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Abstract 

Frequent placement of intra-encoded pictures, or I-
frames, in MPEG video facilitates (1) error resilience 
over lossy network transmission and (2) random access 
for VCR like functionality.  However, high I-frame 
frequency sacrifices quality-to-bitrate efficiency that can 
be gained by using longer sequences of inter-encode 
pictures.  In this paper, we present a simple strategy that 
emulates frequent I-frame encoding while using fewer I-
frames.  Our approach maintains small set of previously 
encoded/decoded I-frames that can be re-used to start 
future GOPs.  We overview our approach and show how a 
least-recently-used (LRU) policy can be used to maintain 
the set of I-frames.  We demonstrate gains in PSNR for 
constant bit rate encoding using our strategy. 
 
1. Introduction 
MPEG-based encoded video uses a combination of intra-
encoded and inter-encoded frames to compose its 
compressed video stream. Intra-encoded frames (I-frames) 
can be independently encoded and decoded.  Inter-
encoded frames (P-frames and B-frames) exploit temporal 
redundancy using motion compensated residual coding 
strategies.  P/B frames encode their difference to one or 
two reference frames and are dependent on these 
reference frames for their reconstruction.  MPEG 
organizes encoded frames into a structure called a group 
of pictures (GOP), which starts with an I-frame followed a 
series of inter-encoded frames.  The size of the GOP can 
be considered the distance between I-frames. In terms of 
bits-per-frame compression, I-frames are often several 
times larger than inter-encoded frames. Thus, higher 
quality-to-bitrate can typically be achieved by using long 
sequences of inter-encode frames. 
The MPEG encoding syntax allows encoder decisions to 
be made that can affect quality-to-bitrate performance.  
This has lead many researches to explore improvements 
by adaptive I-frame placement, or dynamic GOPs. For 
example, Lan et al[1] used scene motion detection to 

determine content change for I-frame placement, using a 
long run of inter-coded frames until a substantial scene 
change was detected. Yoneyama et al[7] examined 
macroblock motion vector activity to determine where to 
start new GOPS. Turaga et al [4] presented as 
classification approach, training a video-encoder with 
sample video clips to guide the I-frame selection. While 
all of these approaches reported quality-to-bitrate 
improvements, their use of arbitrary sized and typically 
long GOPs has some undesirable drawbacks over high I-
frame placement. 
Frequent I-frames placement provides two important 
functions.  First, because I-frames are self-contained, they 
provide a mechanism to randomly access frames in the 
compressed stream.  Random access allows applications 
to provide VCR like functionality such as fast-forward 
and rewind.  I-frame frequency determines the granularity 
of this random access.  Second, I-frames provide error 
resilience for noisy network transmission.  If a portion of 
a transmitted frame is corrupted, the error can be 
propagated by the predictive nature of B/P frames.  
Sending frequent I-frames can help stop such pixel error 
propagation. 
The challenge then is to provide the functionality of 
frequent I-frame placement while providing high quality-
to-bitrate efficiency.  We address this problem using an 
encoding strategy that reduces the number of I-frames 
while maintaining the functionality of frequent I-frame 
placement.  Our approach maintains a small set of 
previously en/decoded I-frames, called the working-set.  
Working-set frames can be used as reference frames of 
the start of future GOPs often avoiding the encoding of 
new I-frames.  Moreover, each GOP's start frame can still 
be randomly accessed because the necessary reference 
frame is buffered in the working-set.  In the remainder of 
this paper, we describe in detail our approach (section 2) 
and show that a least-recently-used strategy is effective 
for maintaining the working-set frames (section 3).  
Section 4 explains our integration into an MPEG-2 codec 



and demonstrates our results.  We finish with concluding 
remarks in section 5. 
2. Overview of the working-set frame 
replacement 

 
We borrowed the term ``working-set'' from operating 
system's vernacular which describes a memory paging 
approach for virtual memory.  In an OS context, a process 
keeps a set of memory pages (called its ``working-set'') 
that are pre-fetched onto the system's memory when the 
process is context switched onto the CPU.  The working-
set is a reasonable-guess of the most useful pages (useful 
in terms of memory access hit ratios) for the process.  We 
liken our I-frame replacement problem to memory paging.  
In a video coding context, our ``working-set'' is a 
reasonable-guess of the most useful I-frames that have 
already been encoded.  These I-frames are useful in that 
they are similar enough to future I-frames to be used as 
reference frames for subsequent I-frames. 
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Figure 1: Overview of the working-set frame replacement. Both 

the encoder and decoder keep a set of previously 
encoded/decoded I-frames. The I-frame frequency is specified by 
a GOP size.  When it is time to encode a new I-frame (called a 

candidate I-frames), the most similar working-set frame is found 
using an SAD metric.  If the most similar frame passes an 

``acceptance threshold'', the candidate frame is inter-encoded 
using the similar working-set frame as a reference.  Otherwise, 
the current frame is encoded as an I-frame and is placed in the 

working-set using an LRU replacement policy.} 
 
Figure 1 overviews of the working-set replacement 
strategy.  A small set (for example 4 frames) of previously 
coded I-frames are maintained on both the encoder and 
decoder.  Frames are considered for intra-frame encoding 
based on a specified placement frequency, i.e. fixed GOP 
size.  In our experiments, we use a GOP size of 12, a 
reasonable granularity for rewind and fast-forward 
functionality.  When a new GOP is to be started, a 
decision is made whether or not to encode the frame as an 
I-frame.  In figure 1, we refer to this frame as a candidate 

I-frame.  The candidate I-frame is compare against all the 
frames in the working-set (step 1).  We use a simple sum-
of-the-absolute-difference (SAD) as follows: 
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In the above equation, i represents an index for each k  
working-set frame. mv is the motion vector indicating 

the displacement between the candidate frame and WS at 
point , this motion vector can be acquired using a 
block based motion estimation step. A pixel-wise 
difference is performed for pixel  over the width 

and height of the frame's luminance channel. 
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The minimum SAD score is examined to see if it is less 
than a specified acceptance threshold, i.e. .  
To make specifying the threshold easier, we normalize the 
SAD score by dividing it by the number of pixels in the 
frame -- this results in a score with a range of 0-255 (the 
pixel intensity range).  If the minimum SAD score is less 
than the threshold, the candidate I-frame will be encoded 
as a P-frame, using the most similar  frame as a 
reference. In this manner, the GOP does not start with an 
I-frame, but instead starts with a P-frame that uses a 
buffered working-set frame as a reference. Random access 
can still be achieved using this approach.  The start of 
each GOP is either an I-frame or is P-frame whose 
reference is buffered in the working-set. 

wsTScore <
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We note that the idea of buffering many frames on the 
encoder and decoder is not new.  Weigand et al [5,6] 
introduced the idea of multiple reference frames (called 
long term memory frames) for use in inter-frame encoding.  
In their strategy, inter-frame's macroblocks can predict 
themselves from any of the buffered reference frames.  
This strategy has been adopted in H.263++, annex U.  
Using multiple references for inter-encoding increases 
coding complexity, but has been shown to provide 
significant quality-to-bitrate improvements.  Our idea is in 
the spirit of Weigand et al, but differs in several distinct 
ways.  For example, we only maintain I-frames in the 
working-set.  In addition, our approach is only targeting 
the start of each GOP and not all inter-encoded frames.  
We also use a global similarity check to find a suitable 
reference frame and not at the macro-block layer.  Finally, 
our scheme is intended for little computational overhead 
to the encoder. In this section, we proposed a method to 
do error  
3. Lru working set maintenance 
To maintain the working-set frames, we again turn our 
attention to virtual memory approaches, treating frame 
replacement as a paging problem.  There are several 
schemes for memory paging, including first in first out 
(FIFO), not used recently (NUR), least recently used 



(LRU) and least frequently used (LFU) (see [2] for a 
refresher on memory paging).  It is known that LRU is 
one of the most effective paging algorithms; however, due 
to implementation overhead it is rarely deployed in a 
virtual memory context [2].  However, for our problem 
LRU is suitable for deployment. 
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Figure 2:LRU frame replacement: A list is kept of all of the 

frames.  When a new frame is added, or a frame in the working-
set is chosen to replace a candidate I-frame, it is moved to the 
front of the list.  The least recently used frame is always the at 

end of the list. 
 
As the name implies, LRU replaces the frame (or page) 
that was least recently used.  The LRU implementation 
uses a fixed-sized linked-list data structure to store 
indexes for all of the frames, as shown in figure 2.  Newly 
encoded I-frame is added to the front of the linked list.  
When a frame in the list is used as a reference (i.e., 
replaces a candidate I-frame), it is moved to the front of 
the list.  With this strategy, we see that the frame at the 
end of the linked list is always the frame that has been 
least recently used.  When the list is full and a new frame 
is to be inserted, we simply remove (delete) the frame at 
the end of the list, and place the new frame at the 
beginning. 
For virtual memory systems, LRU requires at each 
memory access, the appropriate page is removed from a 
linked-list and placed at the beginning.  This per-access 
overhead is impractical in a virtual memory context.  
However, with our framework LRU is quite feasible; 
assuming a maximum of 30 video frames-per-second, we 
would only need to perform SAD scores and LRU update 
a few times a second for short GOP patterns.  Real-time 
performance can be easily realized. 
4. simulation results 
4.1 Integration to TM5 
We have integrated our proposed approach into an 
MPEG-II encoder codec [3]. We changed the grammar of 
MPEG bitstream slightly to add extra bits to convey 

working-set update information.  MPEG-II pictures start 
with a Pict_type field, specifying either I,B, or P frame.  If 
Pict_type specifies an I-frame, we add 32 bits as follows: 
 
PICT_TYPE WS_TYPE(1 BIT) REF_NUMBER(31 BITS) 

 
If encoded frame is an intra-encoded frame, the ws_type 
field is set to 0.  The decoded I-frame is added to the 
working-set.  If the following 31 bits are set to 0, then no 
I-frame will be replaced (as in the case when the working-
set is not full).  Otherwise the 31 bit ref_number specifies 
which frame to replace in the buffer. 
If the frame is inter-encoded, the ws_type bit is set to 1 
and the following 31 bits indicate the index of the frame 
to be used as a reference.  In our current implementation 
we assume that I-frames will not be lost and the reference 
number is consistence on both the encoder and decoder.  
For network transmission, a feedback mechanism will be 
needed to inform the encoder which I-frames have 
successfully received.  This is currently deferred to future 
work. 
On the decoder side, by examining the 32 bits following 
an I-frame Pict_type field, the decoder can maintain the 
exact working-set as used by the encoder.  For random 
access, the implementation of fast-forward is easy to 
realize.  For rewind, we can examine the 31 bits to fetch 
discarded frames.  It could be that the fetch frame is 
temporally far from the current frame.  However, if this is 
the case, it implies that the fetched frame stayed in the 
working-set a long time and will be referenced often, thus 
its fetch time is offset by its usefulness. 

4.2 Results 
We compare our modified encoder to the baseline MPEG-
II encoder.  We compare the PSNR of our method using 
the following acceptance thresholds: 5, 10, and 15.  At 
this stage, we manually choose the working-set threshold.  
We are examining techniques to automatically set these 
values. 
We show results for two sequences, Paris and News.  We 
use the following GOP IBBPBBPBBPBB of size 12. 
During motion estimation, motion vector range is chosen 
to be [-16, +15.5], [-8, +7.5] for P frames and B frames 
with halfpel accuracy respectively. MQUANT value is 
estimated by the same rate control method in TM5 to 
obtain the specified bitrate, given in terms of bits-per-
pixel (bpp). No interlaced frame is used.  We use a 
working-set size of two frames. 
 
 
 
 
 
 



Method (# of  I 
– frames) 0.1bpp 0.2bpp 0.2bpp 0.4bpp 0.5bpp

TM 5 89 89 89 89 89 

Thresh=5 82 81 78 78 76 

Thresh=10 21 20 18 17 17 

Thresh=15 6 5 5 4 4 

Table1: Number of intra-encoded frames for different bit-
perpixel (bpp) using the base-line MPEG codec and our 

modified codec using different similarity thresholds. 
 
Table 1 shows the number of I-frames actually encoded 
using the different thresholds for the paris sequence. The 
number of I-frames changes slightly depending on the bpp 
specified.  This is because the SAD scores will yield 
different results based reconstructed frame. 
 

 TM5 Thresh=5 Thresh=10 Thresh=15
0.1bpp 37.59 39.37 39.37 39.37 Akiyo 0.2bpp 41.92 42.94 42.94 42.94 
0.1bpp 30.52 31.63 31.63 31.63 Brideg-Far 0.2bpp 32.64 33.40 33.42 33.42 
0.1bpp 34.30 35.66 35.54 35.37 Container 0.2bpp 36.51 37.80 37.63 37.47 
0.1bpp 30.25 30.33 30.96 30.90 Foreman 0.2bpp 34.04 34.34 34.57 34.49 
0.1bpp 35.90 37.48 37.44 37.44 News 
0.2bpp 38.50 40.10 39.92 39.92 
0.1bpp 25.80 25.80 27.03 27.38 Paris 0.2bpp 29.70 29.70 32.10 31.69 

Table 2: Comparison between TM5 and different threshold 
settings of TM5 with LRU method based on the Average PSNR 

value of Y component.  Workingset size is set to be 2. 
 

Table 2 show that by reducing I-frames encoding, gains 
are made to the the average PSNR of both sequences by 
around 1.5 – 2 dBs with the threshold=10-15. Figure 3 
shows a frame-by-frame comparison of PSNR for our 
method and the baseline TM5.  We see that the majority 
of frames have PSNR improvements. 
5. Conclusion 
In this paper, a new strategy for reducing the number I-
frames while emulating the placement of frequent I-frame 
is proposed.  Our approach maintains a working-set of 
previously coded I-frames that can be re-used to start 
future GOPs.  By re-using old I-frames to start new GOPs 
we reduce the total number of I-frames; this translates into 
an improvement in PSNR for constant-bit-rate encoding.  
We show that a least-recently-used replacement policy is 
suitable for maintaining the working-set, and discuss how 
to modify a MPEG codec to integrate the strategy. 
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Figure 3: Comparison between TM5 and TM5 with LRU 
method based on the PSNR value of Y component of each 
frame for the Paris and Foreman sequencee. ( bitrate = 

0.1bpp, workingset size = 2, threshold = 10.) 
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