erroneous

regions, a task that is generally easy to do. The second in-

sight is the idea of using the erroneous result itself for tasks

such as region segmentation as described in Section 3.3. In

particular, we were able to utilize the additional feature data

from the sub-optimal result to segment this region more ef-

fectively than existing user-assisted segmentation routines.

References

[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image

inpainting. In SIGGRAPH, 2000.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison

of min-cut/max-flow algorithms for energy minimization in

Figure 8. Preference by the user as to which application they would

prefer to use, and which result they preferred.

vision. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 26(9):1124–1137, September 2004.

[3] Y. Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A

bayesian approach to digital matting. In CVPR, 2001.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classifica-

tion. Wiley-Interscience Publication, 2000.

[5] B. Gatos, I. Pratikakis, and S. J. Perantonis. Adaptive de-

graded document image binarization. Pattern Recognition,

39:317–327, 2006.

[6] Y. Huang, D. Xu, and M. S. Brown. A framework for remov-

ing ink-bleed in old documents. In CVPR, 2008.

[7] C. G. Leedham, C. Yan, K. Takru, J. H. N. Tan, and

L. Mian. Comparison of some thresholding algorithms for

text/background segmentation in difficult document images.

In ICDAR, 2003.

[8] S. Li. Markov Random Field Modeling in Image Analysis

(2nd Edition). Springer-Verlag, 2001.

[9] Y. Li, J. Sun, C.-K. Tang, and H. Y. Shum. Lazy snapping.

ACM Transactions on Graphics (SIGGRAPH), 23(3):303–

308, 2004.

[10] W. Niblack. An Introduction to Digital Image Processing.

Prentice-Hall, Englewood Cliffs, NJ, 1986.

[11] N. Otsu. A threshold selection method from gray level his-

tograms. IEEE Transactions on Systems, Man and Cybernet-

ics, 9:62–66, 1979.

[12] C. Rother, V. Kolmogorov, and A. Blake. “grabcut” —

interactive foreground extraction using iterated graph cuts.

ACM Transactions on Graphics (SIGGRAPH), 23(3):309–

314, 2004.

[13] J. Sauvola and M. Pietikainen. Adaptive document image

binarization. Pattern Recognition, 33:225–236, 2000.

[14] J. Sun, J. Jia, C. Tang, and H. Shum. Poisson matting.

ACM Transactions on Graphics (SIGGRAPH), 23(3):315–

321, 2004.

[15] R. Szeliski, R.Zabih, D. Scharstein, O. Veksler, and

V.kolmogorov. A comparative study of energy minimization

methods for markov random fields. In ECCV, 2006.

