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Abstract

L0 gradient minimization can be applied to an input sig-
nal to control the number of non-zero gradients. This is
useful in reducing small gradients generally associated with
signal noise, while preserving important signal features. In
computer vision, L0 gradient minimization has found ap-
plications in image denoising, 3D mesh denoising, and im-
age enhancement. Minimizing the L0 norm, however, is an
NP-hard problem because of its non-convex property. As a
result, existing methods rely on approximation strategies to
perform the minimization. In this paper, we present a new
method to perform L0 gradient minimization that is fast and
effective. Our method uses a descent approach based on re-
gion fusion that converges faster than other methods while
providing a better approximation of the optimal L0 norm.
In addition, our method can be applied to both 2D images
and 3D mesh topologies. The effectiveness of our approach
is demonstrated on a number of examples.

1. Introduction and Related Work
This paper focuses on L0 gradient minimization applied

to images and 3D meshes. L0 gradient minimization is used
to control the global number of non-zero gradients between
neighbors in a graph. When done properly, L0 gradient
minimization effectively creates a series of piecewise con-
stant functions whose transitions correspond to important
changes in the original function. This can be considered
as a feature-preserving filter that has many applications in
computer vision, from image and mesh denoising, to image
enhancement and segmentation.

There are a number of feature-preserving filters in the lit-
erature. These can be broadly categorized as local or global
filters. The trade-off among these various methods lies in
their overall effectiveness for the task at hand and time com-
plexity. Well-known local filters include the anisotropic fil-
ter [1, 16], the bilateral filter [2, 6, 15, 21, 26, 27], the
guided filter [10, 11, 28], and the geodesic filter [9, 4].
These filters were originally designed for use on images,
but have been extended to other domains, including 3D
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Figure 1. This figure shows the results of applying L0 gradient
minimization on an image by Xu et al. [24], Cheng et al. [3],
Storath et al. [19], and our method. Parameters for each method
was tuned to produce the best results (closest result to L0). The
plots under each image show a 1D scanline from the green chan-
nel. We also report the running time T (in seconds) and the final
objective function value F (defined in Equation 2) which includes
the L0 regularization.

meshes [8, 29]. Local filters are popular given their sim-
plicity and effectiveness in smoothing noise while preserv-
ing edges, however, they do require the tuning of the filter’s
local support size. In addition, as discussed in [7], it can
often be difficult to use local filters to achieve progressive
coarsening.
L0 gradient minimization falls into the category of global

filters that impose a constraint on the entire image. Most
global filters are realized in an optimization framework.
One of the best known global methods is the work by Rudin
et al. [17] and subsequent variations (e.g. [5, 23, 25]) that
introduced the total variation (TV) minimization which es-
sentially imposes an L1 gradient minimization. Another ef-
fective global filter is the weighted-least-square filter [7, 13]
that solves an L2 objective function defined over the entire
image, using image affinity based on local image gradients.
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Recently, the L0 gradient minimization was used by Xu
et al. [24] for the task of image smoothing. As previously
mentioned, this approach aims to limit the number of gra-
dient transitions in the output image. However, in terms
of computational complexity, minimizing the L0 norm is
NP-hard [14]. As such, approximation strategies must be
used. Xu et al. [24] split their optimization function into two
subproblems by introducing auxiliary variables and solved
them by an L0-L2 iteration framework. A parameter κ was
used to balance the influence of the L0 norm on the final
filtered signal. A smaller κ weights the L0 regularization
more, but at the cost of a longer running time. Figure 1
shows an example, where F represents the final optimiza-
tion energy and T is the time in seconds. Cheng et al. [3]
extended this work to propose a better approximation algo-
rithm based on a fused-coordinate descent framework (as
shown in Figure 1-d). However, their method is also slow
to converge, often needing 700− 1000 iterations. Storath et
al. [19] proposed an optimization method based on dynamic
programming and alternating direction method of multipli-
ers. Their approach obtains a good approximation of theL0,
but requires a significantly large running time (as shown in
Figure 1-e). Shen et al. [18] defined a different optimization
function that changed the L2 norm term in the optimization
function into anL1 norm. As with local filters, theL0 gradi-
ent minimization has been extended beyond images to work
with 3D meshes (e.g. He et al. [12], Cheng et al. [3]).
Contribution We present a method for L0 gradient mini-

mization that is fast and is able to approximate the L0 norm
effectively. Our method uses a descent strategy based on
region fusing. We show that at each minimization step, the
objective function will decrease monotonically. This allows
our method to converge quickly. Moreover, our method
can be applied to arbitrary graphs such as image and mesh
topologies. We detail our algorithm and demonstrate its ef-
fectiveness on a number of experiments showing that it pro-
vides a good approximation of the L0 norm and is signifi-
cant faster than prior methods.

The remainder of paper is organized as follows. Sec-
tion 2 overviews the L0 gradient minimization framework
and its application to different graph topologies. Section 3
describes our descent and fusion approach for approximat-
ing L0 gradient minimization. Section 4 evaluates the per-
formance of our method against existing L0 minimization
approaches. Section 5 shows the effectiveness of our ap-
proach on a number of applications. The work is concluded
in Section 6.

2. L0 Gradient Minimization
Here we describe L0 gradient minimization for a general

input signal. Let I be the original signal and S represent the
filtered output. The gradient of the output S is denoted by
∇S. The objective function of theL0 gradient minimization

is formulated as follows:

F = min
S
||S − I||2 + λ||∇S||0, (1)

where || · || denotes the L2 norm, || · ||0 denotes L0 norm,
and λ is the parameter to control the level of sparseness in
the final signal S. A larger λ produces a coarser result with
less gradient.

Equation 1 can be rewritten as follows:

F = min
S

M∑
i=1

||Si − Ii||2 + λ/2
∑
j∈Ni

||Si − Sj ||0

, (2)

where M is the length of the signal and Ni is the neigh-
boring set of the ith element. Here, λ is divided by 2 since
the neighboring relationship between Si and Sj is counted
twice. The neighboring set Ni is defined for each case (e.g.
1D signal, 2D images, or 3D mesh models) as follows:

Ni =

 {i− 1, i+ 1} 1D
{four-connected pixels} 2D
{all neighbor faces of the ith face} 3D

. (3)

3. Our Region Fusion Minimization
Our goal is to minimize the objective function introduced

in Equation 2. Our method uses a fusion technique that ex-
amines neighboring regions in the signal that have nearly
similar values and decides whether to fuse them to have
the same value. By combining two regions, we create a
larger single region, but also remove the gradients between
the regions. The work by Cheng et al. [3] used a some-
what similar method termed the fused-coordinate descent.
Their work, however, used a more complicated optimiza-
tion mechanism that separated the fusion step from the co-
ordinate descent step in a way that did not guarantee the ob-
jective function to monotonically decrease during the fusion
step (see accompanying supplemental material for more de-
tails). Their method also required a longer running time.
In contrast, our approach combines the fusion and descent
into a single step that guarantees a decrease of the objective
function and allows our method to converge quickly. Our
optimization approach is detailed in the following.

3.1. Optimization

As discussed in Section 1, the inclusion of the L0 norm
in the objective function makes it NP-hard. We approximate
this objective function by considering each pair of neighbor-
ing elements in the graph one at a time, instead of the entire
signal at once. Our descent optimization works as follows.
We first assign the output signal S to be the same as the
input signal I . Our algorithm then loops through all the
signal elements. At each step, we consider two neighboring
elements i and j. The amount these two elements contribute



to the objective function F in Equation 2 can be expressed
as follows:

f = min
Si,Sj

||Si − Ii||2 + ||Sj − Ij ||2 + λ||Si − Sj ||0. (4)

Our goal here is to find the best Si and Sj that minimize
the sub-function f . To do this, we divide the problem into
two cases: Si 6= Sj , and Si = Sj to eliminate the L0 term
||Si − Sj ||0 in Equation 4.

• Case Si 6= Sj: The L0 term ||Si−Sj ||0 is equal to 1
and the function f in Equation 4 becomes:

f = min
Si,Sj

||Si − Ii||2 + ||Sj − Ij ||2 + λ. (5)

In this case, we have a trivial solution as follows:{
Si = Ii, Sj = Ij
f = λ

. (6)

• Case Si = Sj: The L0 term ||Si−Sj ||0 is equal to 0
and the function f in Equation 4 becomes:

f = min
Si

||Si − Ii||2 + ||Si − Ij ||2. (7)

Equation 7 is a quadratic equation that requires only
one variable Si to be solved. By using the first deriva-
tive, its solution can be easily obtained as follows:
Si = (Ii + Ij)/2. Therefore, the solution for this case
is: {

Si = Sj = (Ii + Ij)/2
f = (Ii − Ij)2/2

. (8)

Combining these two cases together, we have the solu-
tion for Equation 4 as follows:

{Si, Sj} =
{
{A,A} if ||Ii − Ij ||2/2 ≤ λ
{Ii, Ij} otherwise , (9)

where A = (Ii + Ij)/2.
We call Equation 9 the fusion criterion. Note that Equa-

tion 9 still holds true in the case of Ii = Ij . According to
this fusion criterion, we will decide whether to fuse these
two elements into one group or not.

Our overall approach is described in Algorithm 1. Ele-
ments in the signal (e.g. pixels in an image or faces on a
mesh) are denoted as Ii. Group (connected regions) of el-
ements with the same values will be denoted as Gi. The
number of elements in each group is denote as wi. The
number elements that connect group i and j is denote as
ci,j . To initialize the algorithm, each group Gi contains ex-
actly one element i. Therefore, the number of elements of
each group wi is equal to 1. We use Yi to store the mean
value of all elements in group Gi which is initialized to the
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Figure 2. This figure shows an example of the connection num-
bers for a 2D image. (a) shows the initial configuration with four
groups of pixels, while (b) shows the configuration after fusing
groupG2 intoG1. The numbers below each image show the corre-
sponding connection numbers for each pair of neighboring groups.

original signal Ii. All neighboring groups Ni are initial-
ized using Equation 3. We also define the number of initial
connections between two neighboring groups as follows:

ci,j =

{
1 if j ∈ Ni
0 otherwise . (10)

The matrix that represents the connection numbers c is
very large, but sparse, since each element has only a few
neighbors. Therefore, we can use a sparse matrix represen-
tation storing only non-zero values to save memory. Note
that the connection number is equivalent to the number of
gradients between two neighboring groups. Figure 2-(a)
shows an example of group neighbors and the connection
numbers for a 2D image. All pixels that belong to the same
group have the same numerical value, e.g. G1 has 10 el-
ements in Figure 2-(a). Groups G1 and G2 have five el-
ements connections together (shown along the green line
with double arrows), therefore, their connection numbers
are c1,2 = c2,1 = 5. Note that these connections are
counted twice, once for ci,j and cj,i, and account for why λ
is divided by two in Equation 2.

Our algorithm loops through all groups of a current fil-
tered signal. For each group Gi, we consider its neighbors
Gj . Like prior methods, we use an auxiliary parameter β
(0 ≤ β ≤ λ) that increases for each iteration. Details to
this parameter are provided in Section 3.2. Factoring in the
auxiliary parameter, Equation 4 becomes as follows:

min
Si,Sj

wi||Si − Yi||2 + wj ||Sj − Yj ||2 + βci,j ||Si − Sj ||0.

(11)
Recall that Yi and Yj represent the mean signal values

for the groups Gi and Gj containing wi and wj elements
respectively. The above equation can be solved in the exact
same manner as described for Equation 4 as follows:



Algorithm 1 Region Fusion Minimization for L0

Input: signal I of length M , the level of spareness λ
1: Gi ← {i}, Yi ← Ii, wi ← 1
2: Initialize Ni as Equation 3
3: Initialize ci,j as Equation 10
4: β ← 0, iter ← 0, P ←M
5: repeat
6: i← 1
7: while i ≤ P do
8: for all j ∈ Ni do
9: if wiwj ||Yi − Yj ||2 ≤ βci,j(wi + wj) then

10: Gi ← Gi ∪Gj
11: Yi ← (wiYi + wjYj)/(wi + wj)
12: wi ← wi + wj
13: Remove j in Ni and delete ci,j
14: for all k ∈ Nj \ {i} do
15: if k ∈ Ni then
16: ci,k ← ci,k + cj,k
17: ck,i ← ci,k + cj,k
18: else
19: Ni ← Ni ∪ {k}
20: Nk ← Nk ∪ {i}
21: ci,k ← cj,k
22: ck,i ← cj,k
23: end if
24: Remove j in Nk and delete ck,j
25: end for
26: Delete Gj , Nj , wj
27: P ← P − 1, i← i+ 1
28: end if
29: end for
30: end while
31: iter ← iter + 1
32: β ← g(iter,K, λ) . Defined in Equation 13
33: until β > λ
34:
35: for i = 1→ P do . Reconstruct the output signal
36: for all j ∈ Gi do
37: Sj ← Yi
38: end for
39: end for
Output: filtered signal S of length M

{Si, Sj} =
{
{B,B} if wiwj ||Yi − Yj ||2 ≤ βci,j(wi + wj)
{Yi, Yj} otherwise

(12)
where B = (wiYi + wjYj)/(wi + wj) is the weighted av-
erage of the two groups Gi and Gj .

The criterion in Equation 12 is used to decide whether to
fuse the groupGj into the groupGi or not. Note that chang-
ing the values of groups Gi and Gj can affect to the magni-
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Figure 3. This plot shows the value of the objective function in
Equation 2 for each iteration. The input signal is the image shown
in Figure 1. The objective function monotonically decreases at
each iteration.

tudes of gradients with their other neighbors but it does not
create any new non-zero gradients. Therefore, this will not
affect the other terms in Equation 2. In addition, β ≤ λ,
if β satisfies Equation 12, then λ does too. Therefore, the
total objective function F in Equation 2 will decrease by
λci,j − wiwj ||Yi − Yj ||2/(wi + wj) if we preform the fu-
sion step, or will remain unchanged otherwise. As a result,
our fusion-based method acts as a descent strategy to either
lower the objective function or remain the same.

If these groups are fused, all elements in Gj are joined
into Gi, then the mean value Yi and the element number
wi are updated. Next, all the neighbors of Gj are inserted
into Ni and the corresponding connection numbers are up-
dated. After each fusion step, all the information of the
fused group Gj is deleted and the number of remaining
groups is reduced by one. Figure 2-(b) shows an exam-
ple of how the connection numbers are updated during the
fusion step. Here, group G2 is fused into G1. The connec-
tion numbers c1,3, c3,1 (between G1 and G3) and c1,4, c4,1
(between G1 and G4) are updated. All connection numbers
related to G2 are deleted.

Our algorithm is repeated until the auxiliary parameter β
reaches the regular parameter λ. At that time, the remaining
groups contain all elements in the signal. Finally, the out-
put value for each element Sj will be assigned by the mean
value of the group that it belongs to.

Figure 3 shows the value of the objective function, F ,
in Equation 2 with each iteration. For this example, the in-
put signal is the image shown in Figure 1. The objective
function monotonically decreases with each iteration, con-
verging after approximately 50 iterations.

3.2. Auxiliary Parameter β

Like the other prior works [3, 24], we use an auxiliary
parameter β which gradually increases from 0 to λ at each
iteration. This parameter is used to make pairs of neighbor-
ing groups that have small differences in their mean values
fuse together. We experimented with three different strate-
gies to increase β: linear, non-linear, and multiplicative, de-
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Figure 4. This figure shows the results with different values of
the maximum iteration number (e.g. 10, 20, 30, 40, 50) on three
strategies for increasing β, i.e. linear, nonlinear, and multiplica-
tive. The left shows the values for objective function, F , while the
corresponding running-time are shown in the right.

fined as follows:

g(iter,K, λ) =


(iter/K)λ linear
(iter/K)γλ nonlinear
α(iter−K)λ multiplicative

. (13)

Figure 4 shows the results with different values for the
maximum iteration number K (e.g. 10, 20, 30, 40, 50). The
left plot shows the values for objective function while the
corresponding run-time is shown in the right plot. Here, we
use γ = 2.2 for the nonlinear increase function and α = 1.5
for multiplication strategy. As shown in Figure 4, the multi-
plication strategy is the worst in terms of the objective func-
tion value and running time. The linear strategy is faster
than the nonlinear approach, but has a slightly larger value
for the objective function. Based on this, we choose the
nonlinear strategy for our L0 gradient minimization, since
it gives us the best approximation to the L0 norm.

4. Experiments
In this section, we compare our method with the three

other L0 gradient minimizations proposed by Xu et al. [24],
Cheng et al. [3], and Storath et al. [19]. The comparison ex-
amines the final objective function value F defined in Equa-
tion 2 and running-time T . All the experiments are run on
a dual core 3.10 GHz PC with 16.0 GB RAM. Our method
is implemented in C++. For processing an image sized ap-
proximately 600 × 400, our approach takes roughly 1 sec-
ond. The other methods [3, 19, 24] are implemented in C++,
Java, and Matlab by their authors. Xu et al.’s method [24]
has a parameter κ to control the amount of L0 minimiza-
tion. A smaller κ gives results with better L0 minimization,
but requires more iterations. In our experiments, we report
Xu et al.’s results for both κ = 2 and κ = 1.05.

Figure 5 shows the results of each method. As can be
seen, the objective function values, F , obtained from Xu et
al.’s method are notably large. This is because of L2 step
in their approximation that smooths the signal. As a re-
sult, there are still small gradients left in the output signal
(shown in the plot in second row). Our results are very close

to Storath et al. [19] that are the best in terms of minimizing
the objective function, however, our running-time is signif-
icantly faster.

5. Applications
In this section, we show our approach applied to several

applications involving images and 3D meshes. In particu-
lar, we demonstrate: image denoising, content-based color
quantization, clip art compression artifact removal, and 3D
mesh denoising. Additional results for each application are
also included in the supplemental material.

5.1. Image Denoising

The L0 gradient minimization can approximate the input
signal by a series of piecewise constant functions. There-
fore, it can be used to denoise the 2D images that have
sparse colors with sharp edges.

In this experiment, we compare our method against two
methods: the total variation method proposed by Dahl et
al. [5], and L0 gradient proposed by Storath et al. [19].
Figure 6 shows two examples of image denoising. Storath
et al. [19] obtain the best results in terms of signal-to-
noise-ratio (SNR). Our quantitative results are very close
to Storath et al.’s results, but again, our running-time is sig-
nificantly faster.

5.2. Content-Based Color Quantization

Content-based color quantization is used to reduce the
number of colors in an image. This is useful for tasks such
as image segmentation or image retrieval since it reduces
the color complexity of an imaged scene.

Figure 7 shows an example of content-based color quan-
tization. Figure 7-(a) shows the original input image that
over 100, 000 different colors (number of colors denote as
P ). Figure 7-(b)-(e) show our results with different values
for the level of spareness λ. Our method reduces the num-
ber of colors in image but still keep the overall image struc-
ture. Figure 8 shows some examples of content-based color
quantization on images. As can be seen, our approach can
obtain results with the least number of remaining colors in
the fastest time.

5.3. Clip Art Compression Artifact Removal

Using JPEG compression on clip art images often create
artifacts as shown in Figure 9-(a). Most of clip art images
have sparse colors with sharp edges and artifacts are most
noticeable near the sharp edges. Prior works [3, 22, 24]
showed that using local filters can reduce these artifacts, but
they also tend to blur the edges. The L0 gradient minimiza-
tion is well-suited to remove these artifacts.

In this experiment, we compare our method with Wang
et al. [22], Xu et al. [24], and Cheng et al. [3]. The work by
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Figure 5. This figure shows the details of the experiment that was already shown in Fig. 1 in Sec. 1. One more result for Xu et al.’s method
with κ = 2 is added in here. (a) Input images. (b)-(c) Results of Xu et al. [24] with different κ = 2, and κ = 1.05 (λ = 0.05). (d) Results
of Cheng et al. [3] (λ = 0.2). (e) Results of Storath et al. [19] (λ = 0.2). (f) Our results (λ = 0.2). The plot in the second row shows a 1D
scanline from the green channel. We also report the running time (in seconds) and the objective function value defined in Equation 2.

(a)  Ground truth  (b) Noisy input (c)  Dahl et al. [5]  (d) Storath et al. [19] (e)  Our  

SNR = 13.05 T = 2.97, SNR = 17.10 T = 0.42, SNR = 20.80 T = 5.16, SNR = 22.38 

SNR = 12.27 T = 3.04, SNR = 14.70  T = 0.93, SNR = 16.08 T = 11.52, SNR = 16.17 

Figure 6. This figure shows two examples of image denosing. (a) Ground truth images. (b) Noisy input images. (c) Results of total variation
method proposed by Dahl et al. [5]. (d) Results of Storath et al. [19]. (e) Our results. We also report the running time (in seconds) and the
signal-to-noise-ratio SNR (in dB).

(a) Input (P = 132752) (b)  = 0.05 (P = 4580) (c)  = 0.1 (P = 964) (d)  = 0.2 (P = 219) (e)  = 0.4 (P = 67) 

Figure 7. This figure shows an example of content-based color quantization. (a) The original input image with 132752 different colors.
(b)-(e) Our results with different values for λ. The numbers reported in parenthesis are the remaining colors P .
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(c) Xu et al. [24] ( = 1.05) 

T = 0.78, P = 10821 
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Figure 8. This figure shows several examples of content-based color quantization on images. This is useful for computer vision tasks such
as image segmentation or image retrieval. (a) Input images. (b)-(c) Results of Xu et al.’s method with different κ = 2 and κ = 1.05 . (d)
Result of Cheng et al.’s method. (e) Results of Storath et al.’s method. (f) Our results. We also report the running time T (in seconds) and
the number of remaining colors P .

Wang et al. [22] is explicitly designed for artifact reduction
for JPEG compressed clip art. Figure 9 shows two exam-
ples of artifact reduction. Our method obtains comparable
results to prior methods but with the fastest running time.

5.4. Mesh Denoising

Our approach can also be applied to 3D mesh topolo-
gies. We modified Algorithm 1 to use the two-step frame-
work proposed by Sun et al. [20]. In step one, we use our
L0 gradient minimization to filter the noisy face normals.
In step two, the vertex coordinates are reconstructed from
the filtered face normals using the iterative updating vertex
framework (see [20] for more details).

The nature of the L0 gradient minimization will approx-
imate the input signal by a series of piecewise constant
functions. Therefore, it can be used to denoise the 3D
meshes that have sharp transitions between their faces. In
this experiment, we test our approach on several sharp-edge
meshes and compare our results with the results of three
methods: Sun et al. [20], He et al. [12], and Cheng et al. [3].
Sun et al.’s method is a local filtering method based on the
weighted averaging of neighboring face normals. He et al.’s
method is an extension of Xu et al.’s method [24] to work
on 3D meshes. Figure 10 shows two examples of denoising
on 3D mesh models. Here, the noisy 3D models are syn-
thesized from the ground truth ones. The results show that
our approach produces the best results and with the fastest
running time.

6. Concluding Remarks
We have described a fusion-based descent method for L0

gradient minimization. The nature ofL0 gradient minimiza-
tion will approximate the input signal by a series of piece-
wise constant functions. Therefore, applying L0 minimiza-
tion to smooth signals will create artifacts that may be un-

Input Xu et al. [24] Ours 

Figure 11. This figure shows the drawback of strong L0 gradient
minimization for images. For the task of image smoothing, the
method by Xu et al. [24] may be more appropriate, as our method
will introduce more noticeable color quantization into the result.

Noisy input Ground truth Ours He et al. [12] 

Figure 12. This figure shows the drawback of strong L0 gradi-
ent minimization for 3D meshes. If the original input has smooth
surfaces, these will be quantized to sharp edges, which could be
undesirable for certain tasks.

desirable. For example, Figure 11 shows the an example for
the task of image smoothing. The L0-L2 iterative strategy
proposed by Xu et al. [24] is arguably more appropriate than
our approach for this task. Similarly, for the mesh models
with smooth surfaces, our method creates a sharp mesh in-
stead of a smooth one. He et al.’s method [12] based on
Xu et al.’s strategy is more suitable when smooth regions
are present (see Figure 12). However, for tasks for which
L0 gradient minimization is needed, the proposed method
in this paper offers a fast and effective approach that can be
applied to both 2D images and 3D mesh topologies.



(a) Input (b) Ground truth (c) Wang et al. [22] (d) Xu et al. [24] (e) Cheng et al. [3] (f) Ours 

T = 0.45 T= 0.82 T = 2.01 T= 0.59 

T = 0.87 T= 1.22 T = 6.23 T= 1.51 

Figure 9. This figure shows two examples of JPEG compression artifact removal on clip art images. The first and third rows show the
complete images, while the second and fourth rows shows the corresponding close-ups in these images. (a) Input JPEG compression
artifact images. (b) The ground truth images without compression. (c) Results of Wang et al. [22]. (d) Results of Xu et al. [24] (λ = 0.025,
κ = 1.5 for the first image, and λ = 0.01, κ = 1.5 for the second image). (e) Results of Cheng et al. [3] (λ = 0.26 for the first image, and
λ = 0.08 for the second image). (f) Our results (λ = 0.26 for the first image, and λ = 0.08 for the second image).

(b) Ground truth (a) Noisy input (e) Cheng et al. [3] (f) Ours (c) Sun et al. [20] (d) He et al. [12] 

T = 0.39 

T = 0.39 

T = 1.28 

T = 0.77 

T = 2.42 T = 17.55 

T = 4.35 T = 1.04 

Figure 10. This figure shows two examples of denoising 3D mesh models. The first model contains 24578 vertices and 49152 faces, while
the second one contains 10242 vertices and 20480 faces. (a) Noisy 3D mesh models. (b) The ground truth meshes. (c) Results of Sun et
al. [20] (τ = 0.55 for the first model, and τ = 0.4 for the second model). (d) Results of Cheng et al. [3] (λ = 0.5 for the first model, and
λ = 0.04 for the second model). (e) Our results (λ = 0.5 for the first model, and λ = 0.04 for the second model). We also report the
running-time T (in seconds) for each method.
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