
SEBASTIAN MAGIEROWSKI: SEPT. 10, 2015 1

Simulation: Digital Receivers and Filtering
Sebastian Magierowski

Abstract—Brief notes on a way to construct a simulation of a
digital receiver accounting for an analog front-end.

I. INTRODUCTION

Its often the case that we want to simulate the behaviour
of some digital components (filter, detectors, etc.), but need to
account for the impact of the analog-front end preceding that
digital component. This note considers one way of doing this
in the context of a receiver handling a simple binary waveform.
The approach should be generalizable to other situations.

II. THE SIGNAL

The signal that I will be considering is the randomly varying
binary signal ideally assuming the form

x(t) =

∞∑
k=−∞

Ap(t− kTsym) (1)

where p(t) is a rectangular function with amplitude of ±1
and temporal extent Tsym and A is any number you want
to represent the amplitude of your signal. Thus we have a
randomly varying binary waveform switching between +A
and −A with the minimum time at any level equal to Tsym.

We can show that the power spectral density (PSD) of this
signal (if the data symbols are independent) is

Sxx(f) =
A2|P (f)|2
Tsym

(2)

where P (f) is the Fourier transform (FT) of our symbol p(t).
Grinding through this calculation reveals a PSD of

Sxx(f) = A2Tsym

[
sin(πfTsym)

πfTsym

]2
(3)

= A2Tsymsinc2(fTsym) (4)

The total power of this signal is

Px =

∫ ∞
−∞

Sxx(f)df =
A2

Tsym

∫ ∞
−∞
|P (f)|2df (5)

where we can invoke Parseval’s theorem∫ ∞
−∞
|P (f)|2df =

∫ ∞
−∞

p(t)2dt = Tsym (6)

to conclude that
Px = A2. (7)

Many thanks to EMIL’s friends.

III. THE PERFECT FRONT-END

The absolutely simplest scenario is the case where you have
a “perfect” (i.e. invisible) analog front-end that does absolutely
nothing (good or bad) to your signal. If the digital receiver
that you are building is only interested in the level of your
received waveform (and does not care to accumulate signal
statistics like say a matched filter or a CUSUM device) then
you can do an adequate simulation on it, by grabbing only
one sample per Tsym.

In MATLAB your input signal could then be described with

L = 2ˆ16; % Number of symbols to simulate
A = 1; % The symbol amplitude
x = A*sign(rand(1,L)-0.5);

If you do this you have essentially created a world where
your random binary process is no longer a rectangular wave,
but essentially consists of sinc pulses. The PSD of this process
is as pictured in Fig. 1. Note that our total signal power is still

A2

Tsym

+
1

2Tsym
− 1

2Tsym

f

Sxx(f)

Fig. 1. The effective PSD of your random binary process (in simulation) if
you only grab one sample per Tsym.

A2 (i.e. integrate Fig. 1) so our contrivance (i.e. just taking
one sample every Tsym) captured all the power. Intuitively
this should make sense; yes we take only one sample, but we
use it to represent a signal over Tsym (just like our original
continuous-time signal). This changes the power spectrum, but
our totals have not been compromised.

If you want to add some random noise to the signal to study
the impact of SNR on your system just calculate it by noting
that

SNR =
Px

Pn
=
A2

A2
n

(8)

where Pn is the noise power and An is the average noise
amplitude of your signal sample (i.e. the square-root of its
variance,

√
σ2
n. Remember your simulation will effectively

SEBASTIAN MAGIEROWSKI: SEPT. 10, 2015 2

only be taking one sample of noise per Tsym as well. Thus
the PSD of the noise in this simulation will be identical to that
of the signal (albeit at a different level A2

n/Tsym). Based on
this, if you stipulate your desired SNR in terms of dB you can
execute the following code (or something like it) to generate
an appropriate signal and noise sequence

L = 2ˆ12; % Number of symbols to simulate
A = 1; % The symbol amplitude
x = A*sign(rand(1,L)-0.5); % Signal
SNRdB = 5; % SNR in dB
An = A*10ˆ(-SNRdB/20) % Noise amp
n = An*randn(1,L); % Noise
xn = x + n; % Signal + Noise

Recall that MATLAB’s randn function returns a sequence
of random numbers with N(0, 1) (i.e. Normal distribution with
average of zero and variance of 1). Using the relationship

α+ βN(µ, σ2) = N(α+ βµ, β2σ2) (9)

which shows the impact of scaling on the first and second
moments of a Gaussian distribution we can appreciate that
the calculation An*randn(1,L) above achieves the desired
noise scaling needed for the stipulated SNR.

IV. NONUNIFORM NOISE PSD

In the ideal case considered above you might wonder about
the impact of nonuniform (i.e. not white!) noise distributions.
For example in nanopores we’ve talked about noise that whose
PSD, Snn(f), increases as a function of frequency (e.g. flicker
and capacitive noise).

In the simulation procedure above you cannot directly
retain the impact of non-uniform PSD as the single-sample-
per-Tsym approach makes all spectra white. But of course
you can indirectly retain the impact of non-uniform PSD.
The simplest way to do this is to imagine that an ideal
(brickwall) filter with cutoff frequency (fc) is used to filter
both the original signal and the noise and then you sample
these filtered signals every Tsym. You use a filter because you
need some standard for the amount of non-uniform noise PSD
that you are going to take. Since the PSD is non-uniform
the total power you capture depends on fc. To be fair and
consistent though you need to capture a like amount of signal
spectrum too (recall from (3) that your signal’s PSD is also
non-uniform!!!!).

Following this strategy effectively extracts

Px,fc =

∫ fc

−fc
Sxx(f)df (10)

and

Pn,fc =

∫ fc

−fc
Snn(f)df. (11)

Using A2
fc = Px,fc and A2

nfc = Pn,fc you can reform your
simulation sequences in ways similar to those given above.
Below is an example of how I might do it (I use particular
expressions and constants for my signal, but this is of course
just meant to be an example, use whatever expressions are
appropriate for the signals that you are dealing with)

% ===== Constants and Settings =====
L = 2ˆ12; % Number of time points
fsym = 2e6; % The symbol rate
Tsym = 1/fsym; % Inv. of symbol rate
fc = 0.8*fsym; % Filter cutoff freq.
N = 2ˆ10; % Number freq. points
freq = fc*linspace(-1,1,N); % freq. axis
% ===== Signal PSD & Power =====
Sxx = (0.001)ˆ2*Tsym*(sinc(freq/fsym)).ˆ2;
Pxfc = trapz(freq,Sxx); % Integrate PSD
A = sqrt(Pxfc);
x = A*sign(rand(1,L)-0.5); % Signal
% ===== Noise PSD & Power =====
vn2 = (5e-9)ˆ2; % Amp noise, nVˆ2/Hz
Rs = 60e6; % Sensor resistance
Ct = 2.5e-12; % Amp capacitance
Snn = vn2*(1 + (freq*Ct*Rs/2/pi).ˆ2);
Pnfc = trapz(freq,Snn); % Integrate PSD
An = sqrt(Pnfc);
n = An*randn(1,L); %Noise
% ===== Noise and Signal =====
xn = x + n;
% ===== Effective SNR =====
SNR = Pxfc/Pnfc; % Your SNR for this noise
SNRdB = 10*log10(SNR).

V. MULTI-LEVEL SIGNAL

If your signal consists of multiple levels, a1, . . . , aN (i.e.
rather than just ±A as discussed above) you can still pretty
much employ the same procedure discussed until now.

First off, generating your multiple level signal sequence
should be pretty straightforward. Here’s an example that
uses logical indexing to generate a signal sequence whose
amplitude is uniformly distributed among four levels.

Levels = [-1,-0.2,0.3,1.1]; % Possible levels
L = 10; % Number of symbols to simulate
vec = rand(1,L); % Raw random sequence
% === Logical Indexing to Map Sequence ===
x(vec <=0.25) = Levels(1);
x(vec > 0.25 & vec <= 0.50) = Levels(2);
x(vec > 0.50 & vec <= 0.75) = Levels(3);
x(vec > 0.75 & vec <= 1.00) = Levels(4);

To carry out the other calculations above you just need an
equivalent expression for A and then you treat you multi-level
signal just as above (i.e. a 2-level signal with amplitude A).
That equivalent (for a uniform amplitude distribution) is

A =

√√√√ 1

N

N∑
i=1

a2i . (12)

VI. REALISTIC FILTERING IN TIME

And what if you actually have some more realistic analog
(or digital) filtering between your signal and digital detector
as shown in Fig. 2.

It is certainly possible to handle such a scenario directly
in the time domain as sketched out with the MATLAB code
below.

SEBASTIAN MAGIEROWSKI: SEPT. 10, 2015 3

fc

+

noise

signal
digital

receiver

Fig. 2. What if the signal is processed by some realistic filter?

1 L = 2 ˆ 1 4 ; % Number o f symbols t o s i m u l a t e
2 % ==== S i g n a l Params ====
3 fsym = 1 e6 ; % Symbol r a t e (e v e n t r a t e)
4 Tsym = 1 / fsym ; % Symbol p e r i o d
5 R = 1 0 ; % Oversample r a t e
6 x = 1 . 0 * s i g n (r and (1 , L) −0.5) ; % Raw s i g
7 xRi = r e c t p u l s e (x , R) ; % Oversampled s i g
8 % ==== S i m u l a t i o n Params ====
9 fsamp = fsym *R ; % Sampl ing r a t e

10 fnyq = fsamp / 2 ; % N y q u i s t r a t e
11 % ==== Noise F i l t e r ====
12 f c n = 0 . 5 * fsym ; % Noise f i l t e r c u t o f f
13 o r d e r n o i s e = 2 0 ; % Noise f i l t e r o r d e r
14 f = l i n s p a c e (0 , 1 , 2 4) ; % Noise f i l t e r f r e q
15 fcnnorm = f c n / fnyq ; % Normal ized c u t o f f
16 amp = 1+(f / fcnnorm) . ˆ 2 ; % Freq shape
17 % Noise f i l t e r c o e f f i c i e n t s
18 [bn , an] = y u l e w a l k (o r d e r n o i s e , f , amp) ;
19 % f r e q z (b , a) ; % Check f r e q r e s p o n s e
20 % ==== Noise ====
21 nw hi t e = 0 . 1 * randn (1 ,R*L) ; % White n o i s e
22 n = f i l t e r (bn , an , nwh i t e) ; % Colo red n o i s e
23 % ==== S i g n a l + Noise ====
24 xRin = xRi + n ;
25 % ==== F i l t e r Params ====
26 f c = fsym / 2 ; % F i l t e r c u t o f f f r e q u e n c y
27 fcnorm = f c / fnyq ; % Normal ized c u t o f f
28 o r d e r = 1 ; % F i l t e r o r d e r
29 [b , a] = b u t t e r (o r d e r , fcnorm , ’ low ’) ; %

F i l t e r t a p s
30 % ==== F i l t e r e d S i g n a l + Noise
31 xRo = f i l t e r (b , a , xRin ,−1) ;

As I hope is clear this code simulates a random binary
waveform flipping between ±1 at an average rate of fsym =
1 MHz. Note that in line 5 we define an oversample rate with
R = 10. This is very important. We now need to capture a
potentially sophisticated filter and this will probably have a
frequency above fsym so we create a sampling frequency of
fsamp = Rfsym. Note now how the input signal is created in
lines 6 and 7. It start off the same as before (line 6), but
then I used the rectpulse function (alas only available
in MATLAB’s Communications Toolbox) to oversample the
original signal without compromising the rectangular nature
of each pulse at all (if you blindly just use a MATLAB
function line interp1 to try the same thing then you will
unwittingly distort your signal due to incorrect interpolation
between points).

Notice that I first create another filter (using yulewalk in
line 18) to create a filter representing what the effective shape
of the input noise will be. I then create samples pertaining to
this noise in line 22 and thus realize our colored noise if need
be (e.g. capacitive/violet noise in the nanopore system).

Then in lines 26-29 I create the filter whose effect we want
to study (I just use a simple 1st order Butterworth filter in this
example, alas note that in order to use the butter function
you need MATLAB’s Signal Processing Toolbox). Running
my net signal through this filter (line 31) produces the desired
output. If you are following this with a digital processor that
is only interested in one sample per Tsym then you can safely
decimate the output and grab one sample (i.e. grab every Rth
sample). Just be careful that when you decimate you grab a
sample from about the middle to Tsym otherwise you might
be grabbing samples more subject by transient effects.

VII. REALISTIC FILTERING IN FREQUENCY

If you are only ever interested in one sample per Tsym then
you can achieve a result equivalent to the above without having
to oversample at all. You achieve this, by simply working in
the frequency domain. You find the power spectral expressions
for your input signal (Sxx,i) and noise (Snn,i). You then utilize
an expression for the transfer function of the filter you are
studying |H(f)| and you use these to find the output power
spectral densities

Sxx,o = Sxx,i|H(f)|2 (13)

Snn,o = Snn,i|H(f)|2 (14)
(15)

Taking the integral of Sxx,o and Snn,o as in (5) (again, use
trapz in MATLAB) will give you the Px and Pn values that
you can use in your simple one-sample-per-Tsym simulations
that we described above. Example code that accomplishes
these calculations is shown below.

1 % ==== S i g n a l Params ====
2 fsym = 1 e6 ; % Symbol r a t e (e v e n t r a t e)
3 Tsym = 1 / fsym ; % The symbol p e r i o d
4 R = 1 0 ; % The o v e r s a m p l e r a t e
5 f r e q = l o g s p a c e (0 ,6+ log10 (R) ,1 e6) ;
6 % ==== The S i g n a l ====
7 A = 1 . 0 ; % S i g n a l a m p l i t u d e
8 Sxxi = A*2*Tsym *(s i n c (f r e q / fsym)) . ˆ 2 ;
9 % ==== The Noise ====

10 An = 1e−4; % Noise s t d . dev
11 f c n = 0 . 5 * fsym ; % Noise f i l t e r c u t o f f
12 Snni = An ˆ 2 * (1 + (f r e q / f c n) . ˆ 2) ;
13 % ==== The F i l t e r ====
14 o r d e r =1;
15 f c =fsym / 2 ; % F i l t e r ’ s c u t o f f f r e q u e n c y
16 H f i l t = 1 . / (s q r t (1 + (f r e q / f c) . ˆ (2 * o r d e r))) ;
17 % ==== The Outpu t S i g n a l & Noise ====
18 Sxxo = Sxxi . * ((abs (H f i l t)) . ˆ 2) ;
19 Snno = Snni . * ((abs (H f i l t)) . ˆ 2) ;
20 Px = t r a p z (f r e q , Sxxo) ; % Sig power
21 Pn = t r a p z (f r e q , Snno) ; % Noise pwr

