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Abstract. Most agents can acquire information about their environments as they
operate. A good plan for such an agent is one that not only achieves the goal, but is
also executable, i.e., ensures that the agent has enough information at every step to
know what to do next. In this paper, we present a formal account of what it means for
an agent to know how to execute a plan and to be able to achieve a goal. Such a theory
is a prerequisite for producing specifications of planners for agents that can acquire
information at run time. It is also essential to account for cooperation among agents.
Our account is more general than previous proposals, correctly handles programs
containing loops, and incorporates a solution to the frame problem. It can also be
used to prove programs containing sensing actions correct.

Keywords: reasoning about knowledge and action, knowledge prerequisites of ac-
tions.

1. Introduction

Work in the classical planning paradigm has generally made very strong
assumptions about the domain in which planning is taking place, in
particular, that the planner has complete knowledge of the initial state,
and that actions are such that the planner can compute a complete
description of any state reachable by doing a sequence of actions in the
initial state (for instance, STRIPS [4] operators). Such assumptions
cannot be sustained in most real applications (e.g., robotics, infor-
mation gathering agents); there, agents need to acquire knowledge at
execution time by sensing their environment.

Some work, for instance [3, 5, 8, 19, 22], has attempted to generalize
classical planning techniques to deal with this. But a key problem is
that in such domains, it is not even clear what a plan is and when it
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is a solution to a particular planning problem. Plans must at the very
least include conditional control structures so that the choice of action
can depend on the result of sensing. But then it appears that standard
programming language notions of correctness are insufficient. Even if
it can be shown that a plan must achieve the goal (and terminate),
the agent may not have enough knowledge to execute it. For example,
suppose that the agent knows that behind one of two doors there is a
treasure and behind the other there is a monster, but does not know
which leads to what. Then, even though the plan

if TREASUREBEHINDDOOR1 then GoTHROUGH(DOORI1)
else GoTHROUGH(DOOR2)

can be shown to achieve the goal of getting the treasure, the agent
does not know how to execute it because he cannot evaluate the test.
Similarly,

GOTHROUGH(DOORTOTREASURE)

achieves the goal, but cannot be executed because the agent does not
know which primitive action the program stands for. The nondetermin-
istic plan!

[cOTHROUGH(DoOOR1) | GOTHROUGH(DOOR2)]; ATTREASURE?

also achieves the goal, but cannot be executed since the agent does not
know which branch to take. However, if he can look through a window
on one of the doors to determine what is behind it, then the following
plan is adequate:

EXAMPLE 1.

LOOKTHROUGHWINDOW;
if TREASUREBEHINDDOOR1 then GoTHROUGH(DOORI1)
else GoTHROUGH(DOOR2)

It must achieve the goal and the agent will know how to execute it.

Whether an agent knows how to execute a plan depends on how
smart he is — how much he knows and what sort of inferences he can
perform. A very smart agent that can do lookahead would know how
to execute the following nondeterministic plan:

! Our use of test actions may be confusing to some; read ¢7;6 as “action &
occurring when ¢ holds,” and for 6; ¢7?, read “action § occurs after which ¢ holds.”
Thus, the plan in the example involves either going through DooR1 or going through
DooRr2, so that one ends up at the treasure.
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EXAMPLE 2.

LOOKTHROUGHWINDOW;
pick d : [Door(d)?; coTHROUGH(d)];
ATTREASURE?

The very smart agent could use its knowledge gathered through the
sensing action to pick the correct door given its lookahead capability.
A dumber executor would not.

All this is really part of our common sense knowledge about agents.
We do not delegate a goal to someone unless we believe that he is able
to achieve it. And even if someone does not know how to achieve a goal
on his own, we may still enlist his help by providing instructions he
knows how to follow. Such instructions would typically not specify the
plan down to the last detail; we assume some intelligence on the part
of the executor.

The classical planning paradigm involves a very smart planner and a
very dumb executor — it is assumed that the difficult problem solving
is performed at planning time, and that execution is relatively direct.
But there is no real reason to restrict our attention to this picture.
In some cases, planning from scratch may be so hard that it is better
to try to build a smart executor that the user can program at a high
level — we pursue this in [12]. Others have suggested that the right
role for plans is as advice to a relatively smart improvisation module
[1]. Also, multi-agent systems are becoming more common and typically
involve agents at different levels of smartness. All this suggests studying
what knowing how or ability means for agents with varying levels of
intelligence.

Before one even starts talking about plans, it is useful to have a
formal account of what sort of knowledge is involved in the ability to
achieve a goal. This is what we develop in section 3. Plans are partial
representations of this kind of knowledge; how complete they must be
depends on how smart the intended executor is. In section 4, we develop
two accounts of knowing how to execute a plan, one for a very smart
agent and another for a much dumber one. In fact, these are merely
two points in a space of agents with various kinds of abilities. But as
argued in the concluding section, the framework we propose provides
a useful foundation for further exploration of this space.

We will discuss related work as it becomes relevant. It is worth
singling out, however, the very similar work of Ernest Davis [2]. Like
us, Davis develops accounts of knowing how to execute a plan for both
smart and dumb executors. However in [2], he fails to show that his
account really handles unbounded iteration, a key problem area in ear-
lier work. Nor does he discuss ability to achieve a goal and its relation
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to knowing how. Although developed independently, our accounts of
knowing how are remarkably similar, and it seems that most of our
results could have been obtained using his axiomatization as a starting
point. We point out some of the differences as they become pertinent.

2. A Theory of Action

Our theory is based on an extended version of the situation calculus
[15], a predicate calculus dialect for representing dynamically chang-
ing worlds. In this formalism, the world is taken to be in a certain
situation (or state). That situation can only change as a result of an
agent doing an action. The term do(a, s) represents the situation that
results from the agent’s performance of action @ in situation s. The
initial situation is represented by the constant Sp. Thus for example,
the formula ON(A, B, do(PUTON(A, B), Sp)) could mean that A is on
B in the situation that results from the agent’s doing PUTON(A, B)
in the initial situation. Predicates and function symbols whose value
may change from situation to situation (and whose last argument is a
situation) are called fluents. Note that we write s < s if and only if &'
is the result of doing some sequence of actions in s, where the actions
are possible in the situation where they are done?.

An action is specified by first stating the conditions under which it
can be performed by means of a precondition azxiom. For example,

Poss(pickUp(z), s) = Vz~HOLDING (2, s) A NEXTTO(z, 5)

means that it is possible for the agent to pick up an object z in situation
s if and only if he is not holding anything and is standing next to z
in s. Then, one specifies how the action affects the world’s state with
effect axioms, for example:

Poss(DROP (), 5) A FRAGILE (2) DO BROKEN (x, do(DROP(z), 5)).

The above axioms are not sufficient if one wants to reason about
change. It is usually necessary to add frame axioms that specify when
fluents remain unchanged by actions. The frame problem [15] arises
because the number of these frame axioms is of the order of the product
of the number of fluents and the number of actions. Our approach
incorporates a solution to the frame problem due to Reiter [20] (who
extends previous proposals by Pednault [18], Schubert [23] and Haas
[7]). The basic idea behind this is to collect all effect axioms about

2 The relation < on situations is fully axiomatized in the foundational axioms
(for example, see [10]).
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a given fluent and assume that they specify all the ways the value of
the fluent may change. A syntactic transformation can then be used to
obtain a successor state axiom for the fluent, for example:

Poss(a,s) D [BROKEN(z, do(a, s)) =
(a = DROP(z) A FRAGILE(2)) V (BROKEN(z, 5) A ¢ # REPAIR(2))].

This says that x is broken after the agent does action a in situation s if
and only if either the action was dropping = and z is fragile, or x was
already broken in s and the action was not repairing it. This treatment
avoids the proliferation of axioms, as it only requires a single successor
state axiom per fluent and a single precondition axiom per action.?

Scherl and Levesque [21] have generalized this account to handle
sensing or knowledge-producing actions. Such actions affect the mental
state of the agent rather than the state of the external world. For exam-
ple, it should be the case that after performing the action SENSEDOWN,
an agent that is trying to cut down a tree would know whether the tree
is down:

Poss(SENSEDOWN, s5) D KWhether(DowN, do(SENSEDOWN, s)).

KWhether(¢, s) is an abbreviation for Know(¢, s) V Know(—¢, s).
Similarly, after doing READCOMBOFSAFE, an agent would know what
the combination of the safe he is trying to open is:

Poss(READCOMBOFSAFE, s) D
de Know(CoMBOFSAFE = ¢, do(READCOMBOFSAFE, 5)).

Knowledge is represented by adapting Kripke’s possible world seman-
tics [9] to the situation calculus, as first done by Moore [16]. K (s, s)
represents the fact that in situation s, the agent thinks that the world
could be in situation s’. Know(¢, s) is an abbreviation for the for-
mula Vs'(K(s',s) D ¢(s')). For clarity, we sometimes use the pseudo-
variable now to represent the situation bound by the enclosing Know;
so Know(DowN(now), s) stands for Vs'(K(s',s) D DowN(s')). We re-
quire K to be transitive and euclidean, which ensures that the agent
always knows whether he knows something (i.e., positive and negative
introspection).

For a domain with the two sensing actions described above, the
successor state axiom for the knowledge fluent K can be specified as

# This discussion ignores the ramification problem: a treatment compatible with
our approach has been proposed by Lin and Reiter [14].
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follows:

Poss(a,s) D (K(s*,do(a,s)) =
3s'[K (s, s) A s* = do(a,s') A Poss(a, s") A
(a = sENSEDOWN D (DowN(s') = DowN(s))) A
(a = READCOMBOFSAFE D
CoMBOFSAFE(s') = COMBOFSAFE(s))]).

First note that for non-knowledge-producing actions (e.g. DROP(z)),
the specification ensures that the only change in knowledge that occurs
in moving from s to do(DROP(z), s) is the knowledge that the action
DROP has been successfully performed. For the case of a knowledge-
producing action such as SENSEDOWN, the idea is that in moving from
s to do(SENSEDOWN, s), the agent not only knows that the action has
been performed (as above), but also the truth value of the associ-
ated predicate DOwN. Since in this case we require that DowN(s') =
DownN(s), DowN will have the same truth value in all s’ such that
K(do(sENsEDOWN, s'), do(SENSEDOWN, s)). Observe that for any sit-
uation s, DOwN is true at do(sENSEDoOWN, s) if and only if DowN is
true at s. Therefore, DOWN has the same truth value in all worlds
s* such that K(s*,do(SENSEDOWN, s)), and so KWhether(DowN,
do(sENSEDOWN, s)) holds. Similar reasoning explains why we must
have 3¢ Know(CoMBOFSAFE = ¢, do(READCOMBOFSAFE, s)). This
can be extended to an arbitrary number of knowledge-producing ac-
tions in a straightforward way.

In general, a particular domain will be specified by the union of the
following sets of axioms:

— Axioms describing the initial situation, Sy.

— Action precondition axioms, one for each primitive action.
— Successor state axioms, one for each fluent.

— Unique names axioms for the primitive actions.

— Some foundational domain-independent axioms, which are similar
to the ones given in [10].

3. Ability
Very roughly, ability to achieve a goal involves knowing what to do

when, so as to arrive at a goal state. We make this more precise by
appealing to the notion of an action selection function, a mapping
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from situations to primitive actions. We understand such a function
as prescribing which action the agent should perform in a situation.
We say that situation s’ is on the path prescribed by action selection
function o in situation s if and only if there is a path from s to s’ and
at every step along the way, the action performed is the one prescribed
by o:

OnPath(o, s, ¢) Lrecy AVaVs* (s < do(a,s*) < & D o(s*) = a).

Here s < 5" is shorthand for s < s’ Vs = §'. Note that OnPath(o, s, s')
implies that all the actions prescribed by o between s and s’ are
possible.

We will say that the agent “can get” to a situation where a goal ¢
holds by following action selection function & in situation s if and only
if there is a situation s’ on the path prescribed by ¢ in s where the
agent knows that the goal holds, and at every step between s and s,
the agent knows what the next action prescribed by o is:

CanGet (¢, 0, s) &f 3s'(OnPath(o, s, s') A Know(¢, s') A

Vs*[s < s* < &' D JaKnow(o(now) = a, s*)]).

Finally, we say that the agent can achieve a goal ¢ in situation s if and
only if there exists an action selection function ¢ such that he knows
in s that he can get to a situation where the goal holds by following o

Can(¢, s) def 3, Know(CanGet(¢, o, now), s).

For the example sketched in the introduction, where an agent wants
to get to a treasure but does not know which of two doors leads to
it, it is straightforward to verify that our definition yields the right
results, i.e., that the agent can achieve the goal if and only if it is
possible for him to sense whether the treasure is behind a given door.
Our account also gives the right results for more challenging examples
involving unbounded iteration, such as the following:

EXAMPLE 3. Consider a situation where an agent wants to cut down
a tree. This yields the following definition and axioms:

DowN(s) d:efREMAININGCHOPS(s) =0,

Poss(a,s) D [REMAININGCHOPS(do(a,s)) =n =
a = CHOP A REMAININGCHOPS(s) =n+ 1V
a # CHOP A REMAINING CHOPS(s) = n,

Poss(CHOP, s) = REMAININGCHOPS(s) > 0.
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We assume that the tree will fall down after some number (unknown
to the agent) of primitive chopping actions (in other words, there is
a natural number n such that REMAININGCHOPS(Sy) = n). We also
assume that the agent can always find out whether the tree is down
by sensing. This yields the following successor state axiom for K and
precondition axiom for SENSEDOWN:

Poss(a,s) D (K(s*,do(a,s)) =
AS'[K (s, s) A s* = do(a,s') A Poss(a,s’) A
(a = sENsEDowN D (DowN(s") = DowN(s)))]),

Poss(sENSEDOWN, s) = T'rue.

Notice however that we do not assume that the agent knows how many
chop actions are necessary to get the tree down. Even then, it seems
that the agent should be able to achieve the goal of cutting the tree
down; all he needs to do is to keep sensing and chopping until the tree
is down. Indeed, it is straightforward to verify that the above axioms
imply that Can(DowN,Sp). Consider the action selection function
such that o(s) is CHOP whenever 3s* s = do(SENSEDOWN, s¥), and
SENSEDOWN otherwise. It is easy to show that the agent must always
know what action is prescribed by ¢. And since in any belief alternative
REMAININGCHOPS chops are sufficient to get the tree down, it follows
that the agent can get to a goal state by following o.

EXAMPLE 4. Now, suppose that the agent has no way of sensing
whether the tree is down. Then, we get the following successor state
axiom for K:

Poss(a,s) D (K(s*,do(a,s)) =

As'[K (5, s) A s* = do(a, s') A Poss(a, s')]).
Suppose also that =Know(Down, Sp). Then, we would expect the
agent to be unable to get the tree down. Indeed, it can be verified
that =Can(DowN, Sp): the assumptions imply that Know(Vs*(now <
s* O —Know(DowN, %)), Sp); by the definition of Can, the result
follows.

To our knowledge, this is the first time an account has been shown
to handle both ability and inability in cases involving unbounded it-
eration. The earlier accounts of Moore [16] and Morgenstern [17] have
problems with such cases; we explain their inadequacies in the next
section. Van der Hoek, van Linder and Meyer [25] have also developed
a logic of ability that handles unbounded iteration properly, but in a
more restrictive propositional modal framework.
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Let us now examine some properties of our definition of ability and
see how some alternative definitions fail to handle important cases. To
simplify the discussion, for the remainder of this section we will be
assuming that all actions are possible, i.e., YaVsPoss(a, s). Our results
could easily be generalized. If one were to try to give an inductive
definition of Can, one would likely start from the observations that:

— if a goal is known to hold already, then it can be achieved, and

— if there is an action such that the agent knows that he can achieve
the goal after the action is performed, then he can achieve the goal
from the beginning.

In fact, we have shown that given our definition, Can holds if and only
if one of the above conditions hold:

PROPOSITION 5.
Can(¢, s) = (Know(¢, s) V da Know(Can(¢, do(a, now)), s)).

Note that establishing this result (in either direction) requires the
assumption that agents have negative introspection (i.e., that K is
euclidean). This is one point over which our account differs from Davis’s
[2], so the proposition would not hold in his system.

The above result might suggest a simpler way of defining ability:
use the above equivalence as an axiom to somehow define Can. Unfor-
tunately, this approach does not seem to work. By itself, the axiom is
too weak; for instance, it is consistent with it that Can (for any given
goal) is always true. If on the other hand, we try to define ability as
the least fixed-point of the above equivalence, the resulting version of
ability ends up being too strong. Let

Can (¢, s) &f vC(

Vs'[C(s') = Know(¢, s') V Ja Know(C'(do(a, now)), '] (1)
D C(s)).

Now using proposition 5, it is easy to show that Can, is stronger than
Can, i.e. ¥s(Canj (¢, s) D Can(¢,s)). However, Can| is not implied
by Can. In fact, Can fails to handle our tree chopping example — we
get that =Can  (DowN, Sy) despite the fact that intuitively, the agent
can get the tree down by repeatedly sensing and chopping. To see this,
take C' to be true of a situation if and only if the tree is known to be
down in that situation. Then C' clearly satisfies the equivalence in (1).
But this means that Can, will be true in no additional situations, as it
is a least fixed point. Since the tree is not down in the initial situation
So, this means that Can is false in 5.
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Historically, our definition of Can was motivated by Can,, and
its failure on the tree example. It remains an open question whether
there is a natural fixed-point equation like the equivalence inside (1)
for which Can is the least fixed-point solution. We also considered an
iterative analogue to Can,, which is discussed in Appendix B; it too
failed to handle the tree example properly.

4. Knowing How

To get help from other agents in achieving our goals, we often need
to give them explicit instructions, some sort of program to execute.
Whether an agent knows how to execute a program depends on how
smart the agent is. We will now formalize some notions of knowing how
that appear significant; towards the end, we also relate knowing how
to ability to achieve a goal.

4.1. PROGRAMS IN THE EXTENDED SITUATION CALCULUS
Our programs will include the following nondeterministic forms:

5109 nondeterministic choice of branch
7x §(z) nondeterministic choice of argument
ma d(a) nondeterministic choice of primitive action

To be able to talk about the different deterministic execution paths
through a nondeterministic program, we will extend our earlier no-
tion of action selection function. Let a path selection function o be a
mapping from situations into pairs of objects and actions.? To simplify
our notation, for any path selection function o, and any situation s, we
denote the left member of o(s) as o;(s), and the right member as o, (s),
i.e.o(s) = (o1(s),0,(s)). We will use o to pick an object in interpreting
7x §(z) and similarly for o, and 7a é(a). To handle d1|d3, we introduce
a reserved action constant symbol null; we will take the left branch if
and only if o,(s) = null. Semantically, null behaves like a no-op, and
has no effects.

We introduce programs into the formalism as abbreviations (macros),
in the style of [12]. The abbreviation Do(4,0,s,s’), where § is a pro-
gram and ¢ is a path selection function, means that the execution of ¢
according to o starting in situation s terminates in the situation s'. It

* It will generally be clear from context whether o refers to a path selection

function or an action selection function; we shall be explicit when confusion could
arise.
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is defined inductively as follows:

>
)
-
Q
-
Q/J\
5
8,
=
=2
>
Q/J\
I
.m

Do(if ¢ then §; else &, 0,s,s) def

(6(s) D Do(81,0,5,5)) A (=d(s) D Do(8 0,s,5))

Do(81|83,0,5,5) = (0,(s) = null > Do(81,0F,5,5)) A
(0,(s) # null D Do(83,07,s,5)).

Do(r2 8(z), 0,5,5) & Do(5(o1(s)), o, 5, 5).

Do(rad(a),0,s,s) e Do(8§(a,(s)),a",s,5).

Do(while ¢ do 6,0, s, s) def

VP{VSl (_‘(b(sl) D) P(Sl,Sl)) A
Vs1, 2, 83(P(s1) A Do(9d, 0, 51, 82) A P(s2,53) D P(s1,53))}
D P(s,s).

Here o7 is defined by the following axiom:
Vsot(s) = o(do(null, s)).

This is needed in order to properly handle cases like (A|B)|C" and
mx(my A(z,y)). So the null action plays two roles: it handles the nesting
of | and 7 operators by advancing the path selection function after each
selection, and as a possible value of a path selection function, it is used
to select which branch of 4|8 one should take.

Given a program § and a path selection function o, there is at most
one terminating situation:

PROPOSITION 6. Do(d,0,s,s1) A Do(d,0,s,52) D s1 = sg.

If | and 7 do not occur in a program §, we say that it is determinate.
It is clear from the definition that path selection functions play no role
in the interpretation of determinate programs:

PROPOSITION 7.

If § is determinate, then Vo, o', s, s'(Do(8, 0,s,s') = Do(8, 0, s,5')).

main.tex; 22/03/2000; 18:43; p.11



12 Lespérance, Levesque, Lin, and Scherl

Let us define
def

Do(é,s,s) = o Do(8,0,s,s).
Thus, Do(4,s,s’) means that there is an execution of § (determined
by some path selection function) in s that terminates in s’. Then,
from the above proposition, we have that if ¢ is determinate, then
Vo,s,s'(Do(d,s,s") = Do(d,0,s,5)).

In formalizing knowing how, we must consider not just terminating
situations, but also all intermediate situations. We shall use the abbre-
viation During(d,0,s,s’) to mean that situation s’ occurs during the
execution of § starting in s according to o. If there is a situation s*
such that Do(d, 0, s, s*) holds, then During(é, o, s, ') holds if and only
if s < s’ < s*. However, we also want During to hold for the situations
encountered in executions that do not successfully terminate. For non-
terminating executions, all situations encountered are During; so for
example, During(while True do null,o,s,s’) holds if and only if &
is a successor of s where only null actions happen between s and s'.
For executions that terminate unsuccessfully, all situations between the
starting situation and the one where the program fails are During; for
example, During(STACKONTO(A, B); False?, 0, s, s') holds if and only
if s’ is s or do(sTACKONTO(A, B), s).

We define During(8, 0, s,s') in a way similar to Do:®

During(6,0,s, s Lho=dv (Poss(6,5) As' = do(0, s)),

for any primitive action 6.

During(¢?,0,s,5) & ¢(s) A s = s.

During(81; 84,0, 5,5 def During(8y,0,s,5') V
3s"(Do(81,0,5,8") A During(8y,0,5",8')).

During(if ¢ then §; else 45,0, s, s') def

(¢(s) D During(d1,0,5,5)) A (=é(s) D During(d,0,s,s'))

During(81]62, 0, s, ) def

(
(0.(s) = null D During(;,07,s,5)) A
(0.(s) # null D During(dz,0",s,5")).
(m2 8(2),0,5,5) = During(8(ei(s)), o, s,5').
5 Although During cannot be defined in terms of Do, there is a way that Do can
be defined in terms of During. However doing this requires that we introduce some

special mechanism to distinguish failing states and terminating states, and we shall
not pursue this further here.
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During(raéd(a),o,s,s) e During(§(co,(s)),a%,s,s).

During(while ¢ do §,0, s, s def

VP{V51 (ﬁqb(Sl) D) ]D(Sl7 81)) A VSh 52[q§(81) A
(During(6, 0, s1,52) V
ds3(Do(8, 0, s1,83) A P(s3,52)) D P(s1,52))]} D P(s, ).

4.2. EXECUTABILITY UNDER A STRATEGY

A path selection function specifies a kind of execution strategy. We say
that an agent can execute a program when he follows a given strategy
if and only if the program terminates when executed according to the
strategy and at every point during the execution, either the agent knows
that the program has terminated or knows which action to perform
next. We define this formally as follows:®

CanExec(4, 0, ) def g Do(6,0,s,5%) A
Vs;(During(d,0,s,s;) D
{Vs', sl{K(s',s) NK (s, 8,) N’ <. D Do(d,0,¢, )]V
JaVs', Si[K (s, s) N K (s),5,) A’ < st D During(, 0,5, do(a, s))]}).

Note that an agent may be able to execute a program according to a
strategy without knowing in advance that the program will terminate:

CanExec(6, 0,5) 2 Know(3s' Do(4, o, now, s'), s).

For example, consider the program SENSEp; while =P do null. Assume
that P holds initially but the agent is not aware of that, i.e., P(S5) A
—Know (P, Sp). Then the agent can execute the program in Sy because
after doing SENSEp, he will know that P holds, and will not enter the
infinite while loop. But initially, the agent does not know that the
program will terminate, because as far as he is concerned, it may well
be the case that =P. This implies that an agent may be able to execute
a program according to a strategy without realizing that this is the
case:

CanExec(d,0,s) 7 Know(CanExec(d, o, now), s).

It is also worth noting that since the execution of determinate pro-
grams does not depend on the execution strategy, we have:

6 Another way of understanding this is the following: the combination of a
nondeterministic program and an execution strategy stands for the deterministic
specialization of the program obtained by executing it with the strategy; then
CanExec(d, 0, s) stands for ability to execute the deterministic program referred

to by (4, 0).
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PROPOSITION 8.

For all determinate programs §,
JoCanExec(d, 0,s) D YoCanExec(d, 0, s).

4.3. DumB KNOowING How

One way an agent may execute a possibly nondeterministic program
is by arbitrarily picking an alternative at every choice point. Since we
cannot rule out any execution strategy, we must require that he be
able to execute the program according to all strategies to ensure he
will succeed. This ability to blindly execute a program is what we call
dumb knowing how. We define the notion formally as follows:
DKH(J, s) L Vo[Vs'dz Know(o(now) = z,s') D CanExec(4, 0, s)].
Note that we only consider path selection functions whose value is
always known to the agent, that is, strategies that the agent knows
how to follow. With respect to the situation described earlier where
someone is seeking a treasure, a dumb agent knows how to execute the
program in example 1, but not the one in example 2.

One can show that if an agent can blindly execute a program, then
the program must terminate no matter what execution strategy is used:

PROPOSITION 9. DKH(4, s) D Yo3s' Do(d, 0, s, s').

The DKH notion is particularly useful for cases where an agent
wants to delegate a task to another agent. For instance, in a cooperative
environment, agent A may come up with a plan to achieve one of his
goals, make sure that agent B knows how to dumbly execute this plan,
and then ask B to execute it. If B collaborates and tries to execute
the program, he will be able to do so. The execution will eventually
terminate, A’s goal will be achieved, and B will be able to go on
to other business. (B, having faith in agent A, need not know that
he knows how to execute the program; he can simply trust agent A
on this.) A special case is when A and B are the same agent (e.g.,
one that does off-line planning and later dumb execution). Then the
agent knows that he knows how to dumbly execute the program, i.e.,
Know(DKH(4, now), s).

4.4. SMART KNowING How

Another way an agent may execute a possibly nondeterministic pro-
gram is by considering ahead of time whether there are alternatives
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at every choice point whose choice guarantees that he will be able to
complete the execution of the program. Such an ideal agent is looking
ahead before committing to any execution strategy. It seems that if such
an agent knows of some strategy that he can execute the program under
this strategy, then we can be confident that he will pick that strategy
(or some equally good one) and succeed in executing the program. We
call this ability to smartly execute a program smart knowing how. It is
defined formally as follows:

SKH(4,s) 3, Know(CanExec(d, o, now), s).

For instance, a smart agent does know how to execute the program in
example 2 (as well as that in example 1). However, no agent will ever
know how to execute False?|while True do null, because neither of
its branches can be executed; the first one fails and the second one
loops forever.

An immediate consequence of the definition is that if an agent knows
how to smartly execute &, then he knows that & has a terminating
execution path:

PROPOSITION 10. SKH(4,s) > Know(3s' Do(4, now, 5'), 5).

We mentioned earlier that the accounts proposed by Moore [16]
and Morgenstern [17] are inadequate for dealing with unbounded it-
eration. The problem arises with non-terminating programs such as
while True do a. Intuitively, we would want to say that no agent knows
how to execute such a program, as it is impossible to bring it to termina-
tion. Our account conforms to this and yields -=SKH (while True do a,
s) as well as “DKH(while True do a,s). The axioms provided by
Moore and Morgenstern however, do not rule out an agent’s knowing
how to execute such a program. Davis [2] does not discuss the issue of
knowing how for programs involving unbounded iteration. His account
appears to handle such cases properly, but no examples are provided.
Singh [24] has also developed an account of knowing how in a more
restrictive propositional modal setting.

4.5. RELATIONSHIPS AMONG THESE NOTIONS

It is interesting to examine the relationships among these notions. First,
if an agent knows that he knows how to execute a program acting as a
dumb executor, then he also knows how to execute it acting smart:

PROPOSITION 11.
For all complex actions ¢, Know(DKH (4, now), s) D SKH(J, s).
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The converse does not hold in general because there may be strategies
under which the program cannot be executed and a smart executor will
be able to avoid these, while a dumb one will not. However, since the
execution of determinate programs is independent of any strategy, we
have:

PROPOSITION 12.

For all determinate complex actions &,

Know(DKH(4, now), s) = SKH(J, s).

The notion of ability to achieve a goal defined earlier can be related
to that of smart knowing how in a very natural way. Let us define

Achieve(p) 4 while —-Know(¢) do waa.

Achieve(¢) is a kind of universal program for achieving the goal ¢.
Then, we can show that being able to achieve a goal is equivalent to
knowing how to achieve it by executing the universal program:

PROPOSITION 13. Can(¢,s) = SKH(Achieve(9),s).

This is an appealing property. We could take this as a definition for
Can, but we find our earlier definition simpler and easier to work with.
One could also consider defining smart knowing how in terms of abil-
ity, that is, taking SKH(J,s) as standing for something like
Can(3s' Do(8, s',now), s) 7 — a smart agent knows how to execute § if
and only if it can achieve the goal of having done §. We plan to explore
this approach and determine how it relates to our current definition.

5. Planning Reconsidered

In this paper, we presented a definition of ability and two definitions
of knowing how as macro abbreviations in the situation calculus, and
showed that they had reasonable formal properties and generalized
a number of other accounts. These definitions, we claimed, were a
necessary first step to any theory of planning in a context involving
incomplete knowledge of the initial state, knowledge-producing actions,
and actions with context-dependent effects.

What our account does not provide, however, is a theory of plan-
ning itself. What exactly is a plan? If we simply say that it is any

T This isn’t quite right because it does not require the execution of § to start in
situation s; but this can be fixed.
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program that achieves a goal and that the agent knows how to exe-
cute, then for smart agents, the planning problem is absolutely trivial:
when —=Can(¢, s), there can be no plan for ¢; but when Can(¢, s), the
agent also knows how to execute the universal program defined above:
SKH(Achieve(¢), s).

For dumber agents, however, the case is not so clear. Even if Can(¢, s),
must there exist a program § that will bring about ¢ and such that
DKH(4, s) holds? What would be ideal in this case would be a way of
synthesizing a suitable program from a proof of Can(¢, s), that is, from
a proof of 3o Know(CanGet (¢, o, now), s). This is can be thought of
as a generalization of planning by deduction and answer extraction [6]
that would somehow convert an action selection function into a program
of the appropriate sort.

We can also imagine a variety of types of programs for agents of
varying power. For a very dumb agent, we might require that all tests in
all if-then-elses and while-loops in the program consist of comparisons
among known sensor values. This would decouple the agent from any
background theory of the world. Another alternative might be to allow
tests that refer to values of fluents, and assume that the agent can
use successor state axioms at run time. Yet another possibility is to
allow tests and actions that incorporate limited versions of planning.
For instance, we might let the agent decide at run time whether or not
it needs to perform a knowledge-producing action before executing a
test. There is clearly a tradeofl here: the more we assume of our agent
at execution time (with whatever effects on performance this might
have), the less work will be necessary at planning time.

An answer to the question of what it means to solve the planning
problem for a dumb executor that can perform sensing at run time is
provided in [11]. The account assumes that the executor is very dumb
and neither performs reasoning about fluents, nor memorizes sensor
values. A plan language suitable for such an executor is presented. The
language only allows branching based on the result of an immediately
preceding sensing action, and has the property that agents always know
how to execute any plan that can be expressed. In [13], this language
is shown to be universal in that any effectively achievable goal can be
achieved by getting an agent to execute a program in this language.

It would be interesting to develop accounts of planning for executors
at different points in the dumb-smart spectrum. Another interesting
area for future research is group ability, i.e., when can a group of agents
(that can perform sensing) jointly achieve a goal.
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Appendix
A. Proof of Proposition 5

The proof uses three lemmas. Remember that for simplicity here, we are
assuming that primitive actions are always physically possible. First, we
show that whenever a goal is known to hold already, it can be achieved:

LEMMA 14. Know(¢,s) D Can(¢,s).

Proof. Take arbitrary ¢ and s’ such that K(s;s). Since K is tran-

sitive and we are given that Know(¢, s), we have that Know(¢, s').
Thus, CanGet(¢, 0,s') and Know(CanGet(¢, o, now), ).

Then, we show that if there is an action such that the agent knows
that he can achieve his goal after the action is performed, then he can
achieve the goal from the beginning;:

LEMMA 15. Ja Know(Can(¢, do(a,now)),s) O Can(¢, s).

Proof. Suppose that there is an action « such that
Know(Can(¢, do(a,now)), s). This means that

Vs'(K(s',s) D Can(¢,do(a, s))),
and thus that

Vs' (K (s, 8) D
dog Know(CanGet (¢, 04, now), do(a, s'))) ()

i.e., for every K-accessible situation s, there is a action selection func-
tion oy that the agent knows will get him to the goal. We will show
that Can(¢, s), by constructing a single action selection function that
works for every K-accessible situation.

First, notice that we can partition the accessible situations into
equivalence classes according to whether they remain mutually accessi-
ble after the performance of action a. Given s and s such that K (s, s)
and K (sz,s), let s; = s iff K(do(a,sz),do(a,s1)). It is easy to show
that =~ must be an equivalence relation given the successor state axiom
for K and the requirement that K be transitive and euclidean. We
must select a single action selection function for all situations in a given
equivalence class in order to construct a global action selection function
for which the agent can get to the goal. Let f be some arbitrary func-
tion that maps an equivalence class into the action selection function
associated with one of its member, i.e., such that f([si]) = o,, where
51 = s3. We claim that Vs'(K(s',s) D CanGet(¢, f([s]),do(a,s))),
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i.e., in every accessible situation the agent can get to the goal by follow-
ing the action selection function selected by f after doing a. To see this,
suppose that f([s']) = os+; then K(s*,s) and K (do(a, '), do(a,s*)); so
by (x) CanGet (¢, o4+, do(a, s')).
Now let us define a global action selection function as follows:
« FUSD(s*) if 3 (K (', 5) A s < s%)
oy(s7) = { a otherwise
It follows that Vs' (K (s', s) D CanGet (¢, 0,4, do(a, s'))). Since Vs' (K (s, s)
D 0,(s') = a), we must also have that Vs'(K (s', s) D CanGet(¢, 0y, 5)),
and thus that Can(¢, s).

Finally, we show the converse of the above two results:
LEMMA 16.
Can(¢, s) D Know(¢, s) V da Know(Can(¢, do(a, now)), s)
Proof. We assume that Can(¢, s) and “Know(¢, s) and show that
da Know(Can(¢, do(a, now)), s).
From the first assumption, we have that
do Know(CanGet (¢, o, now), s). (%)

Take an arbitrary s’ such that K (s',s). Since “Know(¢,s) and K

is euclidean, it follows that “Know(¢, s’). Now by (*), we have that

CanGet (¢, 0,s"). By the definition of CanGet, this together with

—Know(¢,s’) implies that CanGet(¢,o,do(o(s),s")) and

da Know(o(now) = «,s’). Since K(s',s) and K is transitive, we also

have that Know(CanGet(¢, o, do(o(now), now)), '), and thus also that

there is an a such that Know(CanGet(¢, o, do(a,now)), s’). By the

successor state axiom for K, this implies that Know(CanGet (¢, o, now),
do(a,s’)). Therefore JoKnow(CanGet(¢,o,now),do(a,s’)), and

Can(¢, do(a,s')). Thus, Ja Know(Can(¢, do(a, now)), s).

B. An Iterative Definition of Ability
Let us write Can¥ (6, s) if the agent is able to achieve ¢ in at most k
steps, for any natural number k. Inductively, we define:
Know (¢, s) ifk=0

Canfj(¢,s) = { Cant~'(¢,s)V itk >0
Ja Know (Cany ™ (¢, do(a, now)), s)
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An easy consequence of lemmas 14 and 15 is the following;:
PROPOSITION 17.
For any k > 0, Can}(¢,s) D Can(é, s).

In many cases where an agent is able to achieve a goal, the agent
knows that it can achieve the goal in at most k steps, i.e. Can’}(qﬁ, s).
For instance, this applies to the treasure example in the introduction
(provided that the agent can perform the sensing action). But this fails
to apply for the tree example. Roughly speaking, we have that the agent
knows that there is a k such that k chops are sufficient, but that there
is no k such that the agent knows that k chops are sufficient. Models
of the theory are such that in each situation accessible from Sy, there
is fixed finite number of chops that will fell the tree, but that there are
accessible situations for every natural number.

C. Proof of Proposition 13

The proof uses the following lemmas:

LEMMA 18.

During(Achieve(d),0,s,5') =
OnPath(o,,s,s') AVs*(s < s* < &' D “Know(¢, s*)),

Do(Achieve(¢),0,s,s") = During(Achieve(¢), o,s,s') AN Know(¢,s'),
where ¢ ranges over path selection functions.

We prove each direction of the theorem as follows:
LEMMA 19. Can(¢,s) D SKH(Achieve(d), s)

Proof. Suppose that the antecedent holds, i.e., that there exists
an action selection function o such that Know(CanGet(¢, o, now), s).
Take an arbitrary ss such that K(ss,s). By the assumption and the
definition of CanGet, we have that

ds.(OnPath(o, s,, s.) A Know(¢, s.) A
Vsi[ss < s; < s¢ O Ja Know(o(now) = a, s;))]).

Since situations are well founded, we must also have

ds.(OnPath(o, s,, s.) A Know(¢, s.) A
Vsi[ss < s; < s. O " Know(¢, s;) A Ja Know (o (now) = a, s;))]).
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Let o' be an arbitrary path selection function such that o, = ¢. By
the above and lemma 18, we have that Js. Do(Achieve(¢), o', ss, s.).
Take arbitrary s;, s, and s! such that s, <s; <s., K(s},s5), K(s,s;),
and s, < si. By the above and the fact that K is transitive, it follows
that if s; = s. then Know(¢, /). By the above and the fact that K is
euclidean, it follows that if s; # s, then “Know(¢, s}). As well, by the
above, we must have OnPath(o, s, s’). Thus by lemma 18, we must

have that During(Achieve(¢), o', s%, s), and Do(Achieve(¢), o', s, st)

for s; = s.. Therefore, CanExec(Achieve(¢), o', s).

LEMMA 20. SKH(Achieve(¢),s) D Can(e,s)

Proof. Suppose that the antecedent holds, i.e., that there exists a
path selection function o such that Know(CanExec(Achieve(¢), o, now),
s). Take an arbitrary s, such that K (s, s). The assumption implies that
ds. Do(Achieve(¢), 0, ss, s.). Thus by lemma 18, we have that

ds.(OnPath(o, s,, s.)A\Know (¢, s.)AVs;[ss < s; < s. O “Know(¢, s;)]).

Take an arbitrary s; such that s, < s; < s.. Clearly, it must be the case
that =Do(Achieve(9), o, s, s;). Since K (s, s), by transitivity of K and
the successor state axiom for K, we must also have that K(s;,ss) A
K (s;, s;). This implies that

Vsl si[K (sh,s5) A K (s}, 8) A s, <s: D Do(Achieve(¢), o, sk, si)].

Thus, by the assumption and the definition of CanExec, we have that
JaVs!, si[K(sh, s5) N K(sh, ) Nsly < st D
During(Achieve(d), 0, 5%, do(a, st))].
s

? =8

Clearly o0,(s;) = a; so we have JaKnow(o,(now) = a,s;). Therefore,
we have that Know(CanGet (¢, 0., now), s).
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