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Abstract

We formalize equational propositional logic, prove that it is sound and complete,

and compare the equational-proof style with the more traditional Hilbert style.
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1 Introduction

Equational calculations have been used extensively over the past 15{20 years

by researchers in the formal development of programs. The equational style

makes it possible to develop and present calculations in a rigorous manner,

without complexity and detail overwhelming (in contrast to other proof styles).

Undergraduate text [4] formalizes this equational style for a propositional logic

and a predicate logic and then uses the style in presenting the topics typically

found in undergraduate discrete-math courses. Logic becomes a tool, rather

than simply an object of study as it has been in the past.

In this paper, we prove that equational propositional logic E of [4] is sound

(with respect to the conventional model of evaluation of boolean expressions)

and complete. Proofs in E can be presented in either the Hilbert style or the

equational style. We explain both styles and argue that the equational style is

superior.

2 Preliminaries

We use conventional notation for propositional (boolean) expressions, with a

few modi�cations. The single unary operator is : (not). The binary operators

1 Supported by the NSF under grant CDA-9214957 and ARPA under ONR grant N00014-
91-J-4123.

2 Supported by ONR under contract N00014-91-J-1219, AFOSR under grant F49620-94-1-
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Table 1: Table of Precedences

(a) [x := e] (textual substitution) (highest precedence)

(b) = 6= (conjunctional)

(c) _ ^

(d) ) ( 6) 6(

(e) � 6� (lowest precedence)

Nonassociative in�x operators associate to the left, except ) , which asso-

ciates to the right.

A slash = through an operator denote its negation |e.g. b 6� c is an

abbreviation for :(b � c) .

are � or = (equality), _ (or, disjunction), ^ (and, conjunction), ) (im-

plication), and ( (consequence). Operators � , = , ) , and ( may have

a slash through them to denote their negation |e.g. b 6� c is equivalent to

:(b � c) . Precedences for these operators are given in Table 1.

We use two symbols for equality: = and � . We regard = as conjunctional :

b = c = d is shorthand for b = d ^ c = d . Operation � , on the other

hand, is used associatively 3 : b � c � d is equivalent to (b � c) � d and to

b � (c � d) .

Throughout, we allow the implicit replacement of = for � and vice versa

as needed, the only restriction being that a replacement not change the meaning

of an expression. This can be ensured by introducing parentheses around every

subexpression before making the replacement |i.e. ((b) = (c)) and ((b) � (c))

are interchangeable.

Let E and R be expressions and x be a variable. The notation E[x := R]

denotes textual substitution: E[x := R] is an expression that is the same as E

but with all occurrences of x replaced by \(R)" . Textual substitution can be

de�ned recursively on the structure of expressions; we leave this de�nition to

the reader.

For x a list x1; : : : ; xn of distinct variables and R a list R1; : : : ; Rn of

expressions, E[x := R] denotes the simultaneous textual substitution in E of

the variables of x by the corresponding expressions of R .

3 Equivalence of booleans is indeed associative, a fact that has not been used much in

past. For example, Rosser [5] uses equivalence only conjunctionally. The implicit use of
associativity (and symmetry) of � can simplify manipulations quite a bit, just as the implicit

use of associativity and symmetry of + simpli�es numerical calculations.
4 Walter Potter has shown that Symmetry of _ can be proved from the other axioms.
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Table 2: Axioms of Logic E

Associativity of � : ((p � q) � r) � (p � (q � r))(1)

Symmetry of � : p � q � q � p(2)

Identity of � : true � q � q(3)

De�nition of false : false � :true(4)

Distributivity of : over � : :(p � q) � :p � q(5)

De�nition of 6� : (p 6� q) � :(p � q)(6)

Associativity of _ : (p _ q) _ r � p _ (q _ r)(7)

Symmetry of _ 4 : p _ q � q _ p(8)

Idempotency of _ : p _ p � p(9)

Distributivity of _ over � : p _ (q � r) � p _ q � p _ r(10)

Excluded Middle: p _ :p(11)

Golden rule: p ^ q � p � q � p _ q(12)

Implication: p ) q � p _ q � q(13)

Consequence: p ( q � q ) p(14)

Anti-implication: p 6) q � :(p ) q)(15)

Anti-consequence: p 6( q � :(p ( q)(16)

3 Propositional logic E

The inference rules of logic E are given by the following four inference-rule

schema. Instantiating E , P , Q , and R with expressions and r with a

variable in any of these schema results in an inference rule.

Leibniz:
P = Q

E[r := P ] = E[r := Q]
Substitution:

P

P [r := Q]

Transitivity:
P = Q; Q = R

P = R
Equanimity:

P; P � Q
Q

The axioms of logic E are given in Table 2. Note that these are expressions,

not schemas. Rule Substitution can be used to generate as theorems instances

of these expressions in which variables are replaced by particular expressions.
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A theorem of logic E is either an axiom or the conclusion of an inference rule

whose premises are (previously proved) theorems 5 . Text [4] contains proofs of

many theorems of E, and we will refer to them when necessary in this article.

Also, we use symmetry and associativity of operators transparently, without

mention.

4 Equational versus Hilbert-style proofs

A Hilbert-style proof consists of a sequence of expressions; each expression is a

theorem because of one of the following:

� It is an axiom. To its right appears a reference to the axiom.

� It is the conclusion of an inference rule whose premises appear previously

in the sequence, are axioms, or are previously proved theorems. To its

right appears the name of the inference rule and references to the premises.

As an example, we give a proof of a law of absorption, p ^ (p _ q) � p .

1 p � p _ p Idempotency of _ (9)

2 p _ q � p _ p _ q Leibniz, 1

3 p ^ q � p � q � p _ q Golden rule (12)

4 p ^ (p _ q) � p � p _ q � p _ p _ q Substitution, 3

5 p ^ (p _ q) � p Equanimity, 2, 4

This proof su�ers, as do most Hilbert-style proofs, because no motivation is

given for each line |there appears to be no rhyme or reason for each step. How

did we know to start with axiom Idempotency? Why was the second expression

written? There are two inherent di�culties with such proofs: (i) they build up

to the �nal theorem in a bottom-up fashion, giving little pieces without saying

how the pieces will �t together, and (ii) there is little structure to the proof. It

is di�cult to develop such proofs and to understand them.

We now present a proof in the equational style for the same theorem. The

proof consists of a series of applications of inference rule Leibniz, linked im-

plicitly by Transitivity. For example, the last three lines of the following proof

indicate that (p _ q � p _ p _ q) = (p _ q � p _ q) is a theorem because

it is the conclusion of an instance of Leibniz whose premise is Idempotency of

_ (9), p _ p � p .

5 In [4], only the �rst three inference rules are given, and Equanimity is accounted for in

the de�nition of theorem. Here, we have added Equanimity so that the more conventional
de�nition of a theorem could be used.
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p ^ (p _ q) � p

= hGolden rule, with q := p _ q i

p _ q � p _ p _ q

= hIdempotency of _ (9), p _ p � p i

p _ q � p _ q |Re
exivity of � (3.5) of [4]

In the equational style,

E[r := P ]

= hP � Q i

E[r := Q]

indicates a use of inference rule Leibniz with premise P � Q .

Substitution is most frequently used to create a theorem that is a premise

of Leibniz. For example, the premise of Leibniz used in the �rst hint is the

Golden rule with the textual substitution q := p_q . Substitution is often used

without mention when it is obvious. For example, the last line of the proof

above claims that p _ q � p _ q is theorem Re
exivity of � . Well, it is

really Re
exivity, q � q , with the textual substitution q := p _ q .

Inference rule Transitivity is used to conclude that the �rst expression of an

equational proof is equivalent to the last (or vice versa). Often, this is what

we want to prove: we prove some expression P = Q by transforming P to

Q (or Q to P ) by a series of substitutions of equals for equals. In the proof

above, one application of Transitivity yields the theorem p ^ (p _ q) � p �

p _ q � p _ q .

Finally, inference rule Equanimity is used in the above proof to conclude

that the �rst expression p ^ (p _ q) � p is a theorem because it is equivalent

to the last expression, which is a theorem. By convention, the implicit use of

Equanimity is triggered by the last line being true or by a comment of the

form \| : : : ", indicating that the last line is a previously proved theorem.

This equational proof is easy to read and remember because de�nite strate-

gies are used in its construction. In developing the proof, we �rst noted that

^ and _ are juxtaposed in the �rst line, which is the expression to be proved.

Removing this juxtaposition (using the Golden rule) simpli�ed the expression.

Next, the occurrence of p_p cried out for removal using Idempotency. Finally,

the instance of Re
exivity was easily recognized.

In the equational style of proof, the aim of each step is to change the ex-

pression using Leibniz, and the only task is to determine which equality (equiv-

alence) to use. The shape of the expression and the already existing theorems

give guidance. Consequently, proofs in this style are relatively easy to construct

(and then to remember). Further, a number of simple but useful principles and
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strategies for developing proofs have been articulated (see [3, 4]), making it

possible to teach the development of equational proofs.

The equational style has several other advantages over the Hilbert style.

None of the inference rules need be mentioned explicitly in an equational proof,

since each is used only in a particular way and only in a particular part of the

proof. (Each step is an application of Leibniz, with perhaps a use of Substitution

to generate the premise.) This reduces the amount of writing in presenting a

proof and the amount of reading in understanding it.

The equational style is also more concise than the Hilbert style because

expressions do not have to be repeated as often. For example, suppose a proof

�rst proves P � Q using Leibniz, then Q � R using Leibniz, and �nally

P � R using Transitivity. In the Hilbert style, each of P , Q , and R appears

twice; in the equational style, each appears only once. As expressions become

longer, this advantage becomes more important.

Translating equational proofs into the Hilbert style

A proof in the equational style can be translated mechanically into the Hilbert

style. We illustrate this with an example. A proof of the form

P0

= hreference to a theorem F0 , with x0 := E0 i

P1

= hreference to a theorem F1 , with x1 := E1 i

P2 |reference to theorem P2

is translated into

1 F0[x0 := E0] Substitution, reference to theorem F0

2 P0 = P1 Leibniz, 1

3 F1[x1 := E1] Substitution, reference to theorem F1

4 P1 = P2 Leibniz, 3

5 P0 = P2 Transitivity, 2, 4

6 P0 Equanimity, reference to theorem P2 , 5

Thus, each step of the equational proof gives rise to a line of the Hilbert-style

proof that uses Leibniz, with a preceding line (if necessary) that uses inference

rule Substitution. And, for each two consecutive steps of the equational proof,

there is a line of the Hilbert-style proof that uses inference rule Transitivity

to establish that the �rst and last expressions are equal. In addition, if the

last line of the equational proof is a theorem (it is either true or contains a

reference to that theorem), then the last line of the Hilbert-style proof contains
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the �rst expression of the equational proof, substantiated using inference rule

Equanimity.

5 Soundness of E

The standard interpretation of boolean expressions concerns evaluating expres-

sions in states, where a state is a mapping of all identi�ers in the expression to

the values t or f . For a state s , the value s[[P ]] of an expression P in state

s is given by:

s[[true]] = t(17)

s[[false]] = f(18)

s[[x]] = s:x (for variable x , s:x denotes the value of x in state s )(19)

s[[:P ]] = :s[[P ]](20)

s[[P �Q]] = s[[P ]] � s[[Q]] (for any binary operator � )(21)

In addition, for c and d constants (either t or f ), the expressions :c , c ^ d ,

c _ d , etc., have their usual values, as shown in the following truth table.

b c :b b � c b 6� c b _ c b ^ c b) c b ( c b 6) c b 6( c

t t f t f t t t t f f

t f f f t t f f t t f

f t t f t t f t f f t

f f t t f f f t t f f

Logic E is sound with respect the standard interpretation. To see this, �rst

check that each axiom is valid. (This task we leave to the reader.) Second, for

each inference rule, prove that if its premises are valid then so is its conclusion.

These proofs appear in Appendix I.

6 Completeness of E

In [1], Church de�nes and proves complete a logic P1 whose expressions are

constructed from variables, implication operator ) , and constant false . P1

has inference rules Substitution and Modus Ponens and three axioms:

P1 Substitution:
P

P [r := Q]

P1 Modus Ponens:
P; P ) Q

Q

7



P1 Axiom 0: p ) (q ) p)

P1 Axiom 1: (s ) (p ) q)) ) ((s ) p) ) (s ) q))

P1 Axiom 2: ((p ) false) ) false) ) p

We prove that the three axioms of P1 are theorems of E.

P1 Axiom 0 is theorem (4.1) of [4].

P1 Axiom 1. (s ) (p ) q)) ) ((s ) p) ) (s ) q))

= hShunting (3.65) of [4], p ^ q ) r �

p ) (q ) r) , twicei

(s ^ p ) q) ) (s ^ (s ) p) ) q)

= h(3.66) of [4], x ^ (x ) y) � x ^ y i

(s ^ p ) q) ) (s ^ p ) q)

= hRe
exivity of ) (3.71) of [4]i

true

P1 Axiom 2. ((p ) false) ) false) ) p

= h(3.74) of [4], :p � p ) false , twicei

::p ) p

= hDouble negation (3.12) of [4]i

p ) p

= hRe
exivity of ) (3.71) of [4]i

true

Moreover, Substitution of P1 is an inference rule of E, and Modus Ponens

is a derived inference rule 6 of E. To prove that Modus Ponens is a derived rule

of E, we assume that P ) Q and P are theorems of E and prove that Q is

a theorem. To do this, we �rst prove true � P (assuming P is a theorem).

P |A given theorem

= hIdentity of � (3), true � q � q i

true � P

P ) Q |A given theorem

= h true � P (proved above)i

true ) Q

= hLeft identity of ) (3.73) of [4], true ) p � p i

Q

6 A derived inference rule is a rule that does not add theorems to the logic but simply
allows some proofs to be shortened.
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Since P1 is complete, any valid expression that contains only variables, ) ,

and false is a theorem of P1. The above discussion shows that it is a theorem

of E as well.

It remains to show that every valid expression that contains other operators

and/or false is a theorem of E. To this end, we prove in Appendix II that

the following de�nitions are theorems of E. (In [1], these expressions appear as

abbreviations, e.g. P1 views true as an abbreviation of false ) false .)

P1 De�nition of true : true � false ) false

P1 De�nition of : : :p � p ) false

P1 De�nition of 6( : p 6( q � :(q ) p)

P1 De�nition of _ : p _ q � (p ) q) ) q

P1 De�nition of ^ : p ^ q � (p 6( q) 6( q

P1 De�nition of � : (p � q) � (p ) q) ^ (q ) p)

P1 De�nition of 6� : (p 6� q) � (p 6( q) _ (q 6( p)

P1 De�nition of ( : p ( q � q ) p

P1 De�nition of 6) : p 6) q � q 6( p

Now consider a valid expression Q (say) that contains operators other than

) and/or true . The de�nitions given above, which are theorems of E, can

be used (with Leibniz) to remove those other operators and true from Q ,

resulting in an equivalent, valid expression Q0 that contains only variables,

) , and false . The following informal use of our equational style, extended to

allow implication in the left column, shows that Q is a theorem of E.

Q is valid

= hQ � Q0 i

Q0 is valid

) hLogic P1 is completei

Q0 is a theorem of P1

) hEvery theorem of P1 is a theorem of Ei

Q0 is a theorem of E

= hQ � Q0 ; use inference rule Equanimityi

Q is a theorem of E

Hence, every valid expression is a theorem of E, and E is complete.
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Appendix I: Soundness of E

We prove that the inference rules of E preserve validity. We begin with a lemma

that shows that textual substitution has the anticipated semantics. Write (s; r :

v) for the state that is the same as s except that at variable r its value is v .

Then, evaluating E[r := F ] in a state s yields the same value as evaluating

E in the state (s; r:s[[F ]]) .

Lemma. s[[E[r := F ]]] = (s; r:s[[F ]])[[E]] .(22)

Proof. The proof is by induction on the structure of expression E .

Case true . (s; r:s[[F ]])[[true]]

= hDe�nition (17) of s[[� � �]] i

t

= hDe�nition (17) of s[[� � �]] i

s[[true]]

= hTextual substitutioni

s[[true[r := F ]]]

Case false . Similar to the case true .

Case r . (s; r:s[[F ]])[[r]]

= hDe�nition (19) of s[[� � �]] i

(s; r:s[[F ]]):r

= hDe�nition of (s; r:v) i
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s[[F ]]

= hTextual substitutioni

s[[r[r := F ]]]

Case x (for x a variable di�erent from r ).

(s; r:s[[F ]])[[x]]

= hDe�nition (19) of s[[� � �]] i

(s; r:s[[F ]]):x

= hDe�nition of (s; r:v) i

s[[x]]

= hTextual substitutioni

s[[x[r := F ]]]

Case :P . (s; r:s[[F ]])[[:P ]]

= hDe�nition (20) of s[[� � �]] i

:(s; r:s[[F ]])[[P ]]

= hInductive hypothesis |P is a

proper subexpression of :P i

:s[[P [r := F ]]]

= hDe�nition (20) of s[[� � �]] i

s[[(:(P [r := F ])]]

= hTextual substitutioni

s[[(:P )[r := F ]]]

Case P �Q . Similar to the above case.

Theorem. Inference rule Substitution preserves validity.(23)

Proof. We assume that P is valid and prove that P [r := F ] is valid by showing

that it evaluates to t in every state s .

s[[P [r := F ]]]

= hLemma (22)i

(s; r:s[[F ]])[[P ]]

= hAssumption that P is validi

t

Theorem. Inference rule Leibniz preserves validity.(24)

Proof. Assume P = Q is valid: s[[P = Q]] = t , for all states s . Equivalently,

according to (21), s[[P ]] = s[[Q]] for all s . We have to prove that E[r := P ] =

E[r := Q] is valid, i.e. for all states s , s[[E[r := P ]]] = s[[E[r := Q]]] . The

proof is by induction on the structure of E .
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Case true . s[[true[r := P ]]]

= hTextual substitutioni

s[[true]]

= hTextual substitutioni

s[[true[r := Q]]]

Case false . Similar to the case true .

Case r . s[[r[r := P ]]]

= hTextual substitutioni

s[[P ]]

= hAssumption s[[P ]] = s[[Q]] i

s[[Q]]

= hTextual substitutioni

s[[r[r := Q]]]

Case x (for x a variable di�erent from r ).

s[[x[r := P ]]]

= hTextual substitutioni

s[[x]]

= hTextual substitutioni

s[[x[r := Q]]]

Case :R . s[[(:R)[r := P ]]]

= hTextual substitutioni

s[[:(R[r := P ])]]

= hDe�nition (20) of s[[� � �]] i

:s[[R[r := P ]]]

= hInductive hypothesis |R is a

proper subexpression of :R i

:s[[R[r := Q]]]

= hDe�nition (20) of s[[� � �]] i

s[[:(R[r := Q])]]

= hTextual substitutioni

s[[(:R)[r := Q]]]

Case R0 �R1 . Similar to the above case.

Theorem. Inference rule Transitivity preserves validity.(25)

Proof. Suppose P = Q and Q = R are valid. We show that P = R is valid

by proving that it evaluates to t in every state.
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s[[P = R]]

= hDe�nition (21) of s[[: : :]] i

s[[P ]] = s[[R]]

= h s[[P ]] = s[[Q]] , since P = Q is valid;

s[[Q]] = s[[R]] , since Q = R is validi

s[[Q]] = s[[Q]]

= hDe�nition of = (see truth table on page 7)i

t

Theorem. Inference rule Equanimity preserves validity.(26)

Proof. Suppose P and P � Q are valid. The following shows that s[[Q]] = t

in an arbitrary state s , so Q is valid. For arbitrary state s , we have

s[[Q]]

= hP � Q is validi

s[[P ]]

= hP is validi

t

Appendix II: Proofs of the P1 de�nitions

We prove that the axioms and abbreviations of P1 are theorems of E. References

are made to theorems of E proved in [4].

P1 De�nition of true , true � false ) false .

false ) false

= hIdempotency of ^ (3.38) of [4]i

(false ) false) ^ (false ) false)

= hMutual implication (3.80) of [4]i

false � false |Re
exivity of � (3.5) of [4]

P1 De�nition of : , :p � p ) false . This is theorem (3.74) of [4].

P1 De�nition of 6( , p 6( q � :(q ) p) .

:(q ) p)

= hDe�nition of Consequence (3.58) of [4]i

:(p ( q)

= hDe�nition of 6( (see Table 1)i

p 6( q
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P1 De�nition of _ , p _ q � (p ) q) ) q .

(p ) q) ) q

= hImplication (3.59) from [4], p ) q � :p _ q , twicei

:(:p _ q) _ q

= hDe Morgan (3.47b) of [4]i

(::p ^ :q) _ q

= hDouble negation (3.12) of [4]i

(p ^ :q) _ q

= hAbsorption (3.44b) of [4]i

p _ q

P1 De�nition of ^ , p ^ q � (p 6( q) 6( q .

(p 6( q) 6( q

= hDe�nition of 6( in P1 (proved above), twicei

:(q ) :(q ) p))

= hImplication (3.59) of [4], p) q � :p _ q , twicei

:(:q _ :(:q _ p))

= hDe Morgan (3.47b) of [4]; Double negation (3.12) of [4], twicei

q ^ (:q _ p)

= hAbsorption (3.44a) of [4]i

q ^ p

P1 De�nition of � , (p � q) � (p ) q) ^ (q ) p) . This is theorem Mutual

implication (3.80) of [4].

P1 De�nition of 6� , (p 6� q) � (p 6( q) _ (q 6( p) .

(p 6( q) _ (q 6( p)

= hDe�nition of 6( in P1 (proved above), twicei

:(q ) p) _ :(p ) q)

= hDe Morgan (3.47a) of [4]i

:((q ) p) ^ (p ) q))

= hMutual implication (3.80) of [4]i

:(p � q)

= hDe�nition of 6� (see Table 1)i

(p 6� q)

P1 De�nition of ( , p ( q � q ) p . This is axiom (3.58) of [4].

P1 De�nition of 6) , p 6) q � q 6( p .

q 6( p

= hDe�nition of 6( (see Table 1)i
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:(q ( p)

= hConsequence (14)i

:(p ) q)

= hDe�nition of 6) (15)i

p 6) q
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