

Agent-Oriented Requirements Engineering

Using the ConGolog and i* Frameworks

By

Xiyun Wang

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

!Copyright by Xiyun Wang, 2001

 iv

Abstract

Agent-oriented approaches are becoming more popular in software engineering, both as

architectural frameworks and as modeling formalisms for requirements engineering and

design. In this thesis, two agent-oriented modeling frameworks, i* and ConGolog, will be

used together for requirements engineering. The i* framework has been developed for the

early stages of requirements engineering and supports the modeling of social

dependencies between agents with respect to tasks and goals both functional and non-

functional. ConGolog is an agent-oriented process modeling framework that is very

expressive and fully formal. It can be used to model complex processes involving loops,

nondeterminism, concurrency, and multiple-agents and can accommodate incompletely

specified models. It is well adapted to late requirements engineering and early design

stages of system development, when detailed alternative process designs have to be

specified and compared.

This thesis develops a methodology involving the combined use of i* and ConGolog for

agent-oriented requirements engineering. We identify steps in the requirements

engineering process and how the i* and ConGolog models of a system/domain need to be

refined at each step, as well as map out the relationships between corresponding elements

of the i* and ConGolog models. The methodology developed is tested on a meeting

scheduling application and a mail-order business application. The resulting methodology

is compared to related work such as the KAOS method and proposals involving the

combined use of i* and ALBERT-II.

 v

Acknowledgements

First, I want to thank my thesis supervisor, Professor Yves Lespérance. He put a lot of

efforts to guide me and discuss questions with me, which led to the successful completion

of my thesis.

I also want to thank Professor Richard Paige. He reviewed my thesis proposals and gave

me feedback with comments, which led to the improvement of my work.

I also want to thank Professor Jonathan Ostroff and Henry Kim for reviewing my thesis

and giving me good comments.

Finally, I want to thank my parents. They always encourage me to make achievements in

my work. Their support is the key to my success in my study.

The study in the Computer Science Graduate Programme is a treasure experience in my

life-time. Thank you all who gave me supports from my heart.

 vi

Contents

Abstract ...iv

Acknowledgements..v

List of Tables ...x

List of Figures...xi

1 Introduction..1

1.1 The Problem..1

1.2 The Approach..3

1.3 Overview of the Thesis ..5

2 Related Work..6

2.1 Software Engineering: Definitions and Stages..6

2.2 Requirements Engineering: Definitions and Phases..8

2.3 Multiagent Systems ...10

2.4 ALBERT-II...13

2.5 KAOS ..15

2.6 Agent-Oriented Methodologies..17

3 Foundations ...20

3.1 The i* Modeling Framework..20

 3.1.1 The Strategic Dependency (SD) Model ..22

 3.1.2 The Strategic Rationale (SR) Model ...31

 3.1.3 Discussion..39

3.2 The ConGolog Modeling Framework ..40

 vii

3.2.1 Introduction ..40

3.2.2 Modelling a Domain ...41

3.2.3 Modelling Domain Dynamics..42

3.2.3.1 The Situation Calculus Language ...42

3.2.3.2 Domain Dynamics Specification in the Situation Calculus....................45

3.2.3.3 Summary..47

3.2.4 Modelling Domain Processes in Congolog ..47

3.2.5 Analysing Domain Specifications Using ConGolog Tools...........................52

3.2.6 Summary/Discussion...54

4 A Methodology for the Combined Use of the i* and ConGolog Frameworks55

4.1 SR Diagram Annotations ...57

4.1.1 Composition Annotations..58

4.1.2 Link Annotations ..61

4.2 Operationalizing Dependencies in the i* SR model ..64

4.3 The Annotated i* SR Diagram...72

4.4 Mapping Rules ..73

4.4.1 Mapping Rules for Nodes..73

4.4.2 Mapping Rules for Links...76

4.4.3 Mapping Dependencies ...83

4.5 A Methodology for the Combined Use of the i* and ConGolog Frameworks84

5 Case Study : A Meeting Scheduling Process ..89

5.1 Building the Strategic Dependency (SD) Model...90

5.2 Building the Strategic Rationale (SR) Model ...95

5.3 Building the Annotated i* SR Model ...102

5.3.1 Suppressing Unnecessary Information...103

5.3.2 Operationalizing the Dependencies ...106

5.3.3 Relativizing the Goals that Cannot Always Be Achieved...........................113

 viii

5.3.4 Filling out Process Details using Decompositions and Annotations114

5.4 Developing the Initial ConGolog Model ...125

5.4.1 The Initial ConGolog Model for Initiator ..125

5.4.2 The Initial ConGolog Model for MeetingScheduler130

5.4.3 Specifying the Domain Dynamics ...135

5.5 Validating the ConGolog Model by Simulation..141

5.5.1 Specifying a System Instance ..142

5.5.2 Simulation Examples ..143

5.5.3 Discussion...146

5.6 Refining the i* and ConGolog Model Based on Validation Results..................147

6 Case Study II: A Mail-Order Business Application..152

6.1 Building The Strategic Dependency (SD) Model ..153

6.2 Building The Strategic Rationale (SR) Model ...157

6.3 Building The Annotated i* SR Model ..160

6.3.1 Suppressing Unnecessary Information...161

6.3.2 Operationalizing Dependencies ...162

6.3.3 Relativizing the Goals That Cannot Always Be Achieved172

6.3.4 Filling out Process Details Using Decomposition and Annotations............172

6.4 Developing the Initial ConGolog Model ...180

6.4.1 The Initial ConGolog Model for StockClerk ..184

6.4.2 Specifying the Domain Dynamics ...186

6.5 Validating the ConGolog Model by Simulation..188

6.5.1 Specifying a System Instance ..188

6.5.2 Simulation Examples ..191

6.6 Refining the i* and ConGolog Models Based on Validation Results198

6.6.1 Modifying the ConGolog Model and Corresponding Parts of the i* Model∀

 An Example ..198

6.6.2 The Process Alternatives for the Example ...200

 ix

7 Discussion..203

7.1 An Evaluation of the Methodology ..203

7.2 Issues in Mapping i* to ConGolog ...206

8 Conclusion...209

8.1 Contributions...209

8.2 Comparison to Related Work...211

8.3 Future Work ..213

Bibliography ..216

Appendix A: Modeling the Meeting Scheduling ProcessA 1

A-1 The ConGolog Model for Participant .. A∀1

A-2 Successor State Axioms for Actions .. A∀2

A-3 Actions and Fluents. .. A∀7

A-4 Obtaining Simulation Traces under Unix ... A∀9

A-5 The Simulation Trace for Example 3 in Section 5.5 A∀11

A-6 The Whole ConGolog Model for the Meeting Scheduling Process........................

... A∀13

A-7 The Initial ConGolog Model for MeetingScheduler A∀28

A-8 The Precondition Axioms for Actions.. A∀30

Appendix B: Modeling the Mail-Order Business Process................................... B 1

B-1 Obtaining Simulation Traces under Unix ... B∀1

B-2 The Simulation Trace for Example 5 in Section 6.5 B∀2

B-3 The Simulation Trace for Example 6 in Section 6.6. B∀4

B-4 The ConGolog Model for OfficeClerk .. B∀5

B-5 The ConGolog Model for BankClerk ... B∀6

B-6 The ConGolog Model for Customer ... B∀7

B-7 The Whole ConGolog Model for the Mail-Order Business Process B∀8

 x

List of Tables

Table 3.1 Constructs for processes in ConGolog ..49

Table 3.2 Constructs for conditionals in ConGolog..50

Table 4.1 ConGolog operators associated with composition annotations..................79

Table 4.2 ConGolog constructs associated with link annotations..............................90

 xi

List of Figures

Figure 3.1 The SD model for a simple meeting scheduling process..........................23

Figure 3.2 The SR model for a simple meeting scheduling process33

Figure 4.1 Sequence annotation applied to a group of decomposition links58

Figure 4.2 Concurrency annotation applied to a group of decomposition links.........59

Figure 4.3 Alternative annotation applied to a group of decomposition links............60

Figure 4.4 Prioritized concurrency annotation applied to a group of decomposition

 links ...60

Figure 4.5 While-loop annotation attached to a single decomposition link61

Figure 4.6 For-loop annotation attached to a single decomposition link62

Figure 4.7 Interrupt annotation attached to a single decomposition link63

Figure 4.8 If annotation attached to a single decomposition link63

Figure 4.9 Pick annotation attached to a single decomposition link.........................64

Figure 4.10 SR diagram for the task dependency before operationalization..............66

Figure 4.11 SR diagram for the task dependency after operationalization.................67

Figure 4.12 SR diagram for the goal dependency before operationalization68

Figure 4.13 SR diagram for the goal dependency after operationalization69

Figure 4.14 SR diagram for the resource dependency before operationalization.......70

Figure 4.15 SR diagram for the resource dependency after operationalization..........71

Figure 4.16 The mapping for an agent node in the annotated SR diagram74

Figure 4.17 The mapping for a role/position node in the annotated SR diagram.......75

Figure 4.18 The mapping for a goal node in the annotated SR diagram....................75

Figure 4.19 The mapping for a task node in the annotated SR diagram76

Figure 4.20 E.g. task node with task decomposition links in the annotated SR diagram

..77

 xii

Figure 4.21 The mapping for the SR diagram of Figure 4.20....................................77

Figure 4.22 Task node t with task decomposition links in the annotated SR diagram .

..78

Figure 4.23 The mapping for the task decomposition of Figure 4.2278

Figure 4.24 E.g. goal node with goal decomposition links in the annotated SR diagram

..80

Figure 4.25 m_achieve(g) for the goal node g of Figure 4.2481

Figure 4.26 Goal node g with goal decomposition links in the annotated SR diagram.

..82

Figure 4.27 m_achieve(g) for the goal node g of Figure 4.26...........................82

Figure 5.1 A Strategic Dependency model for the meeting scheduling process92

Figure 5.2 An initial Strategic Rationale model for the meeting scheduling process

..97

Figure 5.3 The second version of the i* SR model for the meeting scheduling process

..104

Figure 5.4 The third version of the i* SR model for the meeting scheduling process

..105

Figure 5.5 The SR diagram for the dependencies between the meeting initiator and

 the MS ...107

Figure 5.6 The SR diagram after operationalizing the dependencies of Figure 5.5..107

Figure 5.7 The SR diagram for the dependencies between the MS and the participants

..109

Figure 5.8 The SR diagram after operationalizing the dependencies of Figure 5.7..110

Figure 5.9 (a) The SR diagram for the initiator after operationalizing dependencies.....

..111

Figure 5.9 (b) The SR diagram for the MS after operationalizing dependencies112

Figure 5.9 (c) The SR diagram for the participant after operationalizing dependencies

..113

Figure 5.10 (a) The annotated SR diagram for the meeting initiator116

 xiii

Figure 5.10 (b) The annotated SR diagram for the MS...118

Figure 5.10 (c) The annotated SR diagram for the participant122

Figure 5.11 The initial ConGolog model for the initiator126

Figure 5.12 The mapping for the role node Initiator.......................................127

Figure 5.13 The mapping for the goal node

 MeetingBeenScheduledIfPossible127

Figure 5.14 (a) The mapping for the task node TryScheduleMeeting128

Figure 5.14 (b) The mapping for the task node

 LetSchedulerScheduleAMeeting128

Figure 5.15 The mapping for the agent node MeetingScheduler131

Figure 6.1 The Strategic Dependency model for the mail-order business process ...155

Figure 6.2 The initial Strategic Rationale model of the mail-order process.............158

Figure 6.3 The second version of the SR model for the mail-order process161

Figure 6.4 The third version of the SR model for the mail-order process................163

Figure 6.5 Dependencies between roles played by StockClerk agent165

Figure 6.6 SR diagram for the dependencies of Figure 6.5 after operationalization

..165

Figure 6.7 SR diagram for dependencies between BankClerk and

 OrderProcessor after operationalization168

Figure 6.8 SR diagram for the dependencies between Customer and

 OrderProcessor after operationalization ..169

Figure 6.9 The SR model for the mail-order process after operationalizing

 dependencies..171

Figure 6.10 (a) The annotated SR diagram for the agent Customer agent172

Figure 6.10 (b) The annotated SR diagram for positions Bank and BankClerk

..173

Figure 6.10 (c) The annotated SR diagram for agent StockClerk with its three

 roles ...174

Figure 6.10 (d) The annotated i* SR diagram for the agent OfficeClerk175

 1

1 Introduction

1.1 The Problem

With the advent of the Word-Wide Web and electronic commerce, trends in software are

towards open systems, more integration across applications, and systems that can adapt to

change. In response to this, many developers are starting to adopt agent-oriented

architectures, where a system is composed of agents, autonomous entities that can

interact in flexible ways. For instance, agents can interact through negotiation, while

working towards their goals and reacting to changes in the environment [JW98]. To

support the development of agent-based systems, suitable software engineering methods

and tools are required. So far, most efforts in this area have been directed at the design

phase of software development. In this thesis, we focus mainly on the requirements

engineering phase.

Requirements engineering (RE) studies what goals are to be accomplished by the system

to be built, how those goals should be operationalized into services and constraints, and

how the responsibilities for the resulting requirements can be assigned to agents such as

humans, devices, and software. The processes involved in RE include domain analysis,

requirements elicitation, specification, and assessment, negotiation about requirements

and the documentation and evolution of requirements [VanL00]. Much of requirements

engineering research has taken as its starting point the initial requirements statements,

which express the client’s wishes about what the system should do, and which are often

ambiguous, incomplete, inconsistent, and usually expressed informally, such as in natural

language text. The objective of requirements engineering (RE) is to produce a

requirements document that resolves these problems and is suitable for developers to start

developing systems.

 2

RE is becoming more and more important because as the earliest stage of software

development, it is being acknowledged as the crucial stage for successful software

development, successful subsequent deployment, and ongoing evolution of the system

[Boe81]. Recent surveys have confirmed that RE is becoming recognized as an area of

utmost importance in software engineering research and practice [Davis90].

Requirements engineering (RE) started with the study of what the system should do, i.e.,

late-phase requirements analysis, which focuses on the specification of requirements and

their completeness, consistency, and automated verification. Most existing requirements

modeling frameworks are proposed for this late phase of requirements engineering and

they can help the modeler in making requirements precise, complete, and consistent.

Most impose some degree of structure and formality (from box-and-arrow diagrams to

logical formalisms) [Bubenko80] [DUHLPR86]. However considerably less attention has

been given to supporting the activities that precede the formulation of the initial

requirements [Bubenko95]. A good understanding of the organizational context and

rationales (the “whys”) of a system that leads up to system requirements is very important

for the successful development of the system. If one doesn’t understand why things are

done the way they are, one is likely to automate outdated processes and miss the

opportunity to innovate. In choosing among alternative processes for the system, the

modeler must be able both to describe relationships and to propose and argue about

solutions from a strategic perspective. The early-phase requirements analysis focuses on

how the desired system will meet its goals and accomplish its tasks, why the system must

be developed, what alternatives can be proposed, what the relationships between various

actors or stakeholders are, and how the interests of actors can be achieved. The emphasis

here is on understanding the “whys” that underlies system requirements rather than on the

precise and detailed specification of “what” the system should do [YM94B].

Early-phase RE activities have traditionally been done informally and without much tool

support. As the complexity of the problem domain increases, it is evident that tool

 3

support will be needed to leverage the efforts of the requirements engineer. A

considerable body of knowledge would be built up during early-phase RE. This

knowledge would be used to support reasoning about organizational objectives, system-

and-environment alternatives, implications for stakeholders, etc. It is important to retain

and maintain this body of knowledge in order to guide system development, and to deal

with change throughout the system’s lifetime.

There are many formal requirements modeling languages and frameworks for late-phase

requirements analysis, for instance KAOS [DVF93], ALBERT-II [DuBois95], etc. Early-

phase requirements analysis on the other hand, has generally been done informally and

without much tool/formalism support. The i* framework [YDDM97] was developed for

early-phase requirements analysis. It provides an informal diagram-based notation that

supports the modeling of social dependencies between agents and how process design

choices effect agents' goals. But i* is not a formal language and it has limited support for

describing complex processes. ConGolog [DLL00] [LKMY99] is a formal language for

process specification and agent programming. It supports the formal specification of

complex multiagent systems and provides a tool for process simulation. But it lacks

features for modeling the rationale behind design choices. The two frameworks

complement each other and it would be good to have a methodology for using them in

combination.

1.2 The Approach

In this thesis, the combined use of the i* and ConGolog frameworks for requirements

analysis is investigated. The i* framework [Yu95B] was proposed to provide the kinds of

modeling features and reasoning capabilities that might be appropriate for early-phase

requirements engineering. It introduces an ontology and reasoning support features that

are substantially different from those intended for late-phase RE. i* views processes as

involving social actors who depend on one another for goals to be achieved, tasks to be

performed, and resources to be supplied. It has also been represented in the conceptual

 4

modeling language Telos [MYBJK91]. i* provides two kinds of models: the Strategic

Dependency (SD) model and the Strategic Rationale (SR) model. The SD model is used

to describe the dependency relationships between actors. The SR model is used to

describe how goals and tasks are decomposed within actors and how dependencies with

other actors relate to this. But i* is not a formal logic-based language and has limited

support for describing complex processes. ConGolog [DLL97] [DLL00] can model the

detailed dynamics of processes, and supports the validation of process specifications

using simulation and automated reasoning techniques. It also supports formal

specifications and complex process descriptions. The modeler even can reason about

processes with only a partial description of the real-world state. But ConGolog lacks

features for modeling the motivations, intents, and rationales behind processes. Thus, we

can assert that the frameworks are complementary.

In our combined methodology, the i* framework will be used to model different

alternatives for the desired system, analyze and decompose the functions of the different

actors, and model the dependency relationships between the actors and the rationales

behind process design decisions. The ConGolog framework will be used to formally

specify the system behavior described informally in the i* model. The ConGolog model

will provide more detailed information about the actors, tasks, processes, and goals in the

system, and the relationships between them. Complete ConGolog models are executable

and this will be used to validate the specifications by simulation. To bridge the gap both

syntactic and semantic between i* and ConGolog models, an intermediate notation

involving the use of process specification annotations in i* SR diagrams will be

introduced. We will also propose a set of mapping rules that constrains the modeler to

map the elements of the annotated SR diagram to appropriate ConGolog entities and

ensures that the two models are consistent. Finally we propose a methodology for the

combined use of the i* and ConGolog frameworks for early to late phase requirements

engineering. We then illustrate the use of the methodology on two examples: a meeting

scheduling application and a mail-order business process. The goal of the combined use

 5

of the i* and ConGolog frameworks is to exploit the advantages of these two frameworks

to provide a better tool for early to late phase requirements analysis.

1.3 Overview of the Thesis

In chapter 2, we discuss related work on frameworks for requirements engineering and

agent-oriented software engineering in recent years. We review what software

engineering, requirements engineering, and agents are and introduce different

frameworks and techniques used in these areas. In chapter 3, the two frameworks that we

will use: i* and ConGolog, are presented. We describe the ontologies of the frameworks

and their components and features, and discuss how they are used. In chapter 4, we

develop a methodology for the combined use of the i* and ConGolog frameworks for

requirements engineering. A set of process specification annotations are defined to

elaborate the i* SR model. With these, one can produce an annotated SR model that

bridges the gap between the SR model and the ConGolog model. We require the analyst

to define a mapping between elements of the annotated SR model and corresponding

elements of the ConGolog model. To ensure the consistency of the mapping, we define a

set of mapping rules. In chapter 5 and chapter 6, two case studies, a meeting scheduling

application and a mail-order business application, will be presented to test this

methodology. We show how models can be validated by simulation. In chapter 7, we

discuss the benefits of our approach and examine some issues that remain to be resolved.

In chapter 8, we review the contributions of the thesis and discuss what further research

could be done.

 6

2 Related Work

In this chapter, we start by providing some basic background on software engineering and

requirements engineering, and discuss research trends in the latter area. Then, we

introduce agent-oriented computing and the notions of agent and multiagent systems.

Then, we review work on two RE frameworks that are more closely related to our work,

ALBERT-II and KAOS. We also survey work on agent-oriented design methodologies.

The frameworks that we use in our approach, i* and ConGolog, are presented in detail in

chapter 3. We compare our approach to closely related work in chapter 7.

2.1 Software Engineering: Definitions and Stages

Software Engineering (SE) is the term used to describe software development that

respects the following principles: helping organizations involved in software

development in making sure that the software is developed according to accepted

industry practices, with good quality control, adherence to standards, and in an efficient

and timely manner.

In [Leach2000], Leach argues that SE lies at the heart of the computer technology

revolution. SE is described as “the application of engineering techniques to develop and

maintain software that runs properly and its constructed in an efficient manner”. SE may

involve the following activities: problem analysis, requirements, specification, design,

coding, testing and integration, installation and delivery, documentation, maintenance,

quality assurance, and training. The software produced should satisfy qualities such as

being efficient, reliable, usable, modifiable, portable, testable, reusable, maintainable,

interoperable, and correct.

 7

Davis says that SE is the application of scientific principles to: “(1) the orderly

transformation of a problem into a working software solution and (2) the subsequent

maintenance of that software until the end of its useful life” [Davis90]. The software

development cycle typically involves following stages:

• Requirements: analyzing the current problem and proposing a complete specification

of the desired external behavior of the software system to be developed.

• Design: in preliminary design, one decomposes the software system into its actual

constituent components, and then repeatedly decomposes those components into

smaller and smaller sub-components until the sub-components are small enough to be

solved by a person easily; detailed design defines and documents algorithms for each

component that will be realized as code.

• Coding: transforms the algorithms defined during detailed design into a computer-

understandable language.

• Testing: first, in unit testing, one checks each coded module of a sub-component for

the presence of bugs and ensures that each module behaves according to its

specification as defined during detailed design; then in integration testing, one

interconnects sets of previously tested modules to ensure that the sets behave as well

as they did when independently tested, and ensure that each component integrated

from those sub-components behaves according to its specification defined during

preliminary design; finally, in system testing, one checks the entire software system

embedded in its actual hardware environment to ensure that it behaves according to

the requirements specifications.

• Delivery, production, and deployment: after the testing stage, the software and the

hardware it runs on should be delivered and become operational for the client.

• Maintenance and enhancement: the maintenance and enhancement processes are

actually a full development life cycle. If a coding change is made, then the coding and

the three subsequent testing stages must be performed. If a design change is made, the

design, coding, and three subsequent testing stages must be performed. If a

requirement change has occurred then all stages must be performed.

 8

Leach [Leach2000] also describes four basic models of the software development life

cycles: the waterfall model, the rapid prototyping model, the spiral model, and the

market-driven model. Royce [ROY70] first used the term “waterfall model” to

characterize the series of software engineering stages.

Many modeling languages have been proposed both for requirements analysis and

specification, such as ALBERT-II [DUDZ95] [DuBois97], KAOS [DVF93], etc., and for

system design such as UML [RUJB99] [UML98], BON [WN95], and Z-notation

[Spivey92].

2.2 Requirements Engineering: Definitions and Phases

Boehm [Boe81] points out that requirements analysis and specification is a crucial stage

to ensure the correctness and cost- and time-effectiveness of the system development in

all the stages of software development. A “requirements” is defined as “something

required; something wanted or needed” [Web84]. The IEEE standard 729 defines it as

“(1) a condition or capability needed by a user to solve a problem or achieve an objective;

(2) a condition or capability that must be met or possessed by a system … to satisfy a

contract, standard, specification, or other formally imposed document.” [IEEE83]

According to [Davis95], requirements engineering (RE) is the set of activities including

“eliciting or learning about a problem that needs a solution, and specifying the external

behavior of a system that can solve that problem”. The aim of RE is to develop a

requirements specification, a precise set of concordant descriptions of the requirements, a

set that the parties, developer and stakeholders, can agree upon [REQ97].

RE is a crucial part of software engineering. It helps the software engineer in exploring,

understanding, documenting, and refining the needs and expectations of clients for a

desired system to the extent that the engineer can develop an implementation. RE is also

important because requirements errors are often made, and not detecting these errors

 9

early may lead to significant software costs. Also the resulting software may not satisfy

user’s real needs if requirements errors are not corrected. The later in development life

cycle that a software error is detected, the more expensive it will be to repair. It is better

to detect the errors at the requirements analysis stage. There are some automated tools

can be used to detect a significant number of errors in an approved software requirements

specification [Leach2000].

Recent work in this area has emphasized the need for an engineering approach, where

models and languages, methods and tools are employed to assist in the RE effort.

Empirical studies of software development projects have also confirmed the crucial

importance of domain knowledge and requirements analysis. For example, it has been

estimated that an error that is not identified and corrected in the requirements phase can

cost a hundred times more to correct in subsequent phases [Boe81].

The survey paper for RE of Lamsweerde [VanL00] presents a brief history of the main

concepts and techniques developed to support the RE task. It argues that recent research

on RE is concerned with the identification of the goals to be achieved by the envisioned

system, the operationalization of these goals into services and constraints, and the

assignment of responsibilities for the resulting requirements to agents such as humans,

devices, and software. The processes involved in RE include domain analysis,

requirements elicitation, specification, and assessment, negotiation about requirements,

and their documentation, and evolution. In [JP84], Jarke and Pohl discuss the current

research challenges for RE.

Castro et al. divide the stage of requirements analysis and specification into two sub-

stages: early requirements and late requirements [CK00]. The early requirements stage

focuses on studying the organizational setting, understanding the software development

problem, and specifying an organizational model which includes relevant actors, their

 10

goals, and their inter-dependencies. The late requirements stage is concerned with

specifying the system of interest within its operational environment, along with its

relevant functions and qualities.

According to Yu, this early phase of requirements engineering can be just as important as

that of refining initial requirements to a requirements specification [Yu97]. First, system

development involves many assumptions about the embedding environment and domain.

Poor understanding of the domain is a primary cause of project failure. To have a deep

understanding about a domain, one needs to understand the interests, priorities, and

abilities of the various actors and players, in addition to having a good grasp of the

domain concepts and facts. Second, users need help in coming up with initial

requirements in the first place. As technical systems increase in diversity and complexity,

the number of technical alternatives and organizational configurations made possible

bring out many options. A systematic framework is needed to help developers understand

what clients want and help users understand what technical systems can do. Third, it is

well known that changes to requirements are a major source of problem. Traceability is

an important part in software engineering. Having an understanding of organizational

issues would allow software changes to be traced all the way to the originating source,

i.e., the organizational changes that leads to requirements changes. Finally, having well-

organized bodies of organizational and strategic knowledge would allow such knowledge

to be shared across domains at this high level, deepening understanding about

relationships among domains.

2.3 Multiagent Systems

The concept of an agent is becoming more and more important in the areas of Artificial

Intelligence (AI) and Software Engineering (SE). Progress in SE over the past two

decades has primarily been made through the development of increasingly powerful and

natural abstractions with which to model and develop complex systems. Increasingly,

many computer systems are being viewed in terms of autonomous agents. Agents are

 11

being thought of as the next generation model for engineering complex distributed

systems. Agents are also being used as a framework for bringing together the component

AI sub-disciplines that are necessary to design and build intelligent entities.

Also agent-oriented approaches are also becoming more popular in modeling formalisms

for requirements engineering and design. It is natural to view the users of a system, the

organizations in which they are involved, and even system components as agents that

have knowledge, goals, intentions, etc. This allows the designer to explain or predict their

behavior even when there is little information about their internal structure [LS99].

The term “agent” can be defined as “an encapsulated computer system that is situated in

some environment, and that is capable of flexible, autonomous action in that environment

in order to meet its design objectives” [Wooldridge97]. Agents are typically thought to

have at least four basic attributes: Autonomy ! they are not controlled directly by

humans or others, cooperativeness ! they communicate and work together,

perceptiveness ! they perceive their environment and react to it, and pro-activeness !

they exhibit goal-directed behavior [WJ95].

In [WJ96] [WJ95], the theoretical and practical issues associated with the design and

construction of intelligent agents are addressed. Work on agents is divided into three

areas: “agent theory”, which deals with the question of what an agent is and how to

represent and reason about the properties of agents using mathematical formalisms,

“agent architectures”, which is concerned with software engineering models of agents,

i.e., how to construct software or hardware systems that will satisfy the properties

specified by agent theorists, and “agent languages”, which are software systems for

programming and experimenting with agents.

In [Wooldridge98], Wooldridge summarizes why agents are perceived to be an important

new trend in software engineering and then reviews the various techniques and

 12

formalisms that have been developed for engineering agent-based systems. New

distributed internet computing applications tend to be open systems, there is more

integration across applications, and systems that can adapt to change. Agent-oriented

architectures are adopted into the SE area to help dealing with these new issues. A

multiagent system is composed of agents, autonomous entities that can interact in flexible

ways, for instance through negotiation, while working towards their goals and reacting to

changes in the environment [JW98].

[JSW98] provides an overview of research and development activities in the field of

autonomous agents and multiagent systems. It aims to identify key concepts and

applications, and indicate how they relate to one-another.

 In [JW00], Jennings et al. argue that agent-oriented techniques represent a significant

new means of analyzing, designing, and building complex software systems. They have

the potential to significantly improve current practice in software engineering and to

extend the range of applications that can feasibly be tackled. The paper specifically

argues that: (i) the conceptual apparatus of agent-oriented systems is well-suited to

building software solutions for complex systems and (ii) agent-oriented approaches

represent a genuine advance over the current state of the art for engineering complex

systems. The major issues raised by adopting an agent-oriented approach to software

engineering are highlighted and discussed.

Lespérance and Shapiro [LS99] discuss why agent-orientation is important for RE.

According to them, "the specification of agents in terms of their mental states (beliefs,

goals, commitments, etc.) allows modeling at a higher level of abstraction." It may be

possible to illustrate or forecast agents' behavior even when their internal control

structure is not explicitly known by us through describing these "mental attitudes" of

agents. "Mental attitudes" can help us understand how the agents will react to changes

made in their environment or organization. Also "representing communication as various

 13

types of speech acts being performed by agents abstracts over the form and mechanism of

messages" when modeling the organization or environment where a system runs.

Moreover, models can absorb the analyses of multiagent cooperative problem-solving

and integrate representations of social relations and rules into themselves. Finally, the

authors argues that RE tools can use implementation techniques for agent-oriented

frameworks to obtain more powerful and effective modeling and analysis techniques.

There have been many proposed methodologies for analyzing, designing, and building

multiagent systems [IG98]. We discuss agent-oriented methodologies in section 2.6.

2.4 ALBERT-II

ALBERT-II [DUDZ95] [DuBois97] (an acronym for Agent-Oriented Language for

Building and Eliciting Real-Time requirements) is an agent-oriented requirements

engineering framework that was developed by Dubois and others at the University of

Namur. It is designed for the purpose of modeling functional requirements related to

distributed heterogeneous real-time cooperative systems [DUP94] [DUDZ95] [ZDD98].

The design of the language has focused on three aspects: agent-orientation, formality, and

expressiveness. The language models agents and their properties: internal states,

responsibility for actions, perception of the environment, etc. Agents can be grouped into

classes or societies, and this "object-oriented" approach can help in structuring large

specifications [DUDU94]. Typical patterns of constraints are identified that can support

the analyst in writing complex and consistent formulas. Cooperation constraints are

specified to model how agents interact with each other in order to fulfil the overall goal.

ALBERT-II models a system as a collection of agents [YDDM97]. These agents interact

with each other in order to accomplish tasks for the system. Each agent is specified in

terms of its state structure including what it knows, the actions it can perform, and

various types of constraints on them. The actions associated with an agent change or

maintain its own state and/or the states of other agents. Action perception and state

perception constraints specify what an agent can see about other agents. Action

 14

information and state information constraints specify what an agent shows to other

agents. Internal constraints specify the internal behavior of agents, the effects of their

actions and trigger conditions for them. Cooperation constraints specify how agents

interact with other agents. The constraints in ALBERT-II are specified in a typed temporal

first-order logic, which support statements about agents' knowledge. ALBERT-II provides

a graphical component for describing system structure and a textual component for

constraints specifying admissible behaviors of agents through logical formulas.

ALBERT-II is a successor to the ALBERT language [DUDU94], a formal language based

on the concept of ‘agent’ (seen as a specialization of the ‘object’ concept) in terms of

which one may express real-time requirements as well as ‘non-functional’ requirements

related to the reliability and security aspects of agents. In [DUDU94], the ALBERT

language is presented and its usage is illustrated through a computer-integrated

manufacturing case study. Some methodological guidelines are proposed to help to the

analyst in the incremental elaboration of a complex requirements document.

A support tool for ALBERT-II is discussed in [Dubois98]. Recent work on ALBERT-II

has dealt with its formal semantics and theorem proving with PVS [CRFS98], animation

and scenarios [HD98] [HHJ98], applications to computer integrated manufacturing

[DUYP98], and conceptual reasoning [ZDD98].

Bissener studied the combined use of the i* and ALBERT-II frameworks for requirements

engineering in [Bissener97]. He proposed a methodology that deals with organizational,

and non-functional, as well as functional requirements. The functional requirements are

specified in ALBERT-II and the organizational issues and non-functional requirements are

specified in i*. A mail-order business process is used to validate the methodology. The

example is similar to the one we will study in chapter 6.

 15

In [YDDM97], Yu et al. show how two agent-oriented frameworks, i* and ALBERT-II

can be used together for requirements engineering in cooperative information systems.

ALBERT-II specifies requirements formally through states and actions, and information

and perception. i* help understanding and redesigning organizational processes through

strategic relationships and rationales. This combined use is tested on a small banking

example, which helps understanding how the requirements process may iterate between

these two levels of modeling in order to obtain a requirements specification.

In [DUYP98], the combined use of i* with KAOS, Timed Automata [MMT91], and

ALBERT-II is investigated. KAOS is used for reasoning about the system’s goals,

ALBERT-II for formally specifying the system’s requirements, and Timed Automata for

modeling the system’s internals. The i* framework is used for linking the various formal

models and for providing a “high level” model in terms of which organizational issues

are captured. Organizational goals are identified and analyzed using the complementary

techniques of i* and KAOS.

2.5 KAOS

 The KAOS framework [DVF93] [VLDDD91] is a goal-oriented framework for

requirements engineering, developed at the University of Louvain; KAOS stands for

Knowledge Acquisition in automated Specification. It focuses on the formal modeling of

functional and non-functional requirements in terms of goals, constraints, assumptions,

objects, events, actions, agents, etc. KAOS aims at supporting the whole process of

requirements elaboration ! from the high-level goals that should be achieved by the

composite system to the operations, objects, and constraints to be implemented by the

software part of it. The framework has a specification language, an elaboration method,

and meta-level knowledge used for local guidance during method application. The

framework also addresses issues in requirements acquisition, i.e., goal-directed [DVF93]

[VLDM95] [DV96], scenario-directed [VLW98], viewpoint-directed strategies

[VanL98], and the reuse of requirements specifications [ML97]. The KAOS framework

 16

uses a multi-paradigm language. This language has an external semantic net layer for

capturing goals, constraints, agents, objects, and actions, together with their links, and an

inner formal assertion layer that includes a real-time temporal logic for the specification

of goals and constraints.

[DVF93] focuses on the requirements acquisition task where a global model for the

specification of the system and its environment is elaborated. The importance of concepts

that are currently not supported by most other formal specification languages, such as

goals to be achieved, responsibilities of agents to be assigned, alternatives to be

negotiated, etc. is discussed. The paper presents elements of a general approach to

requirements acquisition developed in the context of the KAOS project [VLDDD91]

[VLDD91]. The driving forces behind this approach are the reuse of domain knowledge

and the application of machine learning technology [VanL91]. Two learning strategies

have been adapted to the context of requirements acquisition: learning-by-instruction,

where the learner conducts the acquisition process by using meta-knowledge about the

kind of knowledge to be acquired, and learning-by-analogy, where the learner retrieves

knowledge about some "similar" system to map it to the system being learned. The

overall approach taken in KAOS has three components: (1) a conceptual model for

acquiring and structuring requirements models, with an associated acquisition language;

(2) a set of strategies for elaborating requirements models in this framework; (3) an

automated assistant to provide guidance in the acquisition process according to such

strategies.

In [VLDM95], the authors show how the KAOS goal-directed methodology is used for

requirements analysis for a distributed meeting scheduler system. The following issues

raised by this case study are addressed: goal identification, the “de-idealization” of

unachievable goals, the handling of interfering goals, the impact of early formal

reasoning, the merits of early reuse of abstract descriptions and categories, requirements

 17

traceability, the need to link requirements to retractable assumptions, and the potential

benefits of hybrid acquisition strategies.

[DV96] proposes an approach for goal refinement and operationalization that aims at

providing constructive formal support while hiding the underlying mathematics. The

principle is to reuse generic refinement patterns from a library structured according to

strengthening/weakening relationships among patterns. They can be used for guiding the

refinement process and for pointing out missing elements in a refinement. Some frequent

refinement patters are discussed and their use is illustrated through a variety of examples.

In [DDMV98], a tool called GRAIL for supporting the use of the KAOS analysis and

specification framework is introduced. Its kernel combines a graphical view, a textual

view, an abstract syntax view, and an object base view of specification.

2.6 Agent-Oriented Methodologies

The development and spread of agent technologies has brought out significant interest in

agent-oriented methodologies and modeling techniques in the last few years. A number

of specifically agent-oriented methodologies have been proposed for complex software

system development. A valuable survey of agent-oriented methodologies is done in

[IG98]. Most of this work deals with the design stage of system development.

Some agent-oriented approaches, such as [Burmeister96], [KGR96], and [KG97], are

based on existing object-oriented modeling techniques or methodologies. They extend

and adapt the models and define a methodology appropriate for agent-based systems.

Some approaches just extend other methodologies and modeling techniques from the area

of software and knowledge engineering, or provide formal and compositional modeling

languages that are suitable for the verification of system structures and functions.

 18

In [Deloach99], Deloach presents a methodology and system modeling language for

multiagents systems. The goal is to integrate the methodology and language into an

automated multiagent system synthesis system. The integrated system formally verifies

and generates multiagent systems that are correct by construction. The methodology

includes domain level design, agent level design, component design, and system design.

The language is called agent modeling language AgML. It uses four types of diagrams to

define high-level features of multiagent systems.

[WJK99] presents a methodology for agent-oriented analysis and design. The

methodology is intended to allow an analyst to go systematically from a statement of

requirements to a design that is sufficiently detailed to be implemented directly. In

applying the methodology, the analyst can move from abstract to concrete concepts. The

methodology encourages a developer to think of building agent-based systems as a

process of organizational design. There are two main categories of concepts: abstract and

concrete concepts. Abstract concepts are used to model a system as a “society” or

“organization”. The system is decomposed into a set of roles and these roles can be

instantiated by actual individuals. Analysis at this abstract concept level is to develop an

understanding of the system and its structure, i.e., an organization as a collection of roles,

that stand in certain relations to one another, and that take part in systematic,

institutionalized patterns of interactions with other roles. A role model and an interaction

model are built through this analysis stage. The role model specifies key roles in the

system, and their schema. A role is defined by three attributes: responsibilities,

permissions, and protocols. The interaction model captures the dependencies and

relationships between the various roles in the organization. The analysis processes can be

iterated. The design process is to transform the abstract models derived during the

analysis stage into concrete models at a sufficient low level of abstraction that they can

be easily implemented. The steps of design process are as follows: create an agent model,

develop a service model, and develop an acquaintance model. The agent model identifies

the agent types that make up the system. The agent instances will belong to these types.

 19

The service model identifies the main services that will be associated with each agent

type. The acquaintance model documents the acquaintances for each agent type. A case

study involving a system for business process management is described. A revised

version of this methodology called Gaia is described in [WJK00].

In [DW00], the authors propose the multiagent systems engineering methodology, a

seven-step process that guides a designer in transforming a set of requirements into a

successively more concrete sequence of models. By analyzing the system as a set of roles

and tasks, a system designer is naturally led to the definition of autonomous, pro-active

agents that coordinate their actions to solve the overall system goals.

Other methodologies for analyzing, designing, and building multiagent systems include

DESIRE presented in [BD95] and CoMoMAS presented in [KG97]. There is also work on

extending UML to deal with agent-based systems [OBP2000].

 20

3 Foundations

Castro et al. [CK00] catalogue software development into four stages: early-phase

requirements, i.e., understand the problems, late-phase requirements, i.e., specifying the

desired system within its operational environment, architectural design, i.e., identifying

the system’s global architecture, and detailed design, i.e., specifying the behavior of each

architectural component in detail. In our methodology, we focus on the early-phase

requirements analysis using the i* framework and the late-phase requirements analysis

and preliminary design using the ConGolog framework.

3.1 The i* Modeling Framework

The i* framework [Yu95B] is an agent-oriented modeling framework. It was developed

by Eric Yu at the University of Toronto for modeling and analyzing organizations to help

support requirements engineering and business process reengineering. The framework is

presented in detail in [Yu95B]. It has also been presented in the context of different

application domains, including information systems requirements engineering [Yu93],

business process reengineering [YM93] [YM94], and software process modeling

[YM94A].

In [Yu95B] [Yu97] [YM93] [YM94C] [YML96], the definition of the i* framework is

outlined. "The framework is called i*, as it attempts to articulate a notion of "distributed

intentionality"" [Yu95B]. The framework is used for modeling intentional and strategic

actor relationships. It consists of two main components!the Strategic Dependency (SD)

model and the Strategic Rationale (SR) model [YM94D]. The SD model describes

relationships between actors. The SR model describes the possible alternatives that the

 21

actors can choose to accomplish their goals/tasks. This helps the modeler understand the

existing processes and propose alternatives towards a new process design that better

satisfies the business’s objectives.

The notion "intentional actor" is a very important concept in i*. Intentional characteristics

such as goals, beliefs, capabilities, and commitments are assigned to actors in their

organization environment. Actors depend on each other to accomplish goals, perform

tasks, and supply resources. By depending on others, an actor becomes capable to

accomplish goals/tasks that it may be unable to accomplish by itself. Meanwhile an actor

becomes "vulnerable" if the other actors, on which it depends, do not participate the

dependency. Actors are "strategic" because they are concerned about their "opportunities"

and "vulnerabilities" in the process [Yu95B].

The i* framework has a lot of useful features for the early stages of requirements

engineering. It can be used to describe the "why" of a process ! the motivations, intents,

and rationales behind the activities and entities. It also can be used to support the

modeling of social dependencies between agents regarding tasks and goals both

functional and non-functional [Yu95B]. All alternative process designs can be explored

and informal comparative analyses can be performed. A support tool also has been

developed for i* [YML96].

Next we will describe the concepts in the SD model and SR model offered by the i*

framework in detail. Our presentation is mainly based on [Yu95B].

 22

3.1.1 The Strategic Dependency (SD) Model

"The Strategic Dependency (SD) model is a network of dependency relationships among

actors" [Yu95B]. The SD model provides an "intentional" description of a process by

modeling the dependency relationships among actors. It is used to explore the

motivations and intents behind the whole set of activities and information flows in a

process. Compared to conventional, non-intentional models, the SD model provides the

modeler with a better basis to study the implications of a process because of its richer set

of modeling constructs.

Specifically, "A Strategic Dependency (SD) model consists of a set of nodes and links.

Each node represents an "actor", and each link between two actors indicates that one

actor depends on the other for something in order that the former may attain some goals.

We call the depending actor the depender, and the actor who is depended upon the

dependee. The object around which the dependency relationship centers is called

dependum" [Yu95B].

Before discussing the features of the SD model, let us look at our first example involving

a simple meeting scheduling process within which the initiator (a role) and the participant

(a role) are the only two actors; the initiator tries to schedule a meeting with the

participants by contacting them himself. The process proceeds as follows: the initiator

requests the participants to send their available dates, then he proposes a meeting date to

the participants, and then the participants agree or reject the proposed meeting date. A SD

model for this example appears in Figure 3.1 (adapted from the SD model for a more

complicated meeting scheduling process in [Yu97]).

 23

 Figure 3.1 The SD model for a simple meeting scheduling process

In Figure 3.1, the actor nodes are roles Initiator and Participant. There are five

links between these two actor nodes. For example, the initiator depends on the

participant’s attendance at the meeting. This is modeled as a dependency

AttendsMeeting(p,m), where p refers to the participant, and m refers to the

meeting. The initiator is the depender, the participant is the dependee, and the goal

AttendsMeeting(p,m) is the dependum.

• Actors, Agents, Roles, and Positions

"An Actor is an active entity that carries out actions to achieve goals by exercising its

know-how" [Yu95B]. In Figure 3.1, the initiator is responsible for organizing a meeting

by communicating with the participants. The participants are responsible for agreeing or

rejecting a proposed meeting date and attending the meeting once they agree.

Furthermore, an actor can be specialized into notions of agents, roles, or positions

[YM94A]. Here let us look at our second example of a mail-order business process first.

There are three actors that participate in this process: a customer, who makes orders, a

mail-order company, who processes the orders, and the bank, who is responsible for

Resource

Dependency

Softgoal

Dependency

Assured[Attends

Meeting(p,m)]

AttendsMeeting(p,m)

EnterAvailDates(p,m)

ProposedDate(m)

Agreement(p,m)

Initiator Participant

Goal Dependency

Task Dependency

LEGEND

Role

 24

processing banking transactions. The mail-order company might have two sub-parts: the

stock clerk and the office clerk. The stock clerk could play both the shipping processor

and stock informant roles.

"An agent is an actor with concrete, physical manifestations, such as a human individual"

[YM94A]. It has dependencies that apply no matter what roles he/she/it happens to be

playing. For example, John might be the real office clerk, an agent who also maintains

the real stock of items; others depend on him to maintain the real stock. "A role is an

abstract actor. Dependencies are associated with a role when these dependencies apply

regardless of who plays the role" [YM94A]. For example, an order processor role might

depend on a stock informant role to provide information about the stock for an ordered

item; the order processor doesn’t care who is playing this stock informant role. "A

position is intermediate in abstraction between a role and an agent. It is a set of roles

typically assigned jointly to one agent" [YM94A]. For example, the bank actor can be

specialized as a position that covers the roles of providing customer’s account

information, debiting money from a customer’s account, and crediting the money into the

company’s account. Roles, positions and agents can also have subparts. An agent can

occupy several positions, and play different roles and also can be part of another agent. A

position can cover several roles and be a part of another position.

By classifying actors into three classes, the SD model provides a way to separately

identify those dependencies that are associated with a role/position/agent, as opposed to

those that are associated directly with a concrete actor. Also modeling and analysis would

be more efficient and accurate when the distinctions among the various specialized actors

— agents, roles, and positions, are introduced.

 25

• Dependencies

"A dependency is intentional if the dependum is somehow related to some goals or

desires of the depender" [Yu95B]. In Figure 3.1, the dependency of the initiator's

depending on the participants' attendance of the meeting is intentional because if an

important participant doesn't show up the meeting, the initiator might fail to achieve his

goal of organizing the meeting. "By depending on another actor for a dependum, an actor

(the depender) is able to achieve goals that it was not able to do without the dependency,

or not as easily or as well". This brings opportunities for selecting the process of the

system. One actor might want to accomplish some goal/task by having another actor (the

dependee) do it because he gets some benefit by using the other actor's efforts. At the

same time, the depender becomes vulnerable because if the dependee fails to supply the

dependum, the depender might not be able to accomplish its goals/tasks any more.

For example, in Figure 3.1, the initiator’s dependency on the participants’ agreement to a

meeting date is related to his goal of arranging a meeting with all participants. Without

the agreement to the meeting date from all participants, the initiator cannot really

schedule the meeting. Also if a participant cannot provide his agreement to a proposed

meeting date (e.g., he is on vacation), then the initiator is vulnerable and cannot proceed

with the meeting scheduling. But in some cases, such as when a manager wants to

arrange a meeting with his subordinates, the manager (initiator) might be able to

command all participants to agree to the meeting date without depending on them. This

brings out another opportunity for the process of scheduling a meeting.

• Dependency Types

There are four types of dependencies in i*: goal-, task-, resource-, and softgoal-

dependencies [Yu95B] [Yu97]. "In a goal-dependency, the depender depends on the

dependee to bring out a certain state in the world" [Yu95B]. The dependee can decide

how he will achieve the goal. Meanwhile the depender is able to assume that the

 26

condition or state of the world will hold through a goal dependency, but becomes

vulnerable since the dependee may fail to bring about the condition. For example, in

Figure 3.1, the initiator depends on the participant to attend the meeting. This is be

modeled as a goal dependency AttendsMeeting(p,m); Initiator is the

depender, Participant is the dependee, and the goal AttendsMeeting(p,m) is

the dependum, which is put inside an oval. The initiator becomes vulnerable when a

participant cannot achieve the goal AttendsMeeting(p,m). For example, if a

participant is on vacation, then the initiator might have to cancel the meeting because the

attendance of this participant is very important for the meeting.

"In a task-dependency, the depender depends on the dependee to carry out an activity"

[Yu95B]. The task-dependency specifies how the depender depends on the dependee to

complete a certain task through some activities. The dependum is how the task is to be

performed, but not why. The depender is vulnerable since the dependee may fail to

perform the task. The dependee might be not able to perform the task or might decide not

to perform the task even when it is able to, e.g., if it decides that there are more important

things for it to do due to other commitments. For example, in Figure 3.1, the initiator

depends on the participant to send its available dates for the meeting. This is modeled as

a task dependency EnterAvailDate(p,m); Initiator is the depender,

Participant is the dependee, and the task EnterAvailDate(p,m) is the

dependum, which is put in a diamond. The initiator is vulnerable if the participant refuses

to enter his available dates because he might dislike attending this kind of meeting. The

initiator will be hurt in this case and may have to cancel the meeting.

"In a resource-dependency, one actor (the depender) depends on the other (the dependee)

for the availability of an entity (physical or informational)" [Yu95B]. By having this

dependency, the depender is able to use the resource provided by the dependee and

meanwhile becomes vulnerable if the resource is not provided. For example, in Figure

 27

3.1, the participant depends on the initiator to propose a meeting date. This is modeled as

a resource dependency ProposedDate(m), where Participant is the depender,

Initiator is the dependee, and the resource ProposedDate(m) is the dependum,

which is put inside a rectangle. The participant is vulnerable if the initiator cannot

provide a proposed meeting date suitable for his schedule; then he cannot attend the

meeting.

"In a softgoal dependency, a depender depends on the dependee to perform some task that

meets a softgoal" [Yu95B]. Softgoal dependencies are related to the notion of non-

functional requirements (or quality requirements). They involve goals that can be

satisfied to various degrees, and needs to be optimized. By identifying alternatives and

having the depender choose an alternative, the goals could be clarified during the process

of trying to achieve them. Usually, the dependee provides the alternatives, but the

decision of choosing an alternative is made by the depender. Through this dependency,

the depender gains the opportunity of having the goal condition satisfied, but becomes

vulnerable in case the dependee fails to have the condition satisfied. These types of

relationships cannot be expressed or distinguished formally in the non-intentional models

that are used in most other requirements modeling frameworks.

In Figure 3.1, the initiator depends on the participant to assure him of his attendance at

the meeting. How the participant’s attendance should be assured is decided by the

initiator. An email notification or a phone call might be enough. This is modeled as a

softgoal dependency Assured[AttendsMeeting(p,m)]. Initiator is the

depender, Participant is the dependee, and the softgoal

Assured[AttendsMeeting(p,m)] is the dependum, which is put inside a flag-

shape. The initiator might have to cancel the meeting if it is not assured of an important

participant's attendance.

 28

These four types of dependencies also describe how either side of the dependency makes

decisions to having the dependency supplied, thus indicating who will take care of

problems when they arise. For a goal dependency, the dependee makes decisions on how

to achieve the goal. For a task dependency, the depender makes decisions that specify

how to perform the task. For a resource dependency, because a resource is the result of

some deliberation-action process, it is assumed that there are no open issues or decisions

to be made. For a softgoal dependency, the depender makes the final decision, but lets the

dependee determine what the alternatives are. Note that there is similarity between these

notions and the notion of "design by contract" [Meyer91] used in software engineering.

• Dependency Strength

The SD model also classifies the degree of strength of dependencies. A stronger

dependency means that the depender is more vulnerable and the dependee will make a

greater effort in trying to provide the dependum. The depender is likely to take actions to

decrease vulnerability in such case. There are three degrees of strength of dependencies

in the SD model: open (uncommitted), committed, and critical [YM94D]. "In an open

dependency, a depender would like to have the dependum goal achieved, task performed,

or resource available, so that it could be used in some course of actions" [Yu95B]. If the

dependum is not supplied, the depender’s goals would be affected somehow but the

consequences would not be serious. "In a committed dependency, the depender has goals

which would be significantly affected ! in that some planned course of action would fail

! if the dependum is not achieved" [Yu95B]. In a case where a series of actions will be

performed and cannot be reversed, the depender might have to investigate this case

significantly. Because of its vulnerability, a depender would be concerned about the

viability of the committed dependency, i.e., whether there is a viable way to supply this

dependency. Meanwhile the dependee will try its best to supply the dependum, e.g., by

making sure that is own dependencies are viable. "In a critical dependency, the depender

has goals which would be serious affected ! in that all known courses of action would

 29

fail ! if the dependum is not achieved" [Yu95B]. In this case, the depender would be

concerned not only about the viability of the immediate dependency, but also about the

viability of the dependee’s dependencies, and the dependee’s dependee’s dependencies

and so on [Yu95B] [Yu97].

• Knowledge Management

The SD model has been embedded into a formal conceptual modeling framework Telos

that allows for the effective usage and management of the potentially large amount of

knowledge involved when modeling real work processes [MYBJK91].

• Formal Characterization of the SD Model

The SD model has been presented informally using descriptive text, a graphical notation,

and illustrative examples. In [Yu95B], Yu has developed a somewhat formal

characterization of the SD concepts in terms of agent modeling concepts developed in AI.

This involves the following notions: (1) Routines ! "A interconnected collection of

process elements serving some purpose for an agent is called routine" . A routine is the

primary vehicle through which an agent can accomplish what it wants. The internal

characterization of an agent centers on the routines held by the agent, and the elements

that make up the routine. (2) Ability ! when an agent has a routine that can achieve a

certain goal, then it has an ability to achieve the goal. (3) Workability ! workability

means that an agent believes some routine would work, even though the routine is

incompletely specified or known; during strategic reasoning, an agent is content to reduce

a solution to a level at which all components are workable. (4) Commitments !

commitments means that if an agent is able to achieve a goal and committed to doing so,

then the goal is workable for the agent. Commitments thus provide an abstraction that

allows workability to be judged without having to know about the routines used to

achieve the goal. (5) Vulnerability ! the characterization of vulnerability is based on the

 30

extent to which the workability of a goal would affect the workability of the routine in

which the goal is supposed to serve.

• Analysis Methods Based on the SD Model

The SD model can be analyzed based on the following features [Yu95B] [Yu97]: (1)

Opportunity and Vulnerability: The chains of dependencies in a SD model can help us to

explore the expanded possibilities that are accessible to an actor. This brings out the

opportunities for the process. An actor could also use the dependency network to

determine how it might be adversely by these dependencies. This brings out the

vulnerability of the actor. By enlisting the dependees, a depender seeks opportunities of a

process and can achieve what would otherwise be unachievable. By matching the

dependencies from dependers and those from dependees, one can explore opportunities

that are available to these actors. Classification and generalization hierarchies facilitate

the matching of dependums [Yu95B]. (2) Commitment, Assurance, Insurance: These

mechanisms contribute to revising a dependency and to lessening vulnerability. A

commitment is implementable if there is some way for the depender to cause some goals

of the dependee to fail, i.e., if there is a reciprocal dependency. The dependee has to try to

supply the dependum for the depender to avoid its goals not being satisfied. Assurance

means that there is some evidence that the dependee will deliver the dependum, apart

from the dependee’s claim. Insurance mechanisms reduce the vulnerability of a depender

by reducing the degree of dependency on a particular dependee. By having more that one

dependee for the same dependum, a depender can increase the chances of a dependum

being achieved.

The SD model provides a formal representation of the nodes and links in a dependency

network, thus allowing for analysis based on network topology, i.e., chain analysis, loop

analysis, and node analysis [Yu95B]. It helps the modeler gain a deeper understanding of

a process and identify what is the stake, for whom, and what impacts are likely if a

 31

dependency fails. But it just provides a description about why a process is structured in a

certain way and doesn’t explicitly model the depender’s internal goals and desires. It does

not really support the process of suggesting, exploring, and evaluating alternative

solutions [Yu97]. The Strategic Rationale (SR) model of i* addresses these issues.

3.1.2 The Strategic Rationale (SR) Model

"In the Strategic Rationale (SR) model, the rationales behind process configurations can

be explicitly described, in terms of process elements and relationships among them"

[Yu95B]. The SD model provides one level of abstraction for describing organizational

environments and their embedded systems. It shows external (but nevertheless

intentional) relationships among actors, while hiding the intentional constructs within

each actor. The SD model can be useful for understanding organizational and systems

configurations as they exist, or as proposed new configurations. During early phase RE,

however, one would also like to have more explicit representation and reasoning about

actors’ interests, and how these interests might be addressed or impacted by different

system-and-environment configurations, existing or proposed. The SR model is proposed

to provide a more detailed level of modeling by looking “inside” actors to model internal

intentional relationships. Intentional elements (tasks, goals, resources, and softgoals)

appear in the SR model not only as external dependencies, but also as internal elements

linked by means-ends and task-decompositions relationships. The SR model elaborates

on the relationships between actors as described in the SD model.

The SR model provides a way of modeling stakeholder interests, and how they might be

met, and the stakeholder’s evaluation of various alternatives with respect to their

interests. Task-decomposition links provide a hierarchical description of intentional

elements that make up a routine. The means-ends links in the SR model provides

understanding about why an actor would engage in some tasks, pursue a goal, need a

resource, or want a softgoal. From the softgoals, one can tell why one alternative maybe

 32

chosen over others. For example, in meeting scheduling, availability information is

collected so as to minimize the number of rounds of interaction with the participants.

[MYCY99] [YM94] describe goal-oriented analysis using the i* framework and the

Strategic Rationale (SR) model of i*. [YM94A] [YM97] discuss the applications of i*

framework in software processes modeling. [DUYP98] [Yu95A] [YDDM95] discuss

different approaches to modeling organizational work and also give examples of how i*

may be used in combination with other modeling or specification languages in software

development. [YM94D] presents some formal axioms for the i* model.

The SR model is a graph consisting of four types of nodes, goal, task, resource, and

softgoal nodes, and two types of links, means-ends links and task-decomposition links.

“Task-decomposition links provide a hierarchical description of elements that compose a

task” [Yu97]. Means-ends links specify how a goal may be achieved. They provide

information about why an actor would perform a task, pursue a goal, need a resource, or

want a softgoal. From the softgoals, the modeler can tell why one alternative may be

chosen over others. For example, the SR model of Figure 3.2 elaborates on the SD model

of Figure 3.1; we explain its basic elements and features next.

• Nodes

There are four types of nodes, based on the same types as for dependum types in the SD

model ! goal, task, resource, and softgoal nodes.

"A goal is a condition or a state of affairs in the world that the actor would like to

achieve" [Yu95B]. How the goal is to be achieved is not specified, allowing alternatives

to be considered. For example, in Figure 3.2, MeetingBeScheduled is a goal node

that represents the goal of the meeting initiator that a meeting be scheduled.

 33

 LEGEND

 Goal Task Resource Softgoal

 Task-decomposition link

 Actor

 Means-ends link Actor boundary

 Contribution to softgoals

 "A task specifies a particular way of doing something" [Yu95B]. When a task is

specified as a sub-component of a super task, this restricts the super task to include that

particular course of action. For example, in Figure 3.2, ScheduleMeeting is a task

node that represents the task of the meeting initiator to schedule a meeting.

Initiator

 Participant

Organize

Meeting

MeetingBe
Scheduled

Quick

Schedule
Meeting

FindSuitable

Slot
Obtain

AvailDates

Obtain
Agreement

Merge
AvailDates

Participate

InMeeting

Attend
Meeting Arrange

Meeting

Agreeable
(Meeting,Date)

Low

Effort

 Find
AgreeableDate

AgreeTo
Date

Assured

[AttendsMeeting]

Attend
Meeting

Enter
AvailDates

Proposed

Date

Agreement

-

-

Figure 3.2 The SR model for a simple meeting scheduling process

+,-

 34

"A resource is an entity (physical or informational) that is not considered problematic by

actor" [Yu95B]. The main concern is whether it is available and from whom if it is an

external dependency. For example, in Figure 3.2, ProposedDate is a task node that

represents information about the proposed meeting date.

"A softgoal is condition in the world which the actor would like to achieve, but unlike in

the concept of (hard-) goal, the criteria for the condition being achieved is not sharply

defined a priori, and is subject to interpretation" [Yu95B]. If a softgoal is a

subcomponent in a task decomposition, it serves as a quality goal for that task, and thus

guides or restricts the selection among alternatives in further decomposition of that task.

For example, in Figure 3.2, Quick is a softgoal node that represents the condition that

the initiator wants the scheduling of the meetings to be done as quickly as possible.

• Links

There are two main classes of links: means-ends links and task decomposition links.

There are several types of means-ends links. A means-ends link represents a relationship

between an end ! a goal to be achieved, a task to be accomplished, a resource to be

produced, or a softgoal to be satisfied ! and a means for attaining the end. The means is

usually in the form of a task, since the notion of task represents how to do something. In

the graphical notation, the arrowhead points from the means to the end. For example, in

Figure 3.2, a means-ends link involves in the task node MergeAvailDates which is

the means and the goal node FindSuitableSlot which is the end; a thick arrow

connects the means to the end. This means-ends link represents the fact that the meeting

initiator finds a suitable date slot by merging all available dates.

There are two common means-ends link types involving softgoals. A softgoal-task link

has a softgoal as the end, and a task as the means. Softgoal-task links are shown as

curved arrows in the graphical notation. Links involving softgoals require an extra

 35

attribute to indicate the type of contribution ! positive or negative, enough or not

enough. The sofgoal-softgoal link permits the development of a means-ends hierarchy of

softgoals, until eventually some softgoals are addressed by linking to tasks. For example,

in Figure 3.2, inside the participant role, a softgoals-task link involves the end ! a

softgoal LowEffort and the means — a task FindAgreeableDate; a curved arrow

starts from the means to the end and the contribution attribute is represented by a

negative sign "-". This means that the participant’s finding agreeable dates himself

increases his efforts.

At an actor boundary, an incoming dependency link is also an implicit means-ends link,

with the dependum being the “end”. Other means-ends link types are possible as a result

of combining other element types for the means and for the end.

A task node is linked to its sub-components nodes by task decomposition links. There are

four types of task decomposition links ! subgoal, subtasks, resource, and softgoal; each

corresponds to the four types of sub-component nodes. These links also can connect up

with dependency links in the SD model, when the reasoning goes outside an actor’s

boundary. An outgoing dependency link is usually also a task-decomposition link, the

dependum being a sub-element of the task decomposed into. For example, in Figure 3.2,

the task ScheduleMeeting can be decomposed into four sub-components: a subtask

of obtaining available dates ObtainAvailDates, a subgoal of finding suitable date

slot FindSuitableDateSlot, a resource dependum which provides a proposed date

for a meeting, and a subtask of obtaining agreement from participants

ObtainAgreement. Every sub-component is connected to the decomposed task by a

line. The task ScheduleMeeting with its task-decomposition represents the fact that

in order to schedule a meeting, the initiator first obtains available dates from all

participants, then finds the suitable date slot for the meeting, then proposes a meeting

date to all participants, and then get an agreement on the proposed date (the ordering is

 36

not represented in the SR diagram). The task-decompositions describe how a process

operates and what the rationales behind it are.

Each task-decomposition link can be open, committed, or critical. Committed means that

the agent believes that the associated routine will fail if this element fails. Open means

that the routine would be affected, but would not necessarily fail. If the link is an

outgoing dependency link, the link can also be critical. Critical means that the agent

believes there is no other way to succeed. There may also be constraints among the

components of a task, such as temporal relationships that are not shown in the graphical

notation, but appear in the formal language notation Telos [MYBJK91].

• Routines and Rules

"A routine is a subgraph in the SR graph with a single link to a “means” node from each

“end” node" [Yu95B]. A routine therefore represents one particular series of actions

among the multiple alternatives presented at each "OR" node. The notion of a routine is

used to refer to one process and its rationales. Routines typically have connections to

other actors through dependency links in the SD model. The means-ends links in a SR

model are shown as embedded in particular context. They are rationales. However these

links can be seen as application of more generic relationship which says that whenever

you have some element as an end, you can use some other element as a means to that end.

Yu calls the generic principle a rule [Yu95B]. A rule consists of an applicability

condition, a means, and an end. A means-ends link is an application of a rule in a context

in which the agent believes the applicability condition to hold.

• Analysis Methods for the i* SR Model

The SR model provides a powerful set of concepts for modeling and analyzing processes.

First, the SR model helps in understanding the “whys” as well as the “how” behind

processes. Conventional process models view a process as activities with flows between

 37

them and provide a non-intentional view of a process. They leave out the motivations and

the rationales behind the process and do not consider alternatives. Using means-ends

links, the SR model can provide a view of process that is goal-oriented (i.e., intentional).

By being agent-oriented, the SR model investigates where intentional processes are

coming from and proceed towards. One can ask a how question, i.e., how can this goal

(node) be achieved, seeking a means to the desired end. One also can ask a why question,

seeking to discover the end for which the current node is the means. By being able to

express "whys" and "how", the model gives a deeper understanding based on means-ends

reasoning. One can see that there are alternatives, and that actors have choice. One can

thus better forecasts the implications of change.

Second, the SR model also provides task decomposition and composition. Many

modeling frameworks have incorporated the composition/decomposition features so that

description of processes can be hierarchical. But the SR model allows task decomposition

to include different types of components, not just a decomposition of activities into sub-

activities. In a non-intentional context, activities are merely carried out. There is no

notion of success or failure, or goal-achievement with different means. Under SR, one

assumes an intentional, strategic modeling context. Thus, one can classify task

components by the degree of openness or uncertainty. A goal means that one expects

there can be different ways of achieving it – alternatives come out. A task means there

are constraints on how to perform it. Quality concepts that constrain the selection among

alternatives are represented by softgoals. At the bottom of the means-ends hierarchy in

the SR model, task elements can still be goals or tasks. Process execution would require

further problem solving at run-time.

Third, the SR model supports process analysis and design activities. In analyzing a

process, one can examine the network of links involved. Moreover, one can do analysis

that is of strategic concern at the actor level: whether an actor knows how to do

 38

something, whether it will work, how well it will work, and why the agent believes it will

work. In design, one can systematically explore alternatives, by seeking means to ends.

Several additional concepts that enlarge the analytical power of the SR model are: (1)

Ability ! does the actor have a process for accomplishing the goal? (2) Workability ! is

the process going to work? (3) Viability ! how well will it work? (4) Believability !

what evidence is there to confirm or disconfirm that it will work? Let us sketch how these

notions are used in analysis (the examples used here are from [Yu97]). In a meeting

scheduling process, when a meeting initiator has a routine to organize a meeting, he is

said to be able to organize a meeting. One that is able to organize one type of meeting is

not necessarily able to organize another type of meeting. Given a routine, we can analyze

it for workability and viability. Organizing meeting is workable if there is workable

routine for doing so. To determine workability, we have to inspect the workability of

each element. For example, can the initiator obtain availability information from

participants, find agreeable dates, and can obtain an agreement from participants. If

workability of an element cannot be confirmed by the actor, the element needs to be

further elaborated. If the subgoal FindSuitableSlot is not primitively workable, it

needs to be elaborated in terms of a particular way for achieving it. For example, one

possible means for achieving it is to do an intersection of the availability information

from all participants. If this task is confirmed to be workable by the initiator, then the

FindSuitableSlot goal node would be workable. A task can be workable by way of

external dependencies on others. The workability of ObtainAvailDates and

ObtainAgreement are evaluated in terms of the workability of the commitments of

meeting participants to provide availability information and agreement.

A routine that is workable is not necessarily viable. Although computing intersection of

time slots by hand is possible, it is slow and error-prone. Potentially good slots may be

missed. When softgoals are not satisfied, the routine is not viable. Note that a routine

which is not viable from one actor’s view may be viable from another actor’s view. For

 39

example, a routine where the initiator does all the work for scheduling meetings may be

viable for participants, if the resulting meeting dates are convenient, and the meeting

arrangement efforts do not involve too many interruptions; but it may not be viable for

the initiator. The assessment of workability and viability is based on many beliefs and

assumptions; these can be provided as justifications for the assessment. The believability

of the rationale network can be analyzed by checking the network of justifications for the

beliefs. For example, the argument that finding agreeable dates by merging available

dates is workable may be justified with the assertion that the initiator has been doing it

this way for years and it works. The evaluation of such goal graphs can be supported by

graph propagation algorithms following a qualitative reasoning framework [DuBois95]

[Yu95B].

The SR model allows us to raise ability, workability, and viability as issues that need to

be addressed, and by using means-ends reasoning, these issues can be addressed

systematically, resulting in new configurations that can be evaluated and compared.

Means-ends rules that encode know-how in the domain can be used to suggest possible

alternatives. Issues for stakeholders that are cross-impacted may be discovered during

this process, and can be raised so that tradeoffs can be made. Issues are settled when they

are deemed to be adequately addressed by stakeholders. Once settled, one can then

proceed from the descriptive model of the i* framework to a prescriptive model that

would serve as the requirements specification for systems development. Believability can

also be raised an issue, and then assumptions would have to be justified.

3.1.3 Discussion

i* is designed for early-phase requirements engineering and focuses on capturing the

rationales from various choices made for the system. Most of approaches discussed in

chapter 2 are either for late-phase requirements to produce a precise, complete, and

unambiguous requirements specification, such as ALBERT-II, KAOS, etc., or for system

 40

design to specify the functional components at a detailed level, such as Z-notation, UML,

BON, etc. However, i* is a graphical notion that is somewhat informal. It has an

axiomatic semantics, but it is somewhat abstract, being based on notations such as

"having a routine". It is also limited in its ability to represent complex processes and does

not support simulation and verification. By combining it with ConGolog, we can address

these limitations.

3.2 The ConGolog Modeling Framework

3.2.1 Introduction

ConGolog [DLL97] [DLL00] [LKMY99] is an agent-oriented process-modeling

framework that is very expressive and fully formal. It is well adapted to the late-

requirements-engineering and early-design stages of system development, when detailed

alternative process designs have been specified and need to be compared. A process

simulation tool has already been developed for process model validation, and verification

methods and tools are being developed. The language has been used to model various

multiagent applications [DLL00] [LKMY99] [LLRU97] [LTJ98] [SLL97] (e.g., meeting

scheduling, feature interaction resolution). It also has been used as an implementation

language for agent systems [Tam98] [LKMY99] [LLRU97] [LTJ98] [SLL97].

ConGolog is based on a logical formalism, i.e., the situation calculus. The situation

calculus [MH79] is a first-order language for representing dynamically changing worlds.

The version of the situation calculus used in ConGolog is described in [DLL00]

[LKMY99] [Reiter91]. The ConGolog framework can be used to model complex

processes involving loops, nondeterminism, concurrency, and multiple-agents. It is an

extension of Golog [LRLLS97]. In ConGolog, the effects of actions in a dynamic domain

are specified in a logical framework; this supports modeling even in the absence of

complete information. The behavior of agents in the domain is specified in a concurrent

 41

process language whose semantics is defined in the same logical framework. Because of

its logical foundations, ConGolog can accommodate incompletely specified models,

either in the sense that the initial state of the system is not completely specified, or in the

sense that the processes involved are nondeterministic and may evolve in any number of

ways. These features are especially useful when one models business processes and open-

ended real-world situations.

3.2.2 Modeling a Domain

In ConGolog, an application domain is modeled logically so as to support reasoning

about the specification. A ConGolog model of a domain includes two components. The

first component is a specification of the domain dynamics, i.e., how to model the state,

what is the initial state of the domain, what actions can be performed, when the actions

can be performed, and what their effects are. This component is specified in purely

declarative way, in the situation calculus or in a high-level language called the Golog

Domain Language (GDL). The full syntax and semantics of GDL are defined in

[LRLLS97]. In this thesis, we use the encoding of the situation calculus used by the

Prolog implementation of ConGolog to specify the domain dynamics rather than GDL.

The second component of a ConGolog domain model is a specification of the processes

that are unfolding in the domain, i.e., the behavior of the agents involved in the domain.

To support the modeling of domains involving complex processes, this component is

specified procedurally in the ConGolog process description language. In this thesis, we

use the notation of the Prolog implementation of this process language to specify process.

Both components have formal semantics defined in the situation calculus. Various

mechanisms for reasoning about properties of a domain have been implemented using

this situation calculus semantics.

 42

3.2.3 Modeling Domain Dynamics

The first component of a ConGolog model is a specification of the dynamics of the

domain and of what is known about its initial state. The situation calculus can be used to

specify this component.

3.2.3.1 The Situation Calculus Language

In the situation calculus, we imagine the world as starting out in a particular initial

situation or state, and evolving into various other possible situations through the

performance of actions by various agents. We use the simple meeting scheduling process

as our example to introduce the situation calculus and the ConGolog framework. A

dynamic domain is modeled in terms of the following entities:

• Agents: The agents involve in the modeled system. For example, in the simple

meeting scheduling process, the initiator and the participants are the agents who will

be involved in the process of scheduling a meeting.

• Primitive Actions: In the situation calculus, all changes to the world are the results of

named primitive actions that are performed by some agent in the system. Actions are

denoted by function symbols and are also first-order terms that take the agent and

possibly other parameters. For example, in our simple meeting scheduling process,

the action SendAvailDates(Participant,Ini,Meeting,Availdates)

represents Participant sending his available dates Availdates to the initiator

Ini regrading Meeting. The preconditions and effects of primitive actions are

specified by axioms. We discuss this later.

• Exogenous Actions: In order to complete the simulation of the system of interest,

some actions may have to be performed by agents outside the system who are not

modeled in detail; those actions are called exogenous actions. For example, the action

 43

occupyDateFromParticipant(Participant,Date) is an exogenous

action that represents that someone outside the meeting scheduling system books the

given date on the participant’s time schedule. Exogenous actions like ordinary

primitives must be formalized by axioms. In the simulation tool, exogenous actions

can be randomly generated.

• Situations: A possible world history, which is a sequence of actions, is represented by

a first order term called a situation. The constant “s0” is used to denote the initial

situation in which no action has been executed. There is a distinguished binary

function symbol do and a term do(a,s) denotes the situation which results from

action a being performed in situation s. For example:

 do(SendAvailDates(Participant,Initiator,Meeting,AvailDates),S)

denotes the situation after Participant has sent his available dates AvailDates to

Initiator regarding Meeting in situation S.

The sequence of actions in a history and the order in which they occur are obtained

from a situation term by reading off its action instances from right to left. For

example, “do(a3,do(a2,do(a1,s0)))” represents the history where a1, a2, and

then a3 are performed starting in the initial situation “s0”. For example, in the

meeting scheduling domain, we might have the situation term:

do(obtainAvailDates(initiator1,yves),

do(obtainAvailDates(initiator1,jeff),

do(scheduleMeeting(initiator1,[jeff,yves],[11,12]),S0)))

This denotes the situation where first initiator1 commands the scheduling of a

meeting with jeff and yves on dates Feb. 11 or Feb. 12; then initiator1 makes

 44

a request to obtain his available dates from jeff, and then requests to obtain his

available dates from yves.

• Fluents: Situations are described in terms of fluents. In the situation calculus, a

relation of interest to the modeler whose truth-value changes from situation to

situation is called a predicate fluent and is denoted by a predicate symbol taking a

situation term as its last argument. This makes the dependence of the value of the

fluent on the situation explicit. There are three types of fluents: predicate fluents,

functional fluents, and defined fluents. For example, we might write the following to

assert that a fluent holds in a situation:

 holds(sentAvailDates(Participant,Initiator,Meeting,AvailDates),

 do(A,S))

This says that after the action A has been performed in situation S, Participant

has sent his AvailDates to Initiator regarding Meeting; the fluent

sentAvailDates(Participant,Initiator,Meeting,AvailDates)

has become true.

Similarly, functions whose value varies from situations to situations are called

“functional fluents". For example,

 holds(val(participantTimeSchedule(Participant),DateList),S)

states that Participant’s time schedule, the value of the functional fluent

participantTimeSchedule(Participant), is DateList in situation S.

The value of participantTimeSchedule(Participant)will change when

some action occupies a date from Participant’s time schedule.

 45

One can also introduce defined fluents, which are defined in terms of the primitive

fluents, We don't need to specify how these derived fluents are affected by actions

since this can be deduced from their definitions.

3.2.3.2 Domain Dynamics Specification in the Situation Calculus

The dynamics of a domain are specified using three kinds of axioms that specify when

actions can be performed, what the effects of performing the actions are, and what the

initial state of the system is:

• Action Precondition Axioms: These axioms state the conditions under which a

primitive action can be performed. They use the predicate poss(a,s), which

means that action a is possible in situation S. For example, in the simple meeting

scheduling process, we have the following precondition axiom:

poss(acceptAgreement(Participant,Initiator,Date,Meeting),S)

∀ DateIsFree(Date,Participant,S)

In the notation of the Prolog implementation we write:

poss(acceptAgreement(Participant,Initiator,Date,Meeting),S)

:- holds(DateIsFree(Date,Participant),S)

This means that the action where Participant agrees to meet on Date,

acceptAgreement(Participant,Initiator,Date,Meeting), is

possible in situation S if and only if Date is free for Participant in situation S.

The modeler must provide a precondition axiom for each primitive action. From now

on, we use the Prolog implementation's notation.

 46

• Successor State Axioms: These axioms specify how fluents are affected by the actions

in the domain. For example, in the simple meeting scheduling domain, we might have

the following successor state axiom:

holds(sentAvailDates(Participant,Initiator,M,AvailDates),do(A,S))

:- A = sendAvailDates(Participant,Initiator,M,AvailDates),

 holds(sentAvailDates(Participant,Initiator,M,AvailDates),S)

This means that Participant has sent his available dates to Initiator

regarding the meeting M in the situation that results from action A being performed in

situation S if and only if action A is that of Participant’s sending his dates to

Initiator or if Participant had already sent his available dates to

Initiator regarding the meeting M in situation S. Successor state axioms can be

generated automatically from a specification of the effects of the actions if we

assume that they specify all of the ways that the value of the fluent may change. A

tool that does this is described in [LKMY99]. As we see below, successor state

axioms provide a solution to the frame problem [MH79] [Reiter91]. A domain

specification must include a successor state axiom for each primitive fluent.

• Initial Situation Axioms: These axioms specify the initial state of the modeled system.

The process of the system starts from the initial situation specified by these axioms.

For example, in our meeting scheduling process, we have an initial situation axiom,

holds(val(participantTimeSchedule(yves),[11,12]),s0),

meaning that yves has meetings on Feb. 11th

and 12th

in the initial state.

• Dealing with the frame problem: The sort of logic-based framework we have

described allows incomplete information about a dynamic domain to be specified. But

this creates difficulties in reasoning about action and change. Effect axioms state

what must change when an action is performed, but do not specify what aspects of the

domain remain unchanged. One way to address this is to add frame axioms that

 47

specify when fluents remain unchanged by actions. For example, the initiator’s

obtaining available dates does not cause an agreement to be accepted:

holds(not(agreementAccepted(Participant,Initiator,Date,Meeting)

 ,S)

A=obtainAvaildates(Initiator,Participant,Meeting)

∃ holds(not(agreementAccepted(Participant,Initiator,Date,Meeting)

 ,do(A,S))

The frame problem arises because the number of these frame axioms is very large, in

general, of the order of 2%A%F, where A is the number of actions and F is the number

of fluents. This complicates the task of axiomatizing a domain and can make

automated reasoning extremely inefficient. To deal with the frame problem,

ConGolog uses a solution proposed in [Reiter91]. The basic idea behind this is to

collect all effect axioms about a given fluent and make a completeness assumption,

i.e., assume that they specify all of the ways that the value of the fluent may change.

A syntactic transformation can then be applied to obtain a successor state axiom for

the fluent.

3.2.3.3 Summary

The ConGolog Framework has been extended in [SLL97] [SL01] to support the modeling

of agent mental states (knowledge and goals) and the effects of communication and

perception acts on them. It would be interesting to use these extensions for RE, but we

leave this for future work.

3.2.4 Modeling Domain Processes in ConGolog

As mentioned earlier, a ConGolog domain model includes a second component that

describes the processes unfolding in the domain. The process of a system is specified

procedurally in the ConGolog framework. The main procedure will specify the whole

system's behavior. Every agent also has a corresponding ConGolog procedure to

 48

represent its behavior in the system. The ConGolog framework includes constructs for

conditionals, loops, nondeterminism, concurrency, etc. Communication between agents

will be represented by actions as that one agent performs which affect certain fluents; the

other agent has access to these fluents and then can continue the process. This component

is specified in a procedural sub-language where the actions can be composed into

complex processes.

• Constructs in the ConGolog Process Specification Language

The ConGolog process specification language provides constructs for processes listed in

Table 3.1.

In Table 3.1, there are three nondeterministic constructs: &$&2 nondeterministically

chooses between processes &1 and &2; pi(variable,&) and

pi(ListOfVariables,&) nondeterministically picks a binding for the variables in

ListOfVariables/variable and performs the process & for this binding of

ListOfVariables/variable. &@ means performing & zero or more times. Note

that for(var,ListOfVariables, varList, &) is an abbreviation for

pi(varList,for(var,ListOfValues, &)).

Concurrent processes are modeled as interleavings of the primitive actions involved. The

primitive actions themselves are viewed as atomic and cannot be interrupted. A process

may become blocked when it reaches a primitive action whose preconditions are false or

a wait action ∋? whose condition ∋ is false. Then execution of the system may continue

provided another process executes next. In &1#>&2, &1 has higher priority than &2, and

&2 may only execute when &1 is done or blocked. &! is like nondeterministic iteration

&@, but the instances of & are executed concurrently rather than in sequence. Finally, an

interrupt ==>(varList, ∋,&) has a list of variables varList, a trigger condition

∋, and a body &. If the interrupt gets control from higher priority processes and the

 49

condition ∋ is true for some binding of the variables, the interrupt triggers and the body &

is executed with the variables taking these values. Once the body completes execution,

the interrupt may trigger again. With interrupts, it is easy to write process specifications

that are reactive in that they will suspend whatever task they are doing to handle given

conditions as they arise.

PrimActName(ArgList) primitive action

∋? Wait for condition ∋

[&1,&2,… ,&n] Sequential execution of programs &1, &2,…,&n

if (∋, &1,&2) If condition ∋ is true, execute &1, otherwise execute &2

while(∋, &) While condition ∋ is true, repeatedly execute of program &

for(var,ListOfValue,&) For each x in ListOfValues, execute & with var=x

ProcName(ArgList) Procedure call

&1$&2 Nondeterministic choice between programs &1 and &2

&1#=&2 Concurrent execution of programs &1 and &2 with equal priority

&1#>&2 Concurrent execution of programs &1 and &2 with &1 having

higher priority

&! Concurrent iteration

&@ Nondeterministic iteration

Pi(variable,&)

Pi(ListOfVariables,&)

Nondeterministic choice of arguments

==>(varList,∋,&) Interrupt

No_op do nothing

Table 3.1 Constructs for processes in ConGolog

The construct for procedure definition in ConGolog is as follows:

 proc(name(Parameters), &)

 50

It defines a procedure with Parameters and the body &. Procedure definitions are

global.

Constructs for conditionals in ConGolog are listed in Table 3.2.

and(∋1,∋2) Conjunction

or(Condition1,Condition2) Disjunction

Condition1 --> Condition2 Implication

not(Condition) Negation

some(variable,Condition)

some(varList,Condition)

Existential quantification

val(Fluent_name(ArgList),Value) Atomic formula involving in functional fluent

Fluent_name(ArgList) Atomic formula with predicate fluent

true Always true

Table 3.2 Constructs for conditionals in ConGolog

Note that in the implementation we use ordinary Prolog variables for parameters in

procedure definitions, Elsewhere, that is in pi, some, and for, the variables bound

by the construct are Prolog constants.

• Specifying a System in ConGolog

The whole system is specified by the main procedure. Usually, main executes a sub-

process for each agent in the domain. For example, a system with an initiator and a single

participant running concurrently would be defined as follows:

 proc(main,

 initiator_behavior#=

 participant_behavior

).

 51

The behavior of the initiator would be specified in the initiator_behavior

procedure. This agent might perform the following activities: ordering the scheduling of a

meeting, obtaining available dates from participants, finding the suitable dates for

participants by merging the available dates with the proposed meeting dates, proposing a

suitable date (requesting the agreement on the date and waiting for an answer to the

request). These activities are performed in sequence because each activity depends on

what has been done earlier. We can use the following procedure to specify the initiator’s

sequentially performing these activities:

proc(initiator_behavior,

 [orderScheduleMeeting,

 obtainAvailableDates,

 findSuitableDateSlot,

 proposeAMeetingDateForAgreement,

 answerReceived?

]

).

orderScheduleMeeting represents the initiator’s ordering scheduling a meeting,

obtainAvailableDates represents the initiator’s obtaining the available dates

from the participants, etc.

The behavior of the participant would be specified by the participant_behavior

procedure. Here, the participant is essentially reactive and will passively answer requests

from the initiator whenever a request is made; so we specify its behavior using interrupts.

This agent has following responsibilities: sending available dates when requested,

acknowledging the occupation of a date by an outside agent, and answering a request for

agreement to a meeting date. Each of these is handled by an interrupt, and they are

executed concurrently with equal priority. We can write the following procedure to

specify this behavior for the participant:

 52

proc(participant_behavior,

 ==>(requestedSendAvailableDates, sendAvailableDate)

 #=

 ==>(requestedOccupyDates, acknowledgeOccupyDate)

 #=

 ==>(requestedAgreement, answerAgreement)

).

The first interrupt will ensure that whenever the initiator has requested the participant's

available dates, the participant will proceed to send his available dates. To ensure that the

interrupt triggers only once, sending the available dates should make

RequestedSendAvailDates false. The other interrupts work in a similar way.

We will present more complicated processes in chapters 5 and 6. A formal semantics for

the ConGolog process description language has been defined within the Situation

Calculus [DLL00]. The semantics is a type of structural operational semantics defining

executions as sequences of transitions over configurations involving a situation and a

program to be executed; see [DLL00] for details.

3.2.5 Analysing Domain Specifications Using ConGolog Tools

Simulation is a useful method for validating domain models and comparing process

alternatives. A tool for incrementally generating execution traces of ConGolog process

specifications has been developed. This tool can be used to check whether a model

executes as expected in various conditions by investigating the action trace shown by the

simulation. There is also graphical viewer to support displaying the action traces and

querying the fluent values [LKMY99].

The simulation tool is based on Prolog implementation of the ConGolog framework. The

ConGolog interpreter, which takes a ConGolog domain specification and a process

specification, generates execution traces that satisfy the process specification given the

domain theory. The interpreter uses the domain theory in evaluating test and checking

 53

whether action preconditions are satisfied as it generates the execution traces. The Prolog

implementation of the interpreter is described in detail in [GLL00].

In our simulation work, we don’t use the graphical viewer to show the simulation of

ConGolog process specification, since using the viewer requires additional specifications

to describe how fluent values are to be displayed. But the process execution can be

stepped through and exogenous events can be generated at random according to a given

probability distribution.

The Prolog implementation of the ConGolog framework is fairly efficient and can be

used for both simulation and for deploying actual applications when one provides

implementations for the actions used. However, the current implementation is limited to

specifications of initial situation that can be represented as logic programs, which are

essentially closed-world theories. This is a limitation of the logic programming

implementation, not the ConGolog framework.

One may be interested in verifying that the processes in a domain satisfy certain

properties. For example, in a mail-order business process, we may be interested in

showing that no order is ever shipped before payment is processed. The ConGolog

framework supports this through its logic-based semantics. A discussion of how

ConGolog supports verification appears in [LKMY99]. A user-assisted verification tool

that can handle arbitrary ConGolog theories, including incompletely specified initial

situations and specifications of agents’ mental states is being developed. Due to time

limitations, we don’t address the use of verification in our thesis and leave it for future

work.

 54

3.2.6 Summary/Discussion

ConGolog is a fully formal and very expressive language. The situational calculus is the

logical foundation of the ConGolog framework that supports its use in verification.

Unlike many other formalisms, it supports simulation given sufficient information about

the initial situation, and complex system behaviors are easy to specify using its rich

procedural language.

ConGolog can be used both for late-phase requirements engineering and early-phase

system design. The analyst can exploit its modeling features and perform simulation and

verification based on its logical semantics. But ConGolog cannot address issues such as

why the process is the way it is, i.e., the motivations, intentions, and rationales behind the

activities. If one does not understand why things are done the way they are, one is likely

to pick unsatisfactory alternatives for the system of interest, or simply automate outdated

processes and miss the opportunity to innovative in redesigning processes. In this thesis,

we investigate how i* and ConGolog can be used together to address these issues in

requirements engineering.

 55

4 A Methodology for the Combined Use of

the i* and ConGolog Frameworks

The i* SR diagram notation allows many aspects of processes to be represented. It can be

used to model why the process is the way it is, what are the motivations, intents, and

rationales behind the activities and entities, what are other innovative alternative

solutions to the process, and what are the relationships among the participants of the

system. These relationships are strategic in the sense that each party is concerned about

opportunities and vulnerabilities. But the i* SR diagram notation is somewhat imprecise

and the models produced are often incomplete. For instance, it does not specify whether

the subtask in a task decomposition link has to be performed once or several times,

whether the subtasks/subgoals are to be performed concurrently, alternatively, or

sequentially, and under what conditions they should be performed. In a ConGolog model,

the process must be completely and precisely specified (although non-deterministic

processes are allowed). We need to bridge this gap. To do this, we will introduce a set of

annotations to SR diagrams that allow the missing process information to be specified.

The defined annotations will allow the modeler to specify detailed information about the

behavior of every agent, role, and position in the SR model, i.e., what are the conditions

for a task to be performed/a goal to be achieved, how are the different tasks/goals to be

composed to produce the full behavior of an actor, etc. We also require the modeler to

operationalize dependencies between actors, i.e., clarify what interaction (e.g., requests,

replies, etc.) has to occur between the actors to have the dependum supplied.

The result of this is an annotated SR diagram, a model in an intermediate notation

between the initial i* SR model and the desired ConGolog model. In this annotated SR

diagram, dependencies are operationalized and all tasks/goals are decomposed into

 56

subtasks/subgoals using the introduced annotations until the process specification is clear

enough for the modeler to obtain a corresponding ConGolog model. This annotated SR

diagram specifies how a process actually proceeds at a detailed level. Obtaining this

annotated i* SR model will help the modeler gain a deeper understanding of the

requirements of the system.

We also want to have a tight mapping between the annotated SR diagram and the

ConGolog model, one that specifies which parts of each model are related and what

entity in annotated SR diagram is corresponding to what entity in the ConGolog model.

This allows us identify which parts of the ConGolog model need to be changed when the

SR model is modified and vice versa. So we will require the modeler to define such a

mapping. We want to ensure that the mapping respects the semantics of both frameworks,

so we define a set of mapping rules that define what mappings are allowed. The mapping

rules help ensure consistency between the annotated i* SR model and the corresponding

ConGolog model. The modeler has to respect the mapping rules and map entities in the

annotated i* SR model into appropriate elements in the ConGolog model. Finally, after

this, we introduce our methodology for combined use of the i* and ConGolog

frameworks.

Let us outline the structure of this chapter.

In section 4.1, we discuss the definitions of two types of SR diagram annotations:

composition and link annotations. Composition annotations are applied to a group of

decomposition links in task/goal decompositions. They help in clarifying whether the

subtasks/subgoals are performed sequentially, concurrently, or are the alternative ways to

achieve the super-task/super-goal. Link annotations are associated to a single

decomposition link connecting a super-task/super-goal with a subtask/subgoal. They

 57

specify under what condition the associated subtask/subgoal should be performed and

whether it should be performed once or repeatedly.

Then in 4.2, we discuss the operationalization of dependencies. By adding

communication actions into the depender and the dependee, such as the depender’s

requesting for a dependum, the dependee’s waiting for the request, the dependee

performing tasks/goals to provide the dependum, etc., the process by which a

goal/task/resource dependency is fulfilled is clarified.

In section 4.3, we discuss the steps involved in producing the annotated SR diagram that

can be mapped into a ConGolog model.

Then in 4.4, we discuss the mapping rules that are used to ensure that entities in an

annotated SR diagram are mapped into appropriate entities in a ConGolog model and that

the models are consistent. Two types of mapping rules are defined: SR node mapping

rules and SR link mapping rules. The former ensures that nodes in the annotated SR

diagram are mapped into appropriate entities in the ConGolog model. The latter ensures

that the process of accomplishing the decomposed task/goal is correctly mapped into

entities in the ConGolog model.

Finally, in 4.5, our methodology for the combined use of the i* and ConGolog

frameworks is introduced and the steps of applying the methodology are specified.

4.1 SR diagram Annotations

Two types of annotations are defined: composition annotations and link annotations.

Composition annotations are applied to groups of decomposition links in the SR model.

These annotations clarify how the linked subtasks/subgoals are to be composed in order

to perform the super-task/super-goal, i.e., show whether these subtasks/subgoals are

 58

performed concurrently, sequentially, whether they are alternatives, etc. Link annotations

are applied to single decomposition links connecting a super-task/super-goal with its

decomposed subtasks/subgoals. These annotations describe under what conditions a

subtask/subgoal is to be performed and whether it should be done once or repeatedly. The

annotations help the modeler map the annotated i* SR model into an explicit ConGolog

process model.

4.1.1 Composition Annotations

The composition annotations are applied to groups of decomposition links in the

annotated SR model. These annotations clarify the relationships among the

subtasks/subgoals and their composed super-task/super-goal. There are four types of

composition annotations: sequence annotation “;”, alternative annotation “|”,

concurrency annotation “||”, and prioritized concurrency annotation “>>”.

• The Sequence Annotation “;”

The sequence annotation is used to specify that the subtasks/subgoals involved in a

decomposition are to be performed in sequence in order to accomplish their composed

super-task/super-goal.

 N

 n1 n2 nk

Figure 4.1 Sequence annotation applied to a group of decomposition links.

For example, in Figure 4.1, the super-task/super-goal N is decomposed into its

subtasks/subgoals n1, n2, … , and nk and the sequence annotation “;” is put on this group

of decomposition links. This means that the subtasks/subgoals n1, n2, …, and nk are to be

performed sequentially left to the right to accomplish the super-task/super-goal N. The

;

……

 59

sequence annotation “;” will be mapped into the sequence operation “,” provided by

ConGolog.

The sequence annotation is taken to be the default annotation on a group of

decomposition links and is often left out. When no annotation appears on a group of

decomposition links, the sequence annotation is assumed.

• The Concurrency Annotation “||”

The concurrency annotation is used to specify that the subtasks/subgoals involved in a

task/goal decomposition to which the annotation is applied are to be performed

concurrently.

 N

 n1 n2 nk

Figure 4.2 Concurrency annotation applied to a group of decomposition links.

For example, in Figure 4.2, the super-task/super-goal N is decomposed into its

subtasks/subgoals n1, n2, …, and nk and the concurrency annotation “||” is put on the

group of decomposition links. This means that the subtasks/subgoals n1, n2, …, and nk are

to be performed concurrently to accomplish the super-task/super-goal N. The concurrency

annotation “||” will be mapped into the concurrency operation “#=” provided by

ConGolog.

• The Alternative Annotation “|”

The alternative annotation is used to specify that the subtasks/subgoals involved in a

task/goal decomposition to which the annotation is applied are different alternative ways

of accomplishing the super-task/super-goal.

||

……

 60

 N

 n1 n2 nk

Figure 4.3 Alternative annotation applied to a group of decomposition links.

For example, in Figure 4.3, the super task/goal N is decomposed into its

subtasks/subgoals n1, n2, …, and nk and the alternative annotation “|” is put on the group

of decomposition links. This means that any one of the subtasks/subgoals n1, n2, …, and

nk can be selected as an alternative to accomplish the super-task/super-goal N. The

alternative annotation “|” will be mapped into the alternative operation “$” provided by

ConGolog.

• The Prioritized Concurrency Annotation “>>”

The prioritized concurrency annotation is used to specify that the subtasks/subgoals

involved in a task/goal decomposition are to be performed concurrently in decreasing

order of priority.

 N

 n1 n2 nk

Figure 4.4 Prioritized concurrency annotation applied to

a group of decomposition links.

For example, in Figure 4.4, the super-task/super-goal N is decomposed into its

subtasks/subgoals n1, n2, …, and nk and the prioritized concurrency annotation “>>” is

put on the group of decomposition links. The subtasks/subgoals n1, n2, …, and nk are to

be performed concurrently in order to accomplish the super-task/super-goal N, and the

subtask/subgoal n1 has higher priority than n2, n2 has higher priority than n3, etc. This

|

……

>>

……

 61

means that n2 will only be executed when n1 is blocked waiting for some condition, n3

will be only executed when both n1 and n2 are blocked, etc. The prioritized concurrency

annotation “>>” will be mapped into the prioritized concurrency operation “#>”

provided by ConGolog.

4.1.2 Link Annotations

A link annotation is applied to a single decomposition link connecting a super-task/super-

goal with one of its subtask/subgoal. These link annotations are used to specify that the

linked subtask/subgoal must be performed/achieved repeatedly and/or under some

condition. In the absence of an annotation on a single decomposition link, it is assumed

that the subtask/subgoal must always be performed exactly once. The modeler uses the

link annotations to specify how the process works in detail.

There are five types of link annotations: while-loop annotation *while(condition),

for-loop annotation *for(variable,listOfValue), and interrupt annotation

*whenever(variableList,condition), which are iteration link annotations,

and if annotation if(condition) and pick annotation pick(variablelist,

condition), which are non-iteration link annotations.

• The While-Loop Annotation: *while(condition)

The while-loop annotation *while(condition) is used to state that the linked

subtask/subgoal should be performed repeatedly while condition is true.

 N

 *while(condition)

 n

Figure 4.5 While-loop annotation attached to a single decomposition link.

 62

For example, in Figure 4.5, the while-loop annotation *while(condition) is

attached to the link between the super-task/super-goal N and the subtask/subgoal n. This

means that the subtask/subgoal n should be performed repeatedly while condition is

true in order to accomplish the super-task/super-goal N. When condition in the while

loop annotation becomes false, the repetition terminates. The condition is tested

before each iteration. This annotation is mapped into the “while-loop” construct provided

by the ConGolog framework, and its semantics is the standard one for “while loops”.

• The For-Loop Annotation : *for(variable, listOfValues)

This annotation is used to specify that the subtask/subgoal is to be accomplished for each

element of the list listOfValues. The variable can be used to refer to the value of

the element in the subtask/subgoal.

 N

 *for(variable, listOfValues)

 n

Figure 4.6 For-loop annotation attached to a single decomposition link.

For example, in Figure 4.6, the for-loop annotation

*for(variable,listOfValues) is attached to the link between the super-

task/super-goal N and the subtask/subgoal n. This means that the subtask/subgoal n must

be performed for every member of the list listOfValues in sequence (left to right)

in order to complete the super-task/super-goal N. This annotation is mapped into the “for-

loop” construct provided by the ConGolog framework.

• The Interrupt Annotation : *whenever(variableList, condition)

This annotation is used to specify that the subtask/subgoal must be

performed/accomplished whenever there are values for the variables in variableList

 63

for which the condition has become true. (the variables may be parameters of the

subtask/subgoal).

 N

 *whenever(variableList, condition)

 n

Figure 4.7 Interrupt annotation attached to a single decomposition link.

For example, in Figure 4.7, the interrupt annotation

*whenever(variableList,condition) is attached to the link between the

super-task/super-goal N and the subtask/subgoal n. This means that the subtask/subgoal n

will be triggered whenever the condition becomes true for some bindings to the

variables in the variableList; then the subtask/goal n must be performed for these

bindings of the variables in the list. Once the subtask/subgoal n has finished, the interrupt

can be triggered again when the condition becomes true again. This annotation is

mapped into the “interrupt” construct provided by the ConGolog framework.

• The If Annotation: if(condition)

This annotation is used to specify that the linked subtask/subgoal is to be accomplished

only if the condition is true.

 N

 if(condition)

 n

Figure 4.8 If annotation attached to a single decomposition link.

For example, in Figure 4.8, the if annotation if(condition) is attached to the link

between the super-task/super-goal N and the subtask/subgoal n. Only when the condition

is true, the subtask/subgoal n will be performed one time in order to complete the super-

 64

task/super-goal N. If this condition is not true, the subtask/subgoal n will not be

performed and the process of the system skips this subtask/subgoal n and proceeds to the

other subtasks/subgoals. This annotation is mapped into the “if” construct provided by

the ConGolog framework, and its semantics is the standard one for “if”.

• The Pick Annotation: pick(variableList, condition)

This annotation is used to specify that the subtask/subgoal must be accomplished for

some values of the variables in the variableList that satisfy the condition.

 N

 pick(variableList, condition)

 n

Figure 4.9 Pick annotation attached to a single decomposition link.

For example, in Figure 4.9, the pick annotation pick(variableList,condition)

is attached to the link between the super-task/super-goal N and the subtask/goal n. This

means that in order to complete the super-task/super-goal N, the subtask/subgoal n must

be performed for some binding of the variables in the variableList that satisfies the

given condition. This annotation is mapped into the construct

pi(variableList,[condition?,task/achieve_goal] provided by the

ConGolog framework, where task/achieve_goal is the procedure corresponding to

the subtask/subgoal N.

4.2 Operationalizing Dependencies in the i* SR model

The dependencies between agents, roles, and positions in the i* SR model indicate that

the depender depends on the dependee to accomplish one of his tasks or goals or to

supply some resource. The i* model generally abstracts over the details of the associated

interaction between the agents (requests and communication acts), while the ConGolog

 65

model focuses on the operational aspects rather than the strategic/social aspects. We

believe that it is not necessary to represent the dependency relationship per se in the

ConGolog model, but the associated operational elements need to be represented; they

are an important part of the process performed by the agents. So we require the modeler

to operationalize the dependencies in the SR diagram, i.e., specify the tasks to be

performed by the depender and dependee in the interaction that ensure that the dependum

is supplied.

The details of how a dependency is operationalized depend on the particulars of the case.

It is up to the modeler to specify this. For example in some cases, the depender and

dependee will both be involved in the activities to supply the dependum. First, the

depender has to request the dependee to provide this dependum. The dependee has to

wait for the request from the depender and then perform a task/achieve a goal to supply

the dependum. Then the depender has to wait for the dependee to send him confirmation

of having supplied the dependum. All these activities will have to be introduced into the

SR model. In other cases, the dependee performs the task/achieves the goal/supplies the

resource without the depender having to request it. Then, we can simply view the task

(goal) involved in the dependency as a subtask (subgoal) of the task (goal) node in the

dependee where the dependency terminates. If the depender must wait for the

dependency to be fulfilled, this wait action should be represented as a task in the

depender. If the depender must also make a request to get the dependee to fulfill the

dependency, then this request should be represented as a task in the depender. In some

case, the depender and dependee may have to engage in a complex dialogue to have the

dependum supplied, and the protocol for this can be specified. Resource dependencies

can be operationalized as task dependencies where the task is to supply the resource.

As part of our methodology, the modeler is required to disambiguate the decomposition

links and operationalize the dependencies in the SR diagram. We call the result an

annotated SR diagram. Softgoals and the associated dependencies and links may also be

 66

dropped from the diagram, since they are usually not part of the resulting system’s

processes. Alternative ways of achieving goals or performing tasks that are not

considered for simulation in the ConGolog model may also be dropped.

There are four types of dependencies in the initial i* SR model, i.e.,

task/goal/resource/softgoal dependencies. Consider a generic case of a dependency

between agents, roles, or positions, where the depender and the dependee are both

involved in the activity to achieve this dependum. Suppose that first the depender has to

request the dependee to provide this dependum when he thinks it is necessary. Second,

the dependee has to wait for the request from the depender and then performs a

task/achieve a goal to supply the dependum. Third the depender has to wait the dependee

to send him confirmation of having supplied the dependum. Let us show how different

types of dependencies are operationalized in this generic case. We do not discuss the

operationalization of softgoal dependencies here since they will be dropped from the

annotated SR model. But when softgoal dependencies are reformulated into hard-goal

dependencies, they can be operationalized as goal dependencies.

• Operationalizing a Task Dependency

A task dependency between actors, roles, or positions indicates that the depender depends

on the dependee to perform a task in order to accomplish his task/goal. For example, in

Figure 4.10, the depender depends on the dependee to provide a task-dependum. The

dependency relates two nodes, n1 in the depender and n2 in the dependee. The nodes

may be tasks or goals.

 Depender Dependee

 n1 Task-dependum n2

Figure 4.10 SR diagram for the task dependency before operationalization.

 67

We suppose that the interaction between the actors that takes place to get the task-

dependum supplied is: the depender requests the dependee to accomplish the task-

dependum and then waits for the task-dependum to be performed by the dependee; the

dependee waits for the request and then performs the task.

 Depender Dependee

 n1 n2

 WaitForRequest

 RequestDependee WaitForDependee PerformTask Task-dependum

 PerformTask PerformedTask

Figure 4.11 SR diagram for the task dependency after operationalization.

The result of operationalizing the task dependency of Figure 4.10 is shown in Figure

4.11. First, the depender requests the dependee to perform the task dependum when it

wants to accomplish the task/goal n1, i.e., the task node

RequestDependeePerformTask. Second, when the dependee is in the process of

performing the task/goal n2, it will wait for the request from the depender, i.e., the task

node WaitForRequestPerformTask, and then performs the task when the request

is received, i.e., the task node Task-dependum. Finally the depender has to wait for

the dependee to complete the task-dependum in order to complete n1, i.e., the task node

WaitForDependeePerformedTask. In doing the operationalization, we move the

task-dependum inside the dependee as a subtask of the task/goal node n2 because the

dependee will perform it. We also add other necessary interaction tasks in the depender

and dependee to complete the process of supplying the task-dependum.

 68

In other cases, it may not be necessary for the depender to make a request and for the

dependee to wait for the request, and it may not be necessary for the depender to wait for

the dependee to complete the task-dependum before continuing with its remaining

process. The modeler is responsible for specifying the process to be followed.

• Operationalizing a Goal Dependency

A goal dependency between actors, roles, or positions shows that the depender depends

on the dependee to achieve a goal. The depender may become vulnerable if the goal fails

to be achieved by the dependee.

For example, in Figure 4.12, the depender depends on the dependee to achieve a goal-

dependum. The dependency relates two nodes, n1 in the depender and n2 in the

dependee. The nodes may be tasks or goals.

 Depender Dependee

 n1 Goal-dependum n2

Figure 4.12 SR diagram for the goal dependency before operationalization.

We suppose that the interaction between the actors that takes place to get the goal-

dependum supplied is: the depender requests the dependee to achieve the goal-dependum

and then waits for the goal-dependum to be achieved by the dependee; the dependee

waits for the request and then achieves the goal.

 69

 Depender Dependee

 n1 n2

 Goal-dependum

 RequestAchieve WaitForGoal WaitForRequestTo

 GoalDependum Achieved AchieveGoalDependum

 TaskToAchieve

 GoalDependum

Figure 4.13 SR diagram for the goal dependency after operationalization.

Then, when we operationalize the goal dependency of Figure 4.12, we get the diagram

shown in Figure 4.13. First, the depender requests the dependee to achieve the goal-

dependum when it wants to accomplish the task/goal n1, i.e., the task node

RequestAchieveGoalDependum. Second, in the process of performing the

task/goal n2, the dependee must wait for a request from the depender, i.e., the task/goal

node WaitForRequestToAchieveGoalDependum, and then perform a task to

achieve the goal-dependum, i.e., the task node TaskToAchieveGoalDependum.

Finally, the depender has to wait for the goal-dependum to be achieved by the dependee

in the process of completing its task/goal n1, i.e., the task node

WaitForGoalAchieved. In doing this operationalization, we move the goal-

dependum inside the dependee as a subgoal of the node n2 because the dependee will

achieve it. We also add other necessary interaction tasks in the depender and dependee to

clarify the process of supplying this goal-dependum.

In other cases, it may be not necessary for the depender to make a request and/or for the

dependee to wait for the request, and/or for the depender to wait for the dependee to

 70

achieve the goal-dependum. The modeler is responsible for specifying the process to be

followed.

• Operationalizing a Resource Dependency

A resource dependency between actors, roles, or positions indicates that the depender

depends on the dependee to supply some resource in order to accomplish his task/goal.

For example, in Figure 4.14, the depender depends on the dependee to supply a resource-

dependum. The dependency relates two task/goal nodes, n1 in the depender and n2 in the

dependee.

 Depender Dependee

 n1 Resource-dependum n2

Figure 4.14 SR diagram for the resource dependency before operationalization.

We suppose that the interaction between the actors that takes place to get the resource-

dependum supplied is: the depender requests the dependee to supply the resource-

dependum and then waits for the resource-dependum to be supplied by the dependee; the

dependee waits for the request and then supplies the resource.

Then, the resource dependency of Figure 4.14 is operationalized into the SR model

shown in Figure 4.15.

 71

 Depender Dependee

 n1 n2

 WaitForRequest

 RequestSupply WaitForResource SupplyResource SupplyResource

 Resource Supplied

Figure 4.15 SR diagram for the resource dependency after Operationalization.

First, the depender requests the dependee to supply the resource in order to complete its

the task/goal n1, i.e., the task node RequestSupplyResource. Second, in order to

accomplish the task/goal n2, the dependee must wait for the request from the depender,

i.e., the task node WaitForRequestSupplyResource, and then performs a task to

supply the resource when the request is received, i.e., the task node SupplyResource.

Finally the depender has to wait for the dependee to complete the task to get the resource-

dependum supplied in order to complete n1, i.e., the task node

WaitForResourceSupplied. In doing this operationalization, we move the

resource dependum inside the dependee as a subtask SupplyResource of the node n2

because the dependee will perform this subtask to supply the dependum. We add other

necessary interaction tasks in the depender and the dependee to complete the

specification of the process of supplying the resource-dependum.

In other cases, it may be not necessary for the depender to make a request and/or for the

dependee to wait for the request first, and the remaining process still will continue. The

modeler is responsible for specifying the process to be followed.

 72

Not all the dependencies will be viewed in the general case as what we described above.

In some cases, the dependee performs the task/achieves the goal/supplies the resource

without the depender having to request it. Then, we can simply view the task (goal)

involved in the dependency as a subtask (subgoal) of the task (goal) node in the dependee

where the dependency terminates. As we have seen, resource dependencies can just be

treated as task dependencies where the task is to supply the resource. If the depender

must wait for the dependency to be fulfilled, this wait action should be represented as a

task in the depender. If the depender must also make a request to get the dependee to

fulfill the dependency, then this request should be represented as a task in the depender.

4.3 The Annotated i* SR Diagram

The annotated i* SR diagram is developed based on the original i* SR model by

employing the defined annotations and operationalizing the dependencies. The objective

here is to produce a sufficiently detailed i* model that can be mapped into a ConGolog

specification, so that simulation can be performed.

In producing the annotated i* SR diagram, the modeler must perform the following steps:

• Softgoals and the related links are suppressed.

• Task/goal nodes and dependencies that are not significant to the alternative process to

be simulated are suppressed.

• Dependencies are operationalized.

• Goals that cannot always be achieved are weakened or relativized.

• Processes in the alternative(s) that has been selected are modeled in detail. Groups of

decomposition links are annotated by composition annotations as necessary. Single

decomposition links are annotated by link annotations as necessary.

The above steps must generally be performed in the order given. Of course, sometimes

the modeler may want to go back and refine/revise the model; then he has to complete

again all the steps that follow the one where the change is made. It takes a lot of effort to

 73

modify the initial SR model to obtain the annotated SR model. But this is beneficial for

requirements analysis and the resulting system requirements will be better specified. We

will see some examples of this in chapters 5 and 6.

4.4 Mapping Rules

The modeler must define a mapping m from the elements of the annotated i* SR diagram

to entities in the ConGolog model. We define mapping rules to ensure consistency

between the annotated SR model and the ConGolog model. The mapping must respect

the rules, which arise from the semantics of the two formalisms. There are two types of

mapping rules: node mapping rules and link mapping rules. This can be viewed as

providing a formal semantics for annotated SR diagrams by mapping them into

ConGolog, which already has a formal semantics.

In [Yu95B], Yu develops a semantics for i* by representing i* notation elements in the

Telos conceptual modeling language [MYBJK91] and providing axioms for some i*

notions. We believe that the semantics obtained through our mapping rules is mostly

consistent with Yu's semantics, but we haven't tried to prove this. Our semantics is more

detailed and formal than Yu’s, but it does not try to capture all of i*. We discuss this

more in detail in chapter 7.

4.4.1 Mapping Rules for Nodes

We define mapping rules for each of the five types of nodes in the annotated i* SR

model, i.e., agent nodes, goal nodes, task nodes, role nodes, and position nodes. These

ensure that the nodes are mapped into appropriate ConGolog entities.

• Mapping Rule for Agent Nodes

If n is an agent node, then m(n)=<a, behavior_a> , i.e., a pair where a is a term

denoting a ConGolog agent (a sub-sort of the sort "other" in the situation calculus) and

 74

behavior_a is a ConGolog procedure representing the behavior of the agent. See

Figure 4.16 for a graphical representation of the mapping. We use m_agent(n) to refer

to the agent a and m_behavior(n) to refer to the agent behavior behavior_a. This

rule is applied to all the agents in the system of interest. For agents outside the system, it

is not necessary to apply the mapping rule and model them using ConGolog agents.

Instead we can use the exogenous actions provided by ConGolog to simulate the behavior

of the outside agents.

In Figure 4.16, the i* agent Agent is mapped into two elements in the ConGolog model:

the agent agent_name and the behavior of the agent agent_behavior procedure.

 ConGolog model after mapping

 i* agent node
 proc(agent_behavior(Agent),

 Agent m_behavior(Agent) ……

 ……

 m_agent(Agent)).

 agent_name

Figure 4.16 The mapping for an agent node in the annotated SR diagram

• Mapping Rule for Role and Position Nodes

If n is a role or position node, then m(n) is a ConGolog procedure. This procedure is

intended to model the behavior of agents playing that role or holding that position. We

show the mapping graphically in Figure 4.17.

 75

 proc(behavior_n,

 n m(n) ……

 ……

).

Figure 4.17 The mapping for a role/position node in the annotated SR diagram.

• Mapping Rule for Goal Nodes

If g is a goal node, then m(g)=<(, achieve_g>, where (is a ConGolog fluent

corresponding the goal g, either primitive or defined, and achieve_g is a ConGolog

procedure containing means to achieve the goal g in which the modeler is interested.

achieve_g has the post-condition that (holds, i.e., its body ends with the test "(?".

We use m_fluent(g) to refer to the fluent (and m_achieve(g) to refer to the

procedure achieve_g. See a graphical representation of the mapping for a goal node g

in Figure 4.18. The goal g is mapped into two elements in the ConGolog model: the

fluent (and the achieve_g procedure.

 ConGolog model after mapping

 m_fluent(() fluent: (

 g proc(achieve_g ,

 m_achieve(() ……,

 (?

).

Figure 4.18 The mapping for a goal node g in the annotated SR diagram.

i* role/position

ConGolog model after mapping

i* goal node

 76

• Mapping Rule for Task Nodes

If t is a task node, then m(t) is either a ConGolog procedure (complex action) or

primitive action. We show the mapping in Figure 4.19; (a) shows a task node mapped

into a primitive action and (b) shows a task node mapped into a ConGolog procedure.

 t m(t) primAct(t)

 (a) A task node mapped into a primitive action.

 proc(t ,

 t m(t) ……

 ……

).

 (b) A task node mapped into a ConGolog procedure.

 Figure 4.19 The mapping for a task node in the annotated SR diagram.

4.4.2 Mapping Rules for Links

There are mapping rules for each of the two types of links in the i* SR model, i.e., task

decomposition links and means-ends links (or goal decomposition links).

• Mapping Task Decomposition Links

A task decomposition in the annotated i* model involves a super task and the

decomposed subtasks/subgoals which are connected to the super-task by decomposition

links. Composition link annotations must be applied to the group of decomposition links.

Link annotations can also be attached to every single decomposition link between the

super-task and a subtask/subgoal. For example, consider a task node t with its task

decomposition links shown in Figure 4.20.

 77

 t

 ||

 *while()1) *for(x2,x2list) *whenever(x3list,)3) if()4) pick(x5list,)5)

 n1 n2 n3 n4 n5 n6

Figure 4.20 E.g. task node with task decomposition links in the annotated i* SR diagram.

In this example, task node t is decomposed into subtask nodes n1,n2,n3,n4,n5,and

n6; a concurrency composition annotation “||” is applied to the group of decomposition

links; link annotations are attached to each single decomposition link between t and ni

except for n6. According to the mapping rules below, node t must be mapped into the

ConGolog procedure of Figure 4.21.

 proc(tp(procedurevariablelist),
 while()1, m(n1))
 #=
 for((x2, x2list,[], m(n2))
 #=
 ==>(x3list,)3, m(n3))
 #=
 if(()4, m(n4))
 #=
 pi(x5list, [)5?, m(n5)])
 #=
 m(n6)
).

 Figure 4.21 The mapping for the SR diagram of Figure 4.20

 The procedure tp is the procedure m(t) corresponding to the behavior of task node t.

“#=” is the ConGolog operator for concurrency, which is required by the composition

annotation “||”. m(ni)is the result of mapping the task node ni (for i=1,2,…,6).

The element that corresponds to the link t∗ni accompanying with a link annotation + is

the invocation of m(ni) under the conditions represented by the link annotation +. For

 78

example, the link t∗n1 accompanied by the link annotation *while()1) is mapped

into the invocation of while()1,m(n1)) inside the procedure tp, which means that

the subtask m(n1) is repeatedly performed while the condition)1 is true.

Mapping Rule for Task Decomposition Link:

The general mapping rule for task decomposition links is as follows. Consider a general

task decomposition shown in Figure 4.22.

 t

 ,

)1)2 …)k

 n1 n2 nk

Figure 4.22 Task node t with task decomposition links in the annotated i* SR diagram.

If t is a task node that is decomposed into nodes n1, n2, ..., nk by task decomposition

links, where a composition annotation , is applied to the group of decomposition links

and link annotations)i are applied to the single decomposition link between t and ni,

then the mapping for the task node t, m(t), is a procedure of the form shown in Figure

4.23:
 proc(tp(parameters),
 m()1)(m_proc(n1))

 m(,)
 m()2)(m_proc(n2))

 m(,)

 ……

 m(,)
 m()k-1)(m_proc(nk-1))

 m(,)

 m()k)(m_proc(nk))
).

 Figure 4.23 The mapping for the task decomposition of Figure 4.22.

 79

Here the procedure tp is m(t) corresponding to the behavior of task node t. m(,) is the

operator in the ConGolog model that corresponds to the composition annotation ,,

either the concurrency operator “||”, the prioritized concurrency operator “>>”, the

sequence operator “;”, or the nondeterministic choice of action operator “|”.

m_proc(ni)is the mapping result of a task node m(ni) if ni is a task node or the

mapping result of a goal node m_achieve(ni) if ni is a goal node. m()i) is the

operator or control structure in ConGolog that corresponds to the link annotation)i. The

element of the ConGolog model that corresponds to the link t∗ni accompanied with a

link annotation)i is the invocation of m(ni)/m_achieve(ni) in m(t) according to

the mapping conditions represented by m()i) of the link annotation)i. If there is no

link annotation, then the invocation has no condition.

The ConGolog operators associated with composition annotations are shown in Table

4.1.

Composition annotation ConGolog Operator

|| #= : Concurrency

>> #> : Prioritized concurrency

| $: Nondeterministic

; , : Sequence

Table 4.1 ConGolog operators associated with composition annotations.

The ConGolog control structures associated with link annotations are shown in Table 4.2.

 80

Link annotations ConGolog control structures

t <!!!!!!! n

while(), m_proc(n))

t <!!!!!!!!! n

for(variable,valueOfList,[],m_proc(n))

t <!!!!!!!!! n

==>(variableList,), m_proc(n))

t <!!!! n

if(), m_proc(n))

t <!!!!!!!!! n

pi(variableList,[), m_proc(n)])

Table 4.2 ConGolog constructs associated with composition annotations.

• Mapping Goal Decomposition (Means-Ends) Links

A goal decomposition in the annotated i* model involves a super goal and the

decomposed subtasks/subgoals which are connected to the super-goal by decomposition

links. Composition link annotations must be applied to the group of decomposition links.

Link annotations can also be attached to every single decomposition link between the

super-goal and one of its subtask/subgoal if applicable. For example, consider a goal

node g with its goal-decomposition links shown in Figure 4.24.

 g

 ||

 *while()1) *for(x2,x2list) *whenever(x3list,)3) if()4) pick(x5list,)5)

 n1 n2 n3 n4 n5 n6

Figure 4.24 E.g. goal node with goal decomposition links in the annotated i* SR model.

 while())

for(variable, valueOfList)

whenever(variableList,))

 if())

 pi(variableList,))

 81

In this example of Figure 4.24, the goal node g is decomposed into task nodes

n1,n2,n3,n4,n5,and n6; a concurrency composition annotation “||” is applied to the

group of decomposition links; link annotations are applied to each single decomposition

link between g and ni except for n6. According to the mapping rules for a goal node,

node g must be mapped into a ConGolog fluent g, either primitive or defined, and a

ConGolog procedure achieve_g, which is the means to achieve the goal g.

achieve_g has the post-condition that g holds, i.e., its body ends with the test "g?".

According to the mapping rules for goal-decomposition links below, achieve_g must

be a ConGolog procedure of the form shown in Figure 4.25:

 proc(achieve_g(procedurevariablelist),
 while()1, m(n1))
 #=
 for((x2, x2list,[], m(n2),true)
 #=
 ==>(x3list,)3, m(n3))
 #=
 if(()4, m(n4))
 #=
 pi(x5list, [)5?, m(n5)])
 #=
 m(n6)
 g?
).

 Figure 4.25 m_achieve(g) for the goal node g the SR diagram of Figure 4.24

The procedure “achieve_g” is the procedure m_achieve(g) corresponding the

means to achieve the goal g. “#=” is the ConGolog operator for concurrency, which is

required by the composition annotation “||”. m(ni)is the result of mapping the task node

ni (i=1,2,…,6). The element that corresponds to the link t∗ni accompanying

with a link annotation a is the invocation of m(ni) under the conditions represented by

the link annotation. For example, the link t∗n1 accompanying with the link annotation

*while()1) is mapped into the invocation of while()1,m(n1)) inside the

 82

procedure achieve_g, which means that the subtask m(n1) is repeatedly performed

while the condition)1 is true.

Mapping Rules for Goal Decomposition Links:

The general mapping rules for goal decomposition links is as follows. Consider the

general goal decomposition in Figure 4.26.
 g

 ,

)1)2 …)k

 n1 n2 nk

Figure 4.26 Goal node g with goal decomposition links in the annotated SR model.

If g is a goal node that is decomposed into nodes n1, n2, … , nk by goal decomposition

links, where a composition annotation , is applied to the group of decomposition links

and a link annotation)i is attached to the single decomposition link between g and ni,

then m_achieve(g)is a procedure achieve_g of the form shown in Figure 4.27:

 proc(achieve_g(procedurevariablelist),
 m()1)(m_proc(n1))

 m(,)

 m()2)(m_proc(n2))

 m(,)

 ……

 ……

 m(,)

 m()k-1)(m_proc(nk-1))

 m(,)
 m()k)(m_proc(nk))
 g?
).

Figure 4.27 m_achieve(g) for the goal node g in the SR diagram of Figure 4.26.

 83

Here m(,) is the operator in the ConGolog model that corresponds to the composition

annotation ,, either the concurrency operator “||”, the prioritized concurrency operator

“>>”, the sequence operator “;”, or the nondeterministic choice of action operator “|”.

m_proc(ni)(i=1, 2, 3, …, k)is the mapping result of a task node m(ni) if ni is a

task node, or the mapping result of a goal node m_achieve(ni) if ni is a goal node.

The link annotation)i is mapped into ConGolog control structures such as iteration,

conditions, etc. So m()i)(m_proc(ni))corresponds to an embedding of a call to the

procedure associated with node ni within the control structure associated with the link

annotation)i. The element of the ConGolog model that corresponds to the link g∗ni

accompanied with a link annotation)i is the invocation of m(ni)/ m_achieve(ni) in

achieve_g according to the mapping conditions represented by m()i) of the link

annotation)i. If there is no link annotation, then the invocation has no condition. The

procedure achieve_g has the post-condition that g holds, i.e., its body ends with the

test “g?”, which means that the achieve_g is the means to achieve the goal g.

In our examples, goal decomposition always involves or-decomposition, which means

any of the subtasks is an alternative way to achieve the goal. Then alternative

composition annotation “|” is applied the group of or-decomposition links.

4.4.3 Mapping Dependencies

We do not actually map dependencies into elements of the ConGolog model. Instead, we

assume that the modeler has made explicit the operational aspects of the dependencies

during the operationalization stage, and that the result does not involve dependencies. So

we don't need any new mapping rules to deal with dependencies. We just handle the

decomposition links that arise from operationalizing the dependencies using the existing

link mapping rules.

 84

From a practical point of view, the modeler has to be knowledgeable enough to transfer

the dependency relationships in the initial i* SR model into their operationalized form in

the annotated i* SR model. It may be the case that the modeler has to revise the annotated

i* SR diagram for the dependency relationship several times. These revisions will

definitely improve the model and are necessary in applying the methodology. We will

give several examples of how dependencies are operationalized and mapped in the next

two chapters.

4.5 A Methodology for the Combined Use of the i* and

ConGolog Frameworks

Our methodology for the combined use of i* and ConGolog frameworks includes seven

steps. Every step enriches the model of the system’s requirements gradually. In chapter 5

and 6, we will give a meeting scheduling and a mail-order process as the two typical

study cases for modeling complex processes.

Step I. Building the Strategic Dependency Model (SD) for the System

The modeler develops a SD model that answers the questions of who is involved in the

system, and what intentional dependencies exist between the agents. The SD model

specifies the agents, roles, positions, and the intentional dependency relationships

between them. This step is performed as shown in [Yu95B].

Step II. Building the Strategic Rationale Model (SR) for the System

As described in [Yu95B], the modeler further analyzes the requirements of the system

based on the developed SD model, focusing on identifying the goals, softgoals, and tasks

to be accomplished inside agents/roles/positions, and how they can be accomplished. The

answers to these questions are specified in the SR diagram for the system. The SR model

specifies the tasks, goals and softgoals inside agents, roles, and positions. It also specifies

 85

the decompositions of the tasks/goals, and the contributions to softgoals. Alternative

ways of accomplishing tasks/goals are considered. Opportunities and vulnerabilities also

can be analyzed based on the SR diagram. The dependency relationships will be

specified between nodes inside the related agents/roles/position. The modeler should

represent all the important requirements about how and why the system works the way it

does in the SR model.

Step III. Building the Annotated Strategic Rationale Model for the System.

The initial SR model built in the previous step contains information about actors, goals,

and activities involved in the application of interest and the rationales behind them. Once

some process alternatives have been selected, more details need to be provided to allow

the SR model to be mapped into a ConGolog model. This is done by building the

annotated SR model, which includes the following substeps:

(a) Suppressing Unnecessary Information

The annotated SR model focuses on modeling the workflows and communications

between actors, and the important activities performed by the actors in a particular

process alternative that fulfills the system objectives. Other alternatives can be ignored at

this point. To keep the model as simple as possible, we suppress unnecessary

information. Softgoals and the links connected to them will be suppressed because they

are qualitative goals that are less important for developing a precise process specification

and will be not modeled in the ConGolog model. Tasks and goals that are part of other

alternative processes will also be suppressed in the annotated SR model.

(b) Operationalizing the Dependencies

The dependencies between the actors will be operationalized as described earlier. The

task/goal/resource dependencies will be expanded into internal tasks/goals inside the

actors that are the means by which the actors fulfill these outside dependencies.

 86

(c) Relativizing Goals that Cannot Always Be Achieved

Goals that cannot always be achieved by the actors are reformulated so as to be

achievable. The decompositions of these goals are refined as appropriate.

(d) Filling out Process Details Using Annotations

Decomposition links will be annotated as necessary to specify how subtasks are

composed and when or how often they are performed. The link annotations have to be

attached to the decomposition link between the super-task/super-goal and its

subtasks/subgoals in the annotated SR model. The link annotations are used to specify

whether the linked subtask/subgoal must be accomplished repeatedly and/or only under

some condition. The composition annotations have to be applied to a group of

decomposition links in the annotated SR model to clarify whether the subtasks/subgoals

are performed concurrently, sequentially, concurrently with different priorities, or

whether they are alternative ways to accomplish the super-task/super-goal.

Step IV. Developing the Initial ConGolog Model

The modeler maps elements in the annotated SR model into entities in the ConGolog

model using the defined mapping rules and builds the initial ConGolog model by

specifying the actions, fluents, precondition axioms, successor state axioms, the initial

state axioms, and the behavior of the agents in the system.

Step V. Validating the ConGolog Model by Simulation

The modeler evaluates the ConGolog model through simulation. Given a specification of

an initial state for the system, the developed ConGolog model will be simulated using the

interpreter and the results are used to check the correctness of the model. Then, we

identify the shortcomings and refine the ConGolog mode according to the result of the

evaluation. It may be the case that the first annotated i* model represents some elements

 87

incorrectly or specifies the process incompletely. This step will help the modeler find

those mistakes and revise the annotated SR model in the next step. The modeler could

also use verification to validate the model, since ConGolog supports it. This is not done

in this thesis. We discuss this briefly in chapter 8.

Step VI. Refining the i* and ConGolog Models Based on Validations Results

(Iterated Step)

Whenever the modeler knows that the i* model or ConGolog models has to be modified

based on the results of the validation step, he will refine both the ConGolog model and

the corresponding part of the i* model. Also by communicating with the client about the

current i* and ConGolog models, the modeler can obtain the feedback from the client and

revise the i* model and the corresponding parts of the ConGolog model. This brings out

new specification of the system of interest. Another case is when that the modeler needs

to add new features into the designed system after he finds some missing requirements

have to be modeled, such as loops, exogenous actions, etc. He must modify the i* model

and the corresponding part of the ConGolog model, and ensure the consistency between

these two models. In chapters 5 and 6, we will show how to do modifications.

Step VII. Producing the Requirements Analysis Document

The models and specifications are collected in a document with appropriate explanations

and discussion. The results of simulation and verification are also described.

The above steps must generally be performed in the order given. Of course, sometimes

the modeler may want to go back and refine/revise the model; then he has to complete

again all the steps that follow the one where the change is made.

In our methodology, we also want to have a close connection and traceability between the

i* and ConGolog models. We achieved this by introducing annotations in SR diagrams,

 88

so that they could act as an intermediate notation between i* and ConGolog, and by

defining mapping rules that enforce a close correspondence between the annotated SR

diagram and ConGolog models. In fact, one could automatically generate much of the

ConGolog specification from the annotated SR diagrams. We discuss issues related to

mapping i* into ConGolog and our approach in chapter 7.

 89

5 Case Study I:

 A Meeting Scheduling Process

In this chapter, our methodology for the combined use of the i* and ConGolog

frameworks will be applied to our first case study. This case study concerns a process that

is used to support the scheduling of meetings. The idea for the example comes from Yu

[Yu97]. The initial requirements for this process might be “For each meeting request, to

determine a meeting date and location so that most of the intended participants will be

able to effectively participate” [Yu97]. In order to simplify the description, we will only

consider determining a meeting date in our example.

There are several alternatives for the meeting scheduling process. One of the alternatives

is a process includes a computer-based meeting scheduler (MS). Another alternative is a

process that does not include a computer-based MS as shown in chapter 3 (Figure 3.1). In

the process with a computer-based MS, the participants' time schedule can be stored on

the MS computer system or kept by the participants themselves. There are advantages

and disadvantages in these different alternatives. By applying the methodology to these

different alternatives for scheduling meetings, especially the i* analysis techniques, the

modeler can make appropriate choices between these alternatives.

In our case study, after the i* analysis, we will select the alternative for the process that

involves a computerized meeting scheduler (MS). We will also decide that the

participant’s time schedule should be maintained by himself. The selected process

operates roughly as follows: After receiving a meeting scheduling request from the

initiator, the MS would request all the potential participants for information about their

availability to meet during a date range provided by the initiator at that time. A set of

 90

dates when the participant is available will be obtained from the participant. The MS tries

to find a suitable date based on the available date sets of all participants. The participants

will agree to a meeting date proposed by the MS, if this date is still available in their

schedule at the time the proposal is received. If all participants agree, they and the

initiator are notified of the confirmed meeting date. In the case where there is no date that

suits all the participants, the MS notifies the initiator and the participants that it has failed

to find a date to schedule the meeting. In the case where the proposed date has been

accepted by some of the participants, but where one of the participants has rejected the

date because it has been occupied for some other activities, the MS informs all

participants who have accepted the proposed date that it cancels the request, and then

goes on to propose another date if there is one available. Otherwise it notifies the initiator

and all the participants that meeting scheduling has failed. We will develop the

ConGolog model and simulate the process to validate the correctness of the modeling

using our methodology.

5.1 Building the Strategic Dependency (SD) Model

A Strategic Dependency (SD) model of this meeting scheduling process is shown in

Figure 5.1. A version of this model was originally developed by Yu and presented in

[Yu97]. We have specialized the actors into agents and roles in our version of the SD

model shown as Figure 5.1. The SD model of Figure 5.1 specifies the dependencies that

actors have on each other, thus providing the modeler with a better understanding of the

"whys" behind the process. Then alternatives can be developed to meet the real needs of

the organization.

In the model of Figure 5.1, there are four actor nodes: the meeting scheduler (MS) which

is an agent node, and the meeting initiator, important participants, and meeting

participants, which are role nodes. Each link between these agents/roles represents how

one agent/role depends on another for something. For example, when a meeting m is to be

 91

scheduled, the initiator depends on participants for attendance at the meeting. In the SD

model, this is represented by a dependency link between the role Initiator and the

role Participant. The role Initiator is the depender, the role Participant is

the dependee, and AttendsMeeting(p,m) is the dependum.

The MS is a computer system that helps the meeting initiator schedule meetings by

interacting with the participants. We treat it as an agent because it is a concrete system in

the organization. The meeting initiator’s function is to organize meetings for an

organization. He can do this by requesting the MS to schedule a meeting or by scheduling

a meeting by talking to the participants himself. We consider it as a role because anyone

in the organization can play this role and we don’t care who is playing this role. The

meeting participants and important participants fulfill the functions of answering the

requests from the MS or the initiator regarding meetings and attending meetings. We

consider them as roles too because the group of participants are not specified and can

vary.

As mentioned in section 3.1, there are four types of dependency relationships in our SD

model: task-, goal-, resource-, and softgoal- dependency. The dependency types express

different kinds of relationships between the depender and the dependee, involving

different types of freedom and constraints. Furthermore, there are three degrees of

strength of dependencies: Open, Committed, and Critical [Yu95B].

 92

 AttendsMeeting(ip,m)

 Important

 Participant

 Assured

 (AttendsMeeting(ip,m))

 ISA

 AttendsMeeting(p,m)

 Initiator Participant

 MeetingBe

 Scheduled (m)

 Enter

 DateRange(m) Proposed

 Date(m) Enter Agreement(p,m)

 AvailDates(m)

 Meeting

 Scheduler

 LEGNED

 Resource Dependency

 Task Dependency Agent

 Goal Dependency Role

 Softgoal Dependency Critical Dependency

Figure 5.1 A Strategic Dependency model for the meeting scheduling process.

 93

Let us go over the dependencies in the SD model of Figure 5.1. To schedule a meeting,

the MS depends on the participants to provide information about their availability for

attending the meeting. This is modeled as a task dependency EnterAvailDates(m).

It is up to the participants to perform the task of entering their available dates to the MS

according to the required procedure (email, phone, etc.). If the participant fails to enter

his available dates, the MS becomes vulnerable, but the dependency is not critical for the

MS. This is a open dependency, because even if the participants fail to send their

available dates, the MS still can propose a date in the meeting date range and ask for

agreement from the participants for this proposed date.

The MS also depends on the initiator providing the proposed meeting date range. This is

modeled as a task dependency EnterDateRange(m) between the initiator and the

MS. The meeting initiator has the responsibility to send the meeting date range to the MS

in order for the MS to accomplish the task of scheduling the meeting m. If the meeting

initiator fails to fulfill this dependency, then the MS cannot continue the process of

scheduling the meeting m. This dependency is a committed dependency, which means

that once the meeting initiator has asked for a meeting to be organized, he has committed

to providing the meeting date range.

The meeting initiator's dependency on the MS to schedule a meeting is modeled as a goal

dependency MeetingBeScheduled(m). It is the MS's responsibility to decide how to

reach the goal of having the meeting m scheduled. The MS may have various options to

reach this goal that will involve alternative processes for scheduling a meeting. For

example, the MS could just propose the dates in the meeting date range one by one to all

participants, and wait for the participants to reply until it finds an agreeable date on which

all participants agree to attend the meeting. This option will require a lot of effort from

the participants because they have to check the proposed dates with their time schedule

and inform the MS of whether they accept or reject the proposed dates again and again.

 94

Another option is that the MS can first request all the participants to send their available

dates, merge these available dates, and then find an suitable date for the meeting from

these merged dates. This option will leverage the efforts of the meeting participants

because they just need to send their available dates for the meeting once. After these

alternatives have been modeled, the clients can choose the one that better meets their

needs and intentions. For the rest of our case study, we choose the second option where

the MS merges the available date lists to reduce number of interactions with the

participants and save time for them.

The meeting initiator depends on the meeting participants to attend a meeting. This is

modeled as a goal dependency AttendsMeeting(p,m). It is up to the participant

how he attends the meeting. For example, he can take a taxi or drive to the meeting. The

meeting initiator also depends on the important participants to attend the meeting, which

is modeled as a goal dependency AttendsMeeting(ip,m). This dependency is

critical because the attendance of the important participants is required for the meeting to

be fruitful. For example, perhaps if the chair of the meeting doesn’t show up, then the

meeting cannot be held and the initiator will suffer a big loss.

Because the important participants must attend the meeting, the initiator wants to be

assured that they will attend. This is modeled as a softgoal dependency

Assured(AttendsMeeting(ip,m)). It is up to the initiator to decide what

measures are enough for him to be assured, e.g., an email or a phone call confirmation.

The initiator will be vulnerable if the important participants cannot assure him of their

attendance of the meeting m. Such softgoal dependencies cannot be expressed in the non-

intentional models that are used in most existing requirements modeling frameworks

[Yu95B].

 95

The participants depend on the MS to provide a proposed date for a meeting. This is

modeled as a resource dependency ProposedDate(m). The MS has to perform some

task to provide the resource, i.e., the proposed meeting date. For example, he can send an

email to provide the proposed date. The MS also depends on participants to indicate

whether they agree to meet on a proposed date. This is modeled as a resource dependency

Agreement(p,m) between the MS and the participant p. It is up to the participant to

indicate agreement to a meeting m on a proposed date. The participant can accept or

reject the request to meet on the proposed date.

Since it captures the intentional dependencies between actors, the SD model can be used

to analyze the meeting scheduling process in terms of these intentional relationships

[YM94A]. This will help the modeler understand the opportunities and vulnerabilities for

the actors. For example, the ability of a computer-based MS to achieve the goal of

MeetingBeScheduled(m) represents an opportunity for the meeting initiator not to

have to achieve this goal by himself. On the other hand, the meeting initiator is

vulnerable if the meeting scheduler fails to achieve the goal.

Not that in this chapter, we model the initiator, participant, and important participant as

roles. It may be more consistent with i* concepts to model them as agents, since they are

concrete individuals, even though one agent instance (e.g., yves) could be an initiator

for one meeting and a participant for another. This would also be more consistent with

the model in chapter 6.

5.2 Building the Strategic Rationale (SR) Model

In the SR model, a more detailed level of modeling is performed by investigating the

activities of the actors and modeling their internal relationships [Yu97]. Intentional

elements such as goals, tasks, resources and softgoals are modeled not only as external

 96

dependencies shown in the SD model, but also as internal elements linked by means-ends

and task-decomposition relationships and contribution links. These intentional elements

express the strategies of every actor and how they try to satisfy their needs and maximize

their profits without affecting the success of the whole process. The SR model in Figure

5.2, developed by Yu in [Yu97], elaborates on the relationships between the meeting

initiator, the meeting scheduler (MS), and the meeting participants as shown in the SD

model in Figure 5.1.

For the meeting initiator, the top level task is to organize a meeting, represented by the

internal task node OrganizeMeeting. The internal goal node

MeetingBeScheduled represents the goal that a meeting be successfully scheduled.

The internal softgoals nodes Quick and LowEffort represent how the initiator

wants to arrange the meeting quickly and easily. These softgoals represent whatever

quantitative conditions the initiator uses to measure the performance of the processes.

The internal task node ScheduleMeeting represents a method where the initiator

schedules the meeting by himself, and the internal task node

LetSchedulerScheduleMeeting represents a method where the initiator has the

MS to schedule the meeting.

 97

 Participant

 Initiator

 Attends Participate

 Organize Meeting InMeeting

 Meeting

 Attend Arrange

 MeetingBe Low Meeting Meeting

 Quick Scheduled Effort Convenient

 + - + (Meeting, Date)

 - + Quality

 (ProposedDate)

 Schedule LetScheduler Agreeable LowEffort

 Meeting ScheduleMeeting + (Meeting,Date) +

 Richer -

 Medium FindAgreeableDate - UserFriendly

 + UsingScheduler +

 MeetingBe

 Scheduled FindAgreeable

 AgreeToDate DateByTalking

 Enter Initiator

 DateRange

 Enter

 AvailDates

 ProposedDate Agreement

 Schedule

 Meeting

 FindAgreeable ObtainAvailDate

 Slot Obtain

 Agreement

 Merge

 AvailDates

 Meeting

 Scheduler

 LEGEND

 Goal Task Resource Softgoal

 Task-Decomposition link

 Actor Agent

 Means-Ends link Actor Boundary

 +,- Role

 Contribution to softgoals

Figure 5.2 An initial Strategic Rationale model for the meeting scheduling process.

 98

Using task decomposition links, the task node OrganizeMeeting is decomposed into

a subgoal MeetingBeScheduled, a sub-softgoal Quick, and a sub-softgoal

LowEffort; there is also a outgoing goal dependency to the participants

AttendsMeeting. If the subgoal MeetingBeScheduled is achieved by the

initiator, the goal dependency AttendsMeeting is fulfilled by the participants, and the

softgoals Quick and LowEffort are satisfied to a sufficient degree, then the task

OrganizeMeeting is successfully accomplished. If one of the subtasks/subgoals of

the decomposition fails to be accomplished, for example, if a participant fails to attend

the meeting, then the task OrganizeMeeting fails to be accomplished. To what

degree the sub-softgoals need to be satisfied is up to the initiator. The super-task might

still be accomplished even if these softgoals are poorly satisfied. These softgoals are

introduced to help the client choose one alternative process over another because of their

contributions to these softgoals.

In the initiator, the internal goal MeetingBeScheduled is or-decomposed into two

subtasks: a subtask ScheduleMeeting (the initiator does it himself) and a subtask

LetSchedulerScheduleMeeting. These are two alternative means to achieve the

goal MeetingBeScheduled. The task LetSchedulerScheduleMeeting makes

positive contributions to both of the softgoals Quick and LowEffort, i.e., it will save

time and efforts for the initiator. The other alternative ScheduleMeeting contributes

negatively to these softgoals. So LetSchedulerScheduleMeeting will be chosen

over the other mean ScheduleMeeting to achieve the goal

MeetingBeScheduled.

Inside the MS, the task ScheduleMeeting represents the main task that the MS has to

perform when it gets a request to schedule a meeting for the initiator. The task

ScheduleMeeting is decomposed into a subtask of obtaining available dates from

participants ObtainAvailDates, a subgoal of finding a suitable date slot

 99

FindAgreeableSlot, and a subtask of obtaining agreement from the participants

ObtainAgreement (represented as task-decomposition links). Meanwhile the

participants depend on the MS to supply a proposed meeting date, which is represented as

a resource dependency ProposedDate between the task ScheduleMeeting in the

MS and the task AgreeToDate in the participant. The sub-elements of the main task are

represented as subgoals, subtasks, or resources depending on the type of freedom of

choice the MS has as to how to accomplish these sub-elements. So

FindAgreeableSlot is a subgoal which can be achieved by the MS in different ways.

On the other hand ObtainAvailDates and ObtainAgreement, both are subtasks

that refer to specific ways of accomplishing these tasks. In order to provide the resource

dependency ProposedDate, the task ScheduleMeeting needs to perform some

tasks to fulfill this dependency requirement. Later we will introduce communication

entities into our intermediate notation based on the SR diagram of Figure 5.2 to explicitly

show how the resource dependency ProposedDate will be supplied through a

specific type of interaction between the depender and dependee. We call this procedure

operationalizing the dependencies.

Inside the MS, the goal FindAgreeableDateSlot is to find an agreeable meeting

date slot for the participants. Here the only mean to achieve the goal considered is the

task MergeAvailDates, i.e., merging all the available dates of participants. Actually,

another possible way to achieve this goal might be just choosing all dates in the meeting

date range which is proposed by the initiator as the agreeable meeting date slot. This

alternative is not considered because if the proposed meeting date range is large, then the

rounds of interruption from the MS to the participants are too much. We prefer to get the

available dates from all participants and then merge these available dates and the

proposed meeting date range to narrow the set of possible agreeable dates as much as

possible. This is an example how the SR model can help to analyze possible alternatives

for the process and improve its performance.

 100

Inside the participant, the main task is ParticipateInMeeting. This task is

decomposed into a subtask AttendMeeting, representing how the participant attends

the meeting, a sub-softgoal Convenient(Meeting,Date), meaning that the

participant wants the meeting and date are to be convenient to him, and a subtask

ArrangeMeeting, representing how the participant will proceed to make meeting

arrangements. It is essential that the subtasks AttendMeeting and

ArrangeMeeting be accomplished in order to complete the task

ParticipateInMeeting. But it is not essential that the proposed meeting date be

very convenient. The softgoal Convenient(Meeting,Date) helps the modeler

analyze the performance of the different ways to complete the task

ParticipateInMeeting and find out the best process for the system.

The task ArrangeMeeting is furthermore decomposed into a subgoal

Agreeable(Meeting,Date), representing how the participant wants an agreeable

date for the meeting to be selected, and a sub-softgoal LowEffort representing how he

wants the meeting arrangements to be easy for him. The softgoal is important but not

crucial for the participant. The participant decides how to evaluate the meeting

arrangements is easy for him.

The internal goal Agreeable(Meeting,Date) is or-decomposed into two

alternative means: a subtask FindAgreeableDateUsingScheduler meaning that

the participant uses the meeting scheduler to find an agreeable date for the meeting and a

subtask FindAgreeableDateByTalkingInitiator meaning that the participant

talks with the initiator to find an agreeable date for the meeting directly. To help choose

which alternative is the best, the SR model represents how the choice affects the

participant’s softgoals. As we can see, performing the task

FindAgreeableDateUsingScheduler to achieve the goal

Agreeable(Meeting,Date) will produce a less rich medium and not be so user-

friendly. As a consequence, this alternative will cause the quality of the proposed date to

 101

be less good and perhaps less convenient to the participant. The participant will also have

to put more effort to arrange a meeting. On the other hand, the other alternative of

achieving the goal by performing the task

FindAgreeableDateByTalkingInitiator will involve a richer medium and be

more user-friendly. Of course, the choice among the alternatives also involves the

initiator. What is the best for the participant may not be the best for the initiator. Later in

our further analysis, we choose the alternative

FindAgreeableDateUsingScheduler over the alternative

FindAgreeableDateByTalkingInitiator because the initiator wants the MS

to find an agreeable date for a meeting instead of having to talk to participants himself.

This representation helps the client choose the best alternatives.

Inside the participant, FindAgreeableDateUsingScheduler is an internal task,

which is decomposed as follows: there is a task dependency EnterAvaildates,

entering the available dates to the MS, and a subtask AgreeToDate of working out an

agreement about attending the meeting on a given date. AgreeToDate is also involved

in two dependencies: the resource dependencies ProposedDate and Agreement

between the MS and the participant. Note that this SR model does not clarify what

happens when there is no date on which every participant agrees to attend the meeting.

Later, in our intermediate notation, we will refine the SR model to address this.

An important part of the SR diagram is the dependencies between actors. In the SR

diagram of Figure 5.2, the dependencies show how one actor depends on another actor,

but the diagram does not show how the depender and the dependee interact with each

other to fulfill the dependencies. It can be important that the modeler clarifies what is

involved in these interactions. Later in section 5.3, we perform the operationalization of

the dependencies to clarify the interactions between the depender and dependee nodes in

order to supply the dependum.

 102

As we can see, the SR model can help in modeling the interests of actors, how they might

be met, and the actors’ evaluation of various alternatives with respect to their interests.

Task-decomposition links provide a hierarchical description of intentional elements that

constitute a routine and means-ends links provide an understanding about why an actor

would perform a task, achieve a goal, need a resource, or want a softgoal. The softgoals

allow analysis about why one alternative may be chosen over others. For example,

availability information in the form of a set of available dates is collected so as to

minimize the number of rounds and thus minimize interruptions for the participants.

The SD model and SR model can support the analysis, design, and reasoning performed

during early-phase requirements analysis and modeling. In terms of ability, workability,

viability, and believability, the i* framework provides a number of levels of analysis and

high level design. [Yu95B]

5.3 Building the Annotated i* SR Model

In order to produce a sufficiently detailed and precise i* model that can be mapped into a

ConGolog specification and allows simulation to be performed, we develop an annotated

i* SR diagram based on the original i* SR model of Figure 5.2 using the defined

annotations and operationalizing the dependencies.

In the annotated i* SR diagram, the selected alternative, where the meeting scheduler is

used to arrange meetings, will be modeled in detail. Softgoals and the related links will

be suppressed since they are not central to the task of making the process specification

precise. Task/goal nodes and dependencies that are not significant to the selected process

will also be suppressed. Dependencies will be operationalized. Goals that cannot always

be achieved will be weakened or relativized. Groups of decomposition links will be

annotated by composition annotations and single decomposition links will be annotated

by link annotations as necessary.

 103

Before we begin the substeps of obtaining the annotated SR diagram, let us clarify which

alternative process is selected from the initial SR model of Figure 5.2. The meeting

initiator organizes the meeting by using a computerized meeting scheduler, rather than by

talking to the participants directly. The participant will only respond to requests from the

meeting scheduler; they do not take the initiative.

5.3.1 Suppressing Unnecessary Information

We start by suppressing less important information from the SR diagram. We proceed in

two steps.

First, softgoals, softgoal dependencies, and the links related to them are suppressed

because they are qualitative goals which are less important for developing a precise

process specification and will not be modeled in the ConGolog model. As well, tasks and

goals inside the actors and the dependencies that are part of other alternative processes

are suppressed. We assume that the client wants to use the computer system of the MS to

efficiently schedule the meeting for the initiator. For the initiator, the alternative of

scheduling meetings by talking with the participants is suppressed. Only the mean

LetSchedulerScheduleMeeting to achieve the goal MeetingBeScheduled

appears. The mean ScheduleMeeting where the initiator arranges the meeting

himself is left out. For the participants, we only show the mean

FindAgreeableDateUsingScheduler to achieve the goal

Agreeable(Meeting, Date) because we want the computerized MS to efficiently

find an agreeable date for the meeting which is suitable for all participants. The mean

FindAgreeableDateByTalkingInitiator is suppressed. The resulting SR

diagram appears in Figure 5.3.

 104

 Participant

 Initiator

 Participate

 Organize AttendsMeeting InMeeting

 Meeting

 Attend Arrange

 MeetingBe Meeting Meeting

 Scheduled

 LetScheduler Agreeable

 ScheduleMeeting (Meeting,Date)

 FindAgreeableDate

 UsingScheduler

 MeetingBe

 Scheduled

 AgreeToDate

 Enter

 DateRange

 Enter

 AvailDates

 ProposedDate

 Agreement

 Schedule

 Meeting

 FindAgreeable ObtainAvailDates

 Slot Obtain

 Agreement

 Merge

 AvailDates

 Meeting

 Scheduler

 LEGEND

 Goal Task Resource Softgoal

 Task-Decomposition link

 Actor Agent

 Means-Ends link Actor Boundary

 +,- Role

 Contribution to softgoals

Figure 5.3 The second version of the i* SR model for the meeting scheduling process.

 105

 Organize Participant

 Meeting

 MeetingBe

 Scheduled

 LetScheduler

 ScheduleMeeting

 FindAgreeableDate

 UsingScheduler

 MeetingBe

 Scheduled

 AgreeToDate

 Enter

 DateRange

 Enter

 AvailDates

 ProposedDate

 Agreement

 Schedule

 Meeting

 FindAgreeable ObtainAvailDates

 Slot Obtain

 Agreement

 Merge

 AvailDates

 Meeting

 Scheduler

 LEGEND

 Goal Task Resource Softgoal

 Task-Decomposition link

 Actor Agent

 Means-Ends link Actor Boundary

 +,- Role

 Contribution to softgoals

Figure 5.4 The third version of the i* SR model

for the meeting scheduling process.

Initiator

Arrange

Meeting

 106

In a second step, we suppress other information. In modeling the meeting scheduling

process, we want to focus on the meeting being scheduled. Activities such as how the

participant participates in a meeting and how he will attend will not be modeled. So we

suppress the dependency between the node OrganizeMeeting in the initiator and the

node AttendMeeting in the participant (in Figure 5.3), because this dependency does

not relate to the scheduling process. The task nodes ParticipateInMeeting and

AttendMeeting in the participant will be suppressed also because these two tasks are

not related to our selected process of how schedule a meeting. The goal node

Agreeable(Meeting, Date) is also eliminated because we take the participants to

just passively answer requests from the meeting scheduler and wait for the meeting

scheduler to find an agreeable date. The participant does not actively decide to find an

agreeable date by himself. The resulting simplified SR model is shown in Figure 5.4.

5.3.2 Operationalizing the Dependencies

Now, the dependencies between the actors will be operationalized as described earlier.

The task/goal/resource dependencies will be represented as internal tasks/goals inside the

actors that are the means by which the actors supply these outside dependencies.

First, we operationalize the dependencies between the initiator and the MS in Figure 5.5.

Here, the meeting initiator depends on the MS to schedule a meeting and this is modeled

as a goal dependency MeetingBeScheduled. The MS depends on the initiator to

enter the meeting date range for him and this is modeled as a task dependency

EnterDateRange. The result of operationalizing the dependencies of Figure 5.5 is

shown in the SR model of Figure 5.6.

 107

 Initiator

 LetScheduler

 ScheduleMeeting

 Meeting

 BeSchedued

 Enter

 DateRange

 Meeting

 Scheduler

 ScheduleMeeting

Figure 5.5 The SR diagram for dependencies between the meeting initiator and the MS.

 Initiator

 LetScheduler

 ScheduleMeeting

 RequestScheduler

 ScheduleAMeeting

 WaitForResult

 WaitForScheduler FromScheduler

 RequestDateRange EnterDateRange

 ToScheduler

 Meeting

 Scheduler

 MeetingBe

 Scheduled

 Schedule

 Meeting

 RequestEnter WaitFor

 DateRange DateRange

Figure 5.6 The SR diagram after operationalizing the dependencies of Figure 5.5.

 108

To fulfill the task dependency EnterDateRange, we suppose that the following

activities are to be performed. First the MS has to request the initiator for the date range;

this is modeled as a subtask RequestEnterDateRange of ScheduleMeeting in

the MS. Then, the meeting initiator has to wait for the request from the MS; this is

modeled as a subtask WaitForSchedulerRequestDateRange of

LetSchedulerScheduleMeeting in the initiator. Then, the meeting initiator

performs a task to send the date range; this is modeled as a subtask

EnterDateRangeToScheduler of LetSchedulerScheduleMeeting in the

initiator. Finally, the MS has to wait for the date range to be sent and then continues with

the remaining process; this is modeled as a subtask WaitForDateRange of

ScheduleMeeting in the MS.

For the goal dependency MeetingBeScheduled, we suppose that it is fulfilled as

follows. First, the initiator has to request the MS to schedule a meeting; this is modeled as

a task RequestSchedulerScheduleAMeeting in the initiator, a subtask of

LetSchedulerScheduleMeeting. Then, the goal MeetingBeScheduled is

moved into the MS as an internal goal and can be achieved by the task node

ScheduleMeeting where the dependency terminates, i.e., the task

ScheduleMeeting becomes the mean to achieve this internal goal. Finally, the

initiator has to wait for the result of scheduling the meeting from the MS; this is modeled

as a task WaitForResultFromScheduler in the initiator, a subtask of

LetSchedulerScheduleMeeting.

In the SR model of Figure 5.6, the tasks/goals added into actors to have the dependencies

supplied are modeled as subtasks/subgoals of the tasks/goals where the dependencies

start and terminate. Note that the SR model of Figure 5.6 just shows the part of the SR

diagram about the operationalized dependencies. To obtain the complete SR model for

the process of scheduling a meeting, the tasks/goals arising from the operationalization

have to be related to other tasks/goals inside the actors.

 109

Next, we operationalize the dependencies between the MS and the participants that are

shown in Figure 5.7. The SR model of Figure 5.8 shows the result after operationalizing

the dependencies of Figure 5.7.

 Participant

 FindAgreeableDate

 UsingScheduler

 AgreeToDate

 Meeting

 Scheduler EnterAvailDates

 ProposedDate

 Agreement

 SchedueMeeting

 ObtainAvail

 Dates

 Obtain

 Agreement

Figure 5.7 The SR diagram for dependencies between the MS and the participants.

We consider the task dependency EnterAvailDates first. We operationalize it as

follows. First, the MS has to request the available dates from the participants; this is

modeled as a task in the MS RequestAvailDates. Then, when the participant

receives the request he will send his available dates to the MS; this is modeled as a task in

the participant SendAvailableDates. Then, the scheduler has to wait for all

participants sent their available dates; this is modeled as a task in the scheduler

WaitForAllAvailableDates.

 110

 Participant

 FindAgreeableDate

 UsingScheduler

 SendAvailDates

 AgreeToDate

 ReplyAgreement

 Meeting

 Scheduler

 SchedueMeeting

 ObtainAvail

 Dates

 Obtain

 Agreement

 RequestAgreement RequestAvailDates WaitForAll

 ForProposedDate AvailDates

 WaitForAll

 AnswerAgreement

Figure 5.8 The SR diagram after operationalizing the dependencies of Figure 5.7.

Then we consider the resource dependencies ProposedDate and Agreement

together because they are connected to each other in the process of reaching an agreement

on a proposed date. We operationalize them as follows. First, the scheduler sends the

proposed meeting date to the participant and requests agreement on this proposed date;

this is modeled as a task in the MS RequestAgreementForProposedDate. Here,

we consider sending the proposed date to obtain an agreement as a subtask of the task

ObtainAgreement because we think that proposing a meeting date is part of the task

of obtaining the agreement. Then, when the participant receives the request he will reply

 111

by indicating whether he agrees or rejects it; this is modeled as a task

ReplyAgreement, a subtask of AgreeToDate in the participant. Then, the

scheduler has to wait for the replies of all the participants; this is modeled as a task

WaitForAllAnswerAgreement, a subtask of ObtainAgreement in the MS.

In Figure 5.9, we show the SR diagram for the whole process of scheduling a meeting

after suppressing unnecessary information and operationalizing all dependencies. In

Figure 5.9, the SR diagram of (a) is for the initiator, the one (b) is for the MS, and the one

(c) is for the participant.

 LetScheduler

 ScheduleMeeting

 RequestScheduler

 ScheduleAMeeting

 WaitForResult

 WaitForScheduler FromScheduler

 RequestDateRange EnterDateRange

 ToScheduler

 Meeting

 Scheduler

 MeetingBe

 Scheduled

 Schedule

 Meeting

Figure 5.9(a) The SR diagram for the initiator after operationalizing dependencies.

MeetingBeScheduled

 OrganizeMeeting Initiator

 112

 Initiator

 Participant

 FindAgreeableDate

 UsingScheduler

 SendAvailDates

 AgreeToDate

 ReplyAgreement

 Meeting

 Scheduler

 ScheduleMeeting

 RequestEnter

 DateRange

 ObtainAvail

 WaitFor Dates

 DateRange Obtain

 Agreement

 RequestAgreement RequestAvailDates WaitForAll

 ForProposedDate AvailDates

 WaitForAll

 AnswerAgreement

Figure 5.9(b) The SR diagram for the MS after operationalizing dependencies.

MeetingBeScheduled

LetSchedule
ScheduleMeeting

 EnterDateRange
 ToScheduler

FindAgreeable

DateSlot

Merge

AvailDates

 113

 Participant

 FindAgreeableDate

 UsingScheduler

 SendAvailDates

 AgreeToDate

 ReplyAgreement

 Meeting

 Scheduler

 ScheduleMeeting

 ObtainAvail

 Dates

 Obtain

 Agreement

 RequestAgreement RequestAvailDates WaitForAll

 ForProposedDate AvailDates

 WaitForAll

 AnswerAgreement

Figure 5.9(c) The SR diagram for the participant after operationalizing dependencies.

5.3.3 Relativizing Goals that Cannot Always Be Achieved

In the next step, goals that cannot always be achieved by the actors are refined into

weaker goals that can be achieved. The decompositions related to these goals are

modified as appropriate.

ArrangeMeeting

 114

Inside the actor Initiator, the goal MeetingBeenScheduled is achievable when

the MS can successfully schedule the meeting. But there are cases where the meeting

cannot be scheduled, because there is no meeting date suitable for all participants. If we

don’t rule out this kind of situation, we have to reformulate the goal into the weaker one

MeetingBeenScheduledIfPossible. This goal is considered to have been

achieved when an attempt to schedule the meeting has been made, successful or not. The

super-task OrganizeMeeting of this goal is refined into TryOrganizeMeeting,

which means that the initiator is trying to organize a meeting and the attempt can succeed

or fail. The mean LetSchedulerScheduleMeeting for the goal remains as before.

Inside the MS, the goal MeetingBeScheduled is achievable when the MS

successfully finds a suitable date for all participants to attend the meeting. But when there

is no date suitable for all participants, the meeting cannot be scheduled and the goal fails

to be achieved. So we have to weaken the goal as

MeetingBeScheduledIfPossible, which is achieved once an attempt to schedule

the meeting has been made. The means of achieving this goal is refined into

TryScheduleAMeeting, allowing for failure. These changes affect some activities of

the participants too. The task ArrangeMeeting is reformulated into

TryArrangeMeetings and the task FindAgreeableDateUsingScheduler is

refined into TryFindAgreeableDateUsingScheduler.

After relativizing the goals that cannot be always achievable into weaker goals that can

always be achieved, the process specified for scheduling a meeting is more realistic. The

SR diagram incorporating these changes appears in Figure 5.10 in the next section.

5.3.4 Filling out Process Details using Decompositions and Annotations

The SR model of Figure 5.9 doesn’t show much detail about the process of scheduling

meetings. For example, when a meeting cannot be scheduled, the scheduler has to inform

 115

the participants and initiator of this. Also some tasks/goals have to be performed

repeatedly or conditionally. For example, if the MS requests all participants to agree to

meet on a proposed date and one of the participant rejects the request, then the scheduler

has to make a request to cancel the agreement on the proposed date to all the participants

who have already agreed. None of this is shown in Figure 5.9. The next step in our RE

methodology is to fill out these details by further decomposing the tasks and using

annotations to specify control information. The modeler has to analyze every task/goal

inside actors to determine how it will be performed. He has to specify in enough detail

how the system completes its tasks/goals step by step (in the selected alternative),

including what are the conditions to perform tasks/achieve goals, whether the tasks/goals

has to be performed repeatedly, etc. Once this has been done, the process can be specified

formally in ConGolog and the specification can be validated and verified.

An informal description of the selected alternative for the meeting scheduling process

was given at the beginning of the chapter. Here we refine the SR diagrams of Figure 5.9

to capture the details of this alternative, resulting in annotated SR diagrams. Let us

describe these.

We start with the initiator role. The annotated i* SR diagram for it appears in Figure 5.10

(a).

 117

schedule a meeting. The task LetSchedulerScheduleMeeting is decomposed

into four subtasks: RequestSchedulerScheduleAMeeting,

WaitForSchedulerRequestDateRange, SendDateRangeToScheduler,

and WaitForResultFromScheduler. These subtasks are to be performed

sequentially, so we can use the default composition annotation “;” (sequence) for the

group of four decomposition links. There is no link annotation on single decomposition

links because every subtask will be performed exactly once to accomplish the super-task

LetSchedulerScheduleMeeting.

Next, let us look at the annotated SR diagram for the MS agent, which appears in Figure

5.10(b).

First, we observe that the MS’s role is to try to schedule many meetings, not one, so we

add a top task TryScheduleMeetings for the MS. Then, whenever the MS receives

a request to schedule a meeting from an initiator, it will want to achieve the goal

MeetingBeScheduledIfPossible. The task TryScheduleAMeeting will be

the mean used to achieve the internal goal MeetingBeScheduledIfPossible. We

use the link annotation *whenever(requestedSchedulingAMeeting) on the

link connecting the top task TryScheduleMeetings and the subgoal

MeetingBeScheduledIfPossible because only when a request to schedule a

meeting has been made, will the subgoal be required to be achieved.

 119

To perform the task TryScheduleAMeeting, the MS first requests the meeting date

range from the initiator, a subtask RequestEnterDateRange, then he waits for the

date range to be entered by the initiator, a subtask WaitForDateRange, then he

requests all the participants to send their available dates, a subtask

ObtainAvailDates, then he waits for all participants to have sent their available

dates, a subtask WaitForAllAvailableDates, then he achieves the goal

FindAgreeableDateSlot by merging the available dates of participants and the

proposed meeting date range of the initiator (we change the goal’s name from

FindAgreeableDateSlot to FindAvailDateSlots because there may be

several dates that are available for all participants), and then he tries to obtain an

agreement from all participants on a date from the merged available dates, a subtask

TryObtainAgreement. A link annotation

pick(datelist,isMergedList(datelist)) accompanies the link connecting

the task TryScheduleAMeeting to the subtask TryObtainAgreement, meaning

that the MS uses the current merged date list to try to obtain agreement from all

participants (this is only to bind the datelist parameter in the subtask

TryObtainAgreement). The subtask ObtainAvailDates must be iterated for all

the participants, so a link annotation *for(p,participants) accompanies the link

connecting it to the task TryScheduleAMeeting. These decomposed

subtasks/subgoals of the task TryScheduleAMeeting are performed sequentially and

the default composition annotation, i.e., sequence “;”, is applied to this group of

decomposed links.

The task of trying to obtain agreement on a date, TryObtainAgreement, is

decomposed as follows: while there is no agreement and there are still some dates in the

merged datelist that have not been tried, then the scheduler tries to obtain an

agreement by nondeterministically picking a not-tried date from the datelist. This

sub-process is modeled as the subtask TryARemainingDate. If all dates in the

 120

merged date list have been rejected by the participants or the merged date list is empty,

then the scheduler notifies the initiator and all the participants that the meeting

scheduling has failed; this sub-process is modeled as the subtask

NotifyFailScheduleMeeting. A link annotation

*while(noAgreementAndSomeDateNotTry) accompanies the link connecting

the task TryObtainAgreement to the subtask TryARemainingDate, representing

the while loop that executes the subtask TryARemainingDate for all the possible

dates. The link annotation if(AllDatesRejectedOrMergedlistEmpty)

accompanies the link connecting the task TryObtainAgreement to the subtask

NotifyFailScheduleMeeting, meaning that the subtask is only done when this

condition holds. The two subtasks of the task TryObtainAgreement are performed

sequentially, so the default composition annotation, sequence “;”, is applied to the group

of these decomposed links.

The task NotifyFailSchedulingMeeting, where the scheduler notifies the

participants and initiator about his failure to schedule a meeting, is composed into two

subtasks: a subtask of notifying a participant of the failure,

NotifyFailToParticipant, which is performed for all participants as indicated by

the link annotation *for(p,participants), and a subtask of notifying the initiator

of the failure, NotifyFailToInitiator. These two subtasks are performed

sequentially and the default composition annotation, sequence “;”, is applied to the group

of links.

The task TryARemainingDate is decomposed as follows: the subtask

TryTheProposedDate where a date is one be picked from the untried dates; a link

annotation pick(date,notTry(date)) accompanies the link connecting the task

TryARemainingDate to the subtask TryTheProposedDate. The task

TryTheProposedDate is decomposed into a more detailed subprocess consisting of:

 121

first, requesting agreement on the proposed date from all participants, modeled as the

subtask RequestAgreementOnProposedDate, which is accompanied by a link

annotation *for(p,participants), meaning that this subtask is to be repeated to

all participants; then waiting for all participants to answer the request for an agreement

on the proposed date, modeled as the subtask WaitForAllAnswerRequest; then

canceling the request for an agreement on the date if one of the participant rejects the

agreement, modeled as the subtask CancelAgreementOnProposedDate, which is

accompanied by a link annotation if(oneReject); and finally notifying the actors of

the agreement on the proposed date if all participants agree to meet on that date, modeled

as the subtask NotifySuccessOnDate, which is accompanied with a link annotation

if(allAccept). These four subtasks of the task TryTheProposedDate are

performed sequentially, so we use the default composition link, sequence “;”, on the

group of decomposition links.

The subtask CancelAgreementOnProposedDate will request the cancellation of

the agreement on the proposed date to all participants who have accepted this agreement.

It is decomposed into the subtask RequestCancelIfNecessary, which is

accompanied by a link annotation *for(p,participants).

RequestCancelIfNecessary is decomposed into the subtask requestCancel

accompanied by a link annotation if(agreementAccepted), meaning that only

when the participant has accepted the agreement, does the MS need to request the

cancellation.

The subtask NotifySucessOnDate is decomposed as follows: notifying all

participants of the success of scheduling a meeting on a given date, modeled as the

subtask NotifyAgreementToParticipant accompanied by a link annotation

*for(p,participants), and notifying the initiator of the success, modeled as the

 122

subtask NotifySuccessToInitiator. These two subtasks are performed

sequentially, so the sequence annotation “;” is applied to the group of decomposed links.

 Participant

 TryArrangeMeetings

 OccupyDateFrom AndMaintainSchedule

 Participant

 *whenever(requestedOccupy)

 TryArrange ||

 Meetings OccupyDate

 TryFindAgreeableDate

 UsingScheduler addDateToSchedule acknowledgeOccupy

 ||

 *whenever(requestedSend)

 send

 AvailDates TryAgreeToDate

 *whenever(requestedCancel)

 *whenever(requestedAgreement) CancelAgreementOnDate

 ReplyAgreement

 | RmvDateFromSchedule AcceptCancel

 if(DateIsFree)

 if(DateIsNotFree)

 AcceptAgreementOnDate

 RejectAgreement

 AcceptAgreement

 AddDateToSchedule

 Meeting

 Scheduler

 TryObtain

 Agreement

 Obtain RequestAgreement

 AvailDates forDate

Figure 5.10(c) The annotated SR diagram for the participant.

 123

Finally, let us look at the annotated SR diagram for the participant roles, which appears in

Figure 5.10(c).

The participant’s role in scheduling meetings is to passively answer requests from other

actors and maintain his time schedule. We add a top task

TryArrangeMeetingsAndMaintainSchedule to model this. This task is

decomposed into two subprocesses: a subtask of trying to arrange meetings

TryArrangeMeetings, and a subtask of reserving/occupying a date on his schedule

when requested by an outside actor, modeled as OccupyDate with a link annotation

*whenever(requestedOccupy). The two subprocesses are performed

concurrently, so a concurrency composition annotation “||” is applied to the group of

links.

The task TryArrangeMeetings can be completed by performing a subtask of finding

an agreeable meeting date using the scheduler, where all the participant has to do is to

passively answer requests from the scheduler; this is modeled as a subtask

TryFindAgreeableDateUsingScheduler. This task involves processing

requests to obtain available dates, requests to obtain agreement to meet on a proposed

date, and requests to cancel an accepted agreement to meet on a proposed date. So

TryFindAgreeableDateUsingScheduler is decomposed into two subtasks: a

subtask of sending the available dates to the scheduler, SendAvailDates, with a link

annotation *whenever(requestedSend), and a subtask of processing requests

regarding meeting date agreements, TryAgreeToDate. The two subtasks are

performed concurrently, so a concurrency composition annotation “||” is applied to the

group of decomposition links. The task TryAgreeToDate is decomposed into two

subtasks: a subtask of replying to a request for agreement on a proposed date when one is

received from the scheduler, modeled as the task ReplyAgreement, with a link

 124

annotation *whenever(requestedAgreement), and a subtask of replying to a

request to cancel an agreement on a proposed date when one is received, modeled as the

subtask CancelAgreementOnDate with a link annotation

*whenever(requestedCancel). The two subtasks are performed concurrently, so

a concurrency composition annotation “||” is applied to the group of decomposition links.

The task ReplyAgreement will either accept or reject the request to meet on a

proposed date from the scheduler. It is decomposed into two subtasks: a subtask of

accepting the proposed date if the date is free on the participant’s time schedule, modeled

as AcceptAgreementOnDate with a link annotation if(dateIsFree), and a

subtask of rejecting the proposed date if the date has been occupied on the participant’s

time schedule, modeled as the task RejectAgreement with a link annotation

if(dateIsNotFree). The two subtasks are alternatives, so the alternative

composition annotation “|” is applied to the group of decomposition links.

The tasks AcceptAgreementOnDate and CancelAgreementOnDate both

involve updating the participant’s time schedule and then notifying the scheduler of the

agreement or acknowledging the cancellation. So the task AcceptAgreementOnDate

is decomposed into two subtasks: a subtask AddDateToSchedule which adds the

proposed date to the participant’s time schedule, and a subtask AcceptAgreement

which notifies the scheduler that the participant accepts the proposed agreement. These

two subtasks have to be performed sequentially because the participant has to make sure

his time schedule has been updated before he tells the scheduler that he accepts the

agreement. So the default (sequence) composition annotation “;” is applied to the group

of decomposition links. The task CancelAgreementOnDate is decomposed in a

similar way into two subtasks: RmvDateFromSchedule, which removes the meeting

date from the participant’s time schedule, and AcceptCancel which notifies the

scheduler that the participant received his cancellation. These two subtasks have to be

performed sequentially because the participant has to make sure his time schedule is

 125

updated before he acknowledge the request of cancellation to the scheduler. So a default

(sequence) composition annotation “;” is applied to the group of decomposition links.

Note that we need to make sure that the ConGolog code on accepting agreement cannot

deadlock. The test that the date is free and the addDateToSchedule action must be

done as a single transition, so that an occupyDate cannot happen between them.

The shadowed areas in Figure 5.10 (a) and (b) represent the decompositions of important

tasks inside actors. We will use these task decompositions later to explain how the task

decompositions can be mapped into the ConGolog elements.

5.4 Developing the Initial ConGolog Model

Here, the modeler must map entities in the annotated SR diagram into corresponding

elements of a ConGolog model and complete the development of the ConGolog model.

We will give a detailed description of how the mapping rules are applied to the entities in

the annotated SR models of Figure 5.10 and how the actions, action precondition axioms,

successor state axioms, and the initial state axioms are specified in order to build the

complete ConGolog model.

5.4.1 The Initial ConGolog Model for Initiator

By applying the mapping rules the elements of the annotated SR diagram of Figure

5.10(a) for the initiator, we obtain the part of the initial ConGolog model that specifies

the behavior of the initiator, which is shown in Figure 5.11.

 126

 proc(initiator_behavior(Init,MS),
 tryOrganizeMeeting(Init,MS,peoplelist,datelist)
).

 proc(tryOrganizeMeeting(Init,MS,Peoplelist,Datelist),
 achieve_meetingBeenScheduledIfPossible(Init,MS,Peoplelist,Datelist)
).

 proc(achieve_meetingBeenScheduledIfPossible(Init,MS,PList,Datelist),
 [letSchedulerScheduleMeeting(Init,MS,PList,Datelist),
 meetingBeenScheduledIfPossible(Init,MS,PList,Datelist)?
]
).

 proc(letSchedulerScheduleMeeting(Init,MS,PList,Datelist),
 [
 requestScheduleMeeting(Init,MS,PList),
 waitForSchedulerRequestDateRange(Init,MS,PList,Datelist)?,
 enterDateRangeToScheduler(Init,MS,PList,Datelist),
 waitForSchedulingResultFromScheduler(Init,MS,PList,Datelist)?
]
).

 proc(enterDateRangeToScheduler(Init,MS,Peoplelist,Datelist),
 pi([meetingID],[
 and(val(skedPeoplelist(meetingID),Peoplelist),
 and(requestedEnterDateRange(meetingID),
 not(dateRangeEntered(meetingID))
))?,
 enterDateRange(Init,MS,meetingID,Datelist)])
).

Figure 5.11 The initial ConGolog model for the initiator

Let us explain how the mapping is done in detail. First nodes in the SR diagram of Figure

5.10(a) are mapped. There are three types of nodes in Figure 5.10(a) are to be mapped: a

role node, a goal node, and some task nodes. Then the decomposition links are mapped.

There are two types of decomposition links are mapped: task-decomposition links and

goal-decomposition links.

In the annotated SR diagram of Figure 5.10(a), the node Initiator is a role node.

According to the mapping rule for roles, the role node Initiator is mapped into the

 127

ConGolog procedure initiator_behavior that specifies that the initiator’s

behavior is to try to organize meetings. The mapping is shown in Figure 5.12. The Init

parameter is to be filled by a term that denotes an agent playing the initiator role and the

MS parameter by a term that denotes its acquaintance, the meeting scheduler agent.

 m(Initiator) proc(initiator_behavior(Init,MS),

 Initiator /* behavior of role */
 tryOrganizeMeeting(Init,MS,peoplelist,datelist)

).

Figure 5.12 The mapping for the role node Initiator

In the SR diagram of Figure 5.10(a), there is a goal node

MeetingBeenScheduledIfPossible inside the Initiator role. According to

the mapping rule for goals, this node can be mapped into the ConGolog procedure

achieve_MeetingBeenScheduledIfPossible and defined fluent

meetingBeenScheduledIfPossible. The procedure

achieve_MeetingBeenScheduledIfPossible contains the mean to achieve

the goal MeetingBeenScheduledIfPossible and has the post-condition that the

fluent holds, i.e., its body ends with the test

meetingBeenScheduledIfPossible?. Figure 5.13 shows the mapping.

 MeetingBeenScheduled

 IfPossible m_achieve

 proc(achieve_MeetingBeenScheduledIfPossible(Init,MS,PList,DList),

 [letSchedulerScheduleMeeting(Init, MS, PList, DList) ,
 meetingBeenScheduledIfPossible(Init,MS,PList,DList)?

 m_fluent]).

 meetingBeenScheduledIfPossible(Init,MS,PList, DList)

Figure 5.13 The mapping for the goal node MeetingBeenScheduledIfPossible

 128

In the SR diagrams of Figure 5.10(a), there are task nodes TryOrganizeMeeting,

LetSchedulerScheduleMeeting, RequestScheduleAMeeting,

WaitForSchedulerRequestDateRange, EnterDateRangeToScheduler,

and WaitForSchedulingResultFromScheduler. We take the task nodes

TryOrganizeMeeting and LetSchedulerScheduleAMeeting as examples of

how the task nodes can be mapped into elements of a ConGolog model. According to the

mapping rules for tasks, the task node TryOrganizeMeeting is mapped into the

ConGolog procedure tryOrganizeMeeting and the task node

LetSchedulerScheduleAMeeting is mapped into the ConGolog procedure

letSchedulerScheduleAMeeting. The mappings are shown in Figure 5.14(a)

and (b) respectively.

 proc(tryOrganizeMeeting(Init,MS,PList, DList),

 TryOrganize m achieve_MeetingBeenScheduledIfPossible(Init,MS,PList,DList)

 Meeting).

Figure 5.14(a) The mapping for the task node TryScheduleMeeting

 proc(letSchedulerScheduleMeeting(Init,MS,PList,DList),

 LetScheduler m [requestScheduleMeeting(Init,MS,PList),

 ScheduleAMeeting waitForSchedulerRequestDateRange(Init,MS,PList,DList)?,
 enterDateRangeToScheduler(Init,MS,PList,DList),
 waitForSchedulingResultFromScheduler(Init,MS,PList,DList)?

]).

Figure 5.14(b) The mapping for the task node LetSchedulerScheduleAMeeting

Now we explain how task-decomposition links are mapped. In the shadowed rectangle

area in the annotated SR diagram of Figure 5.10(a) of Initiator, the task node

LetSchedulerScheduleAMeeting is decomposed into four subtasks:

RequestSchedulerScheduleMeeting,

WaitForSchedulerRequestDateRange, EnterDateRangeToScheduler,

and WaitForResultFromScheduler. The default composition annotation, i.e.,

 129

sequence “;”, is applied to this group of decomposition links. No link annotation is

applied to any single decomposition links which means that every subtask is to be

performed exactly once. As we can see in Figure 5.14 (b),

LetSchedulerScheduleAMeeting is mapped into the ConGolog procedure

letSchedulerScheduleMeeting. The body of the procedure

letSchedulerScheduleMeeting sequentially invokes the ConGolog sub-

procedures requestScheduleMeeting,

waitForSchedulerRequestDateRange, enterDateRangeToScheduler,

and waitForSchedulingResultFromScheduler without any condition, exactly

once.

In the diagram of Figure 5.10(a), the task TryOrganizeMeeting is decomposed into

a subgoal MeetingBeenScheduledIfPossible and no annotation is associated

with this decomposition. So according to the mapping rules for task-decompositions, the

ConGolog procedure tryOrganizeMeeting, mapped from the task

TryOrganizeMeeting, invokes once the ConGolog procedure

achieve_meetingBeenScheduledIfPossible which is mapped from the goal

MeetingBeenScheduledIfPossible; we can see this mapping in Figure 5.14(a).

Next we explain how goal-decomposition links (i.e., called means-ends links) are

mapped. In the annotated SR diagram for the initiator, the goal node

MeetingBeenScheduledIfPossible is decomposed into a subtask

LetSchedulerScheduleMeeting, i.e., the subtask is the only mean to achieve the

goal MeetingBeenScheduledIfPossible. As we can see in Figure 5.13, this goal

node is mapped into the defined fluent meetingBeenScheduledIfPossible and

the ConGolog procedure achieve_MeetingBeenScheduledIfPossible whose

body has the defined fluent meetingBeenScheduledIfPossible as its post-

condition, i.e., the body ends with a test meetingBeenScheduledIfPossible?.

 130

The procedure achieve_MeetingBeenScheduledIfPossible invokes the

procedure letSchedulerScheduleAMeeting that is mapped from the subtask

LetSchedulerScheduleAMeeting, which means that the subtask

LetSchedulerScheduleAMeeting is the preferred mean to achieve the goal

MeetingBeenScheduledIfPossible.

The goal MeetingBeenScheduledIfPossible with its decomposition links and

the task LetSchedulerScheduleMeeting with its decomposition links have

already been explained. Putting all these together, we obtain the ConGolog behavior

specification for the initiator in Figure 5.11. We discuss the specification of the primitive

actions and fluents in section 5.4.4.

5.4.2 The Initial ConGolog Model for MeetingScheduler

The annotated SR diagram of Figure 5.10(b) for the MS is mapped into the initial

ConGolog model that appears in full in Appendix A-7.

Let us go over the mapping, focusing on cases that have not been discussed already. The

node MeetingScheduler is an agent. Following to the mapping rule for agent nodes,

it is mapped into a ConGolog procedure meetingScheduler_behavior specifying

the behavior of the meeting scheduler agent and a meeting scheduler agent constant ms1

(this is assigned to parameter MS by the main procedure according the system scenario),

shown in Figure 5.15. The procedure invokes the top level task of the agent,

tryScheduleMeetings.

 131

 Meeting m_behavior proc(meetingScheduler_behavior(MS,Init),

 Scheduler tryScheduleMeetings(MS, Init)
).

 m_agent
 ms1

Figure 5.15 The mapping for the agent node MeetingScheduler

 The top task node TryScheduleMeetings is decomposed into a subgoal

MeetingBeScheduledIfPossible, with the link annotation

*whenever(requestedScheduleAMeeting) attached to this single

decomposition link. Following the mapping rules, the task node is mapped into the

following procedure; which invokes the procedure associated with the subgoal

achieve_meetingBeScheduleIfPossible within an interrupt, the result of

mapping the *whenever annotation:

proc(tryScheduleMeetings(MS,Init),

 ==>([meeting,plist],

 requestedScheduleAMeeting(Init,MS,plist,meeting),

 achieve_MeetingBeScheduledIfPossible(MS,Init,meeting,plist)

)

).

The goal node MeetingBeScheduledIfPossible is decomposed into a subtask

TryScheduleAMeeting without any annotation associated with this decomposition,

so it is mapped into the following procedure as for the example of the previous section:

proc(achieve_MeetingBeScheduledIfPossible(MS,Init,Meeting,PList),

 [

 tryScheduleAMeeting(MS,Init,Meeting,PList),

 meetingBeScheduledIfPossible(Meeting)?

]

).

 132

Note how the procedure has the fluent associated with the goal as a post-condition, a final

test action. The goal node MeetingBeScheduledIfPossible is decomposed into

a task node TryScheduleAMeeting. Accordingly, the above procedure calls the

procedure associated with this task.

The task node tryScheduleAMeeting is decomposed into the following

subtasks/subgoals: the subtask RequestEnterDateRange, the subtask

WaitForDateRange, the subtask ObtainAvailDates, the subtask

WaitAllParticipantsSendAvaildDates, the subgoal

FindAvailDateSlots, and the subtask TryObtainAgreement. The default

composition annotation, sequence “;”, is applied this group of decomposition links. The

link annotation *for(p,participants) is attached to the link between the subtask

ObtainAvailDates and the super-task TryScheduleAMeeting, which means

that the MS obtains the available dates from every member p in the list

participants. The link annotation

pick(datelist,isMergedlist(datelist)) is attached to the link between

the subtask ObtainAgreement and the super-task TryScheduleAMeeting, which

means that the MS nondeterministically picks up a datelist which is the merged

available date list for the proposed meeting (isMergedlist(datelist)), and tries

to obtain agreement for a meeting based on this merged list. No link annotation is

attached to any other single decomposition links, which means these associated

subtasks/subgoals are to be performed exactly once. According to the mapping rules for

the task decomposition link, the task node TryScheduleAMeeting with its

decomposition links will be mapped into a ConGolog procedure

tryScheduleAMeeting whose body invokes the mapping results of the

subtasks/subgoals sequentially according to the conditions associated with the link

annotations. The resulting procedure is shown below.

 133

proc(tryScheduleAMeeting(MS,Init,MeetingID,Peoplelist),
 [
 requestEnterDateRange(MS,Init,MeetingID),
 some(datelist,enteredDateRange(MeetingID,datelist))?,
 for(participant,Peoplelist,[],
 obtainAvailDates(MS,participant,MeetingID)
),
 waitForAllParticipantSendAvailDates(MeetingID,Peoplelist)?,
 achieve_findAvailDateSlot(MS,MeetingID,Peoplelist),
 pi(xlist,[
 val(allmergedlist(MeetingID),xlist)?,
 tryObtainAgreement(MS,Init,MeetingID,Peoplelist,xlist)
])
]).

For the goal node FindAvailDateSlots and its subtask node

MergeAllAvailDates, the mapping result is shown as follows:

 proc(achieve_findAvailDateSlot(MS,MeetingID,Peoplelist),

 [

 mergeAllAvailDates(MS,MeetingID,Peoplelist),

 findAvailDateSlot(MeetingID)?

]).

proc(mergeAllAvailDates(MS,MeetingID,Peoplelist),

 pi([datelist],[

 enteredDateRange(MeetingID,datelist)?,

 mergeAll(MS,MeetingID,Peoplelist,datelist)

])

).

The task node MergeAllAvailDates is not decomposed in the annotated SR

because the modeler didn't want to get into the details of how to manipulate the date lists.

But in the ConGolog model, we specify this to obtain an executable model for simulation.

In the body of the procedure MergeAllAvailDates, the date lists to be merged are

bound to datelist by the pi operator provided by ConGolog and then the procedure

mergeAll(MS,MeetingID,Peoplelist,datelist)is called to recursively

merge them. This procedure is defined as follows:

 134

proc(mergeAll(MS,MEETINGID,PEOPLELIST,TLIST),

 if(PEOPLELIST=[],

 setAllMergedlist(MS,MEETINGID,TLIST),

 [pi([f,r],[

 PEOPLELIST=[f|r]?,

 pi([availdate,templist],

 [sentAvailDates(MEETINGID,f,availdate)?,

 interSectionlist(availdate,TLIST,templist)?,

 mergeAll(MS,MEETINGID,r,templist)

])

])

]

)

).

The task TryObtainAgreement is decomposed into two subtasks

TryARemainingDate and NotifyFailScheduleMeeting. The default

sequence annotation “;” is applied the group of decomposition links. The link annotation

*while(noAgreementAndSomeDateNotTry) is associated with the link to

subtask TryARemainingDate and the link annotation

if(allDatesRejectedOrMergedlistEmpty) is associated with the link to

subtask NotifyFailScheduleMeeting. The mapping result is as following:

proc(tryObtainAgreement(MS,Init,Meeting,PList,Xlist),

 [while(and(someDateNotTryAndNoAgreement(Meeting,PList,Xlist),

 not(Xlist=[])),

 tryARemainingDate(MS,Init,Meeting,PList,Xlist)

),

 if(or(allRejected(Meeting,PList,Xlist),Xlist=[]),

 notifyFailScheduleMeeting(MS,Init,Meeting,PList)

)

]

).

The rest of the ConGolog model for the meeting scheduler's behavior contains few new

features and we will not discuss it. See Appendix A-7 for the specification. We also do

not discuss the ConGolog model for Participant; see Appendix A-1 for the

specification.

 135

5.4.3 Specifying the Domain Dynamics

As we are mapping elements of the annotated SR diagram into the ConGolog model's

process specification, we must also begin to specify the domain dynamics. Primitive

actions and fluents are introduced to model aspects of the domain. Precondition axioms

and successor state axioms are also specified to model when the actions can be performed

and how they affect the fluents. Let us first list the primitive actions, exogenous actions,

and fluents we use to model this domain:

• Primitive actions

requestSchedulerScheduleAMeeting(Init,MS,ParticipantList)

 /* Init asks MS to schedule a meeting with all members in ParticipantList */

requestEnterDateRange(MS,Init,Meeting)

 /* MS requests Init to enter the date range for Meeting */

enterDateRange(Init,MS,Meeting,Datelist)

 /* Init enters MS the date range Datelist for Meeting */

obtainAvailDates(MS,Participant,Meeting)

 /* MS requests the available dates from Participant for Meeting */

sendAvailDates(Participant,MS,ReqID,Tlist)

 /* Participant sends MS his AvailableDates regarding MS's request ReqID */

requestAgreement(MS,Participant,Meeting,Date)

 /* MS requests Participant’s agreement on the proposed Date for Meeting */

acceptAgreement(Participant,MS,ReqID,Date)

 /* Participant accepts MS's request ReqID for agreement to meet on Date */

rejectAgreement(Participant,MS,ReqID,Date)

 /* Participant rejects MS's request ReqID for agreement to meet on Date */

cancelAgreement(MS,Participant,Meeting,Date)

 /* MS requests Participant to cancel agreement on Meeting on Date */

acceptCancel(Participant,MS,ReqID,Date)

 /* Participant accepts MS's request ReqID for canceling the meeting on Date */

notifyAgreement(MS,Participant,Meeting,Date)

 /* MS notifies Participant of the agreement to have Meeting on Date */

notifySuccess(MS,Init,Meeting,Participants,Date)

 136

 /* MS notifies Init that it has successfully scheduled Meeting */

 /* with all Participants on Date */

notifyFail(MS,Participant,Meeting, Participants)

 /* MS notifies Participant that it has failed to schedule Meeting with Participants. */

setAllmergedlist(MS,Meeting,Dlist)

 /* MS memorizes Dlist as the merged list of all available dates of all participants for Meeting */

addDateToSchedule(Participant,Date)

 /* Participant adds Date into his schedule */

rmvDateFromSchedule(Participant,Date)

 /* Participant removes Date from his schedule */

• Exogenous Actions

occupyDateFromParticipant(Participant,Date).

 /* An unspecified agent outside the system commands Participant */

 /* to occupying Date on his schedule. */

• Predicate Fluents

requestedSchedulerSkeduleAMeeting(Init,MS,Meeting)

 / * Init has requested MS to schedule Meeting */

requestedEnterDateRange(MS,Init,Meeting)

 /* MS has requested Init to enter the date range for Meeting */

enteredDateRange(Init,MS,Meeting,Datelist)

 /* Init has entered the data range Datelist for Meeting to MS */

submittedobtain(MS,P,Meeting)

 /* MS has requested participant P for his available dates for Meeting */

sentAvailDates(P,MS,Meeting,AvailDates)

 /* Participant P sent MS his available date AvailDates for Meeting */

submittedAgreement(MS,P,Meeting,Date)

 /* MS has requested participant P to agree to have Meeting on Date */

agreementAccepted(P,MS,Meeting,Date)

 /* Participant P has accepted to have Meeting on Date as proposed by MS */

agreementRejected(P,MS,Meeting,Date)

 /* Participant P has rejected to have Meeting on Date as proposed by MS */

waitingForAgreeAns(MS,P,Meeting, Date)

 /* MS is waiting for participant P to agree to have Meeting on Date */

submittedCancel(MeetingID,P,Date)

 /* MS has requested participant P to cancel Meeting on Date */

cancelAccepted(P,MS,Meeting,Date)

 /* Participant P has acknowledged the cancellation of Meeting on Date by MS */

agreementReqRcvd(P,ReqID,Date)

 137

 /* P has received a request ReqID for agreement to have Meeting on Date */

cancelReqRcvd(P,ReqID,Date)

 /* Participant P received a request ReqID for canceling meeting on Date */

cancelReqProc(P,ReqID,Date)

 /* Participant P has processed the request ReqID for canceling Meeting on Date */

agreementNotified(MS,P,Meeting,Date)

 /* MS has notified participant P all participants agree Meeting on Date */

successNotified(MS,Init,Meeting,Participants,Dlist)

 /* MS has notified Init of the successfully scheduling of Meeting */

 /* on Dlist with Participants */

failNotified(MS,Init,Meeting,Plist,Dlist)

 /* MS has notified Init of his failure to schedule Meeting on Dlist with Participants */

participantDateOccupied(Participant,Date)

 /* Date is occupied Participant's schedule */

Predicate fluents generally model the fact that a primitive action or exogenous action in

the scheduling process has occurred. For example: the fluent

requestedSchedulerSkeduleAMeeting(Init,MS,Meeting) models that

fact that a request from the scheduler MS to schedule Meeting has been made by the

initiator Init (the primitive action requestSchedulerScheduleAMeeting).

Similarly, the fluent

submittedObtainAvailableDates(MS,Participant,meeting) models

the fact that the MS has made a request to obtain Partcipant's available dates for

Meeting (the primitive action obtainAvailDates).

• Functional Fluents

allmergedlist(Meeting)

 /* Denotes the merged available date list for Meeting */

participantSchedule(Participant

 /* Denotes Participant's time schedule (list of busy dates) */

dateRange(Meeting)

 /* Denotes the meeting date range for Meeting */

participants(Meeting)

 /* Denotes the list of participants for Meeting */

reqParticipant(ReqID)

 /* Denotes the participant who the request ReqID was made to */

reqDate(ReqID)

 138

 / * Denotes the date associated with the request ReqID made to any participant */

reqDlist(ReqID)

 /* Denotes the date list associated with the request ReqID made to any participant */

reqMeetingID(ReqID)

 /* Denotes the meeting associated with the request ReqID made to any participant */

MeetingCtr

 /* A counter used by MS to assign meeting IDs to meeting scheduling requests */

reqctr

 /* A counter for assigning IDs to requests made to any participant */

We also have various defined fluents. For example,

AgreemeentAnswered(MS,Participant,Date,Meeting) models the fact

that the MS is waiting for Participant to agree to the Meeting on the Date. It is

defined in Prolog as follows:

holds(agreementAnswered(MS,Participant,Date,Meeting),S):-

 holds(agreementAccepted(MS,Participant,Date,meeting),S);

 holds(agreementRejected(MS,Participant,Date,Meeting),S).

This means that the defined fluent is true if and only if the Participant has accepted

or rejected the request to agree to have Meeting on Date.

We also have allRejected(MeetingID,Peoplelist,Datelist), which

models the fact that all dates in Datelist proposed for the meeting have been rejected

by some of the participants in the Peoplelist. It is defined as follows:

 139

holds(allRejected(MeetingID,Peoplelist,DateliSt),S):-

 holds(member(Date,Datelist)-->

 oneRejected(MeetingID,Peoplelist,Date),S).

A complete list of defined fluents with their definition appears in Appendix A-3.

For each predicate fluent or functional fluent, we specify a successor state axiom that

captures how it is affected by the actions in the domain.

For example, the successor axiom for the fluent

occupyAcknowledged(Participant,Date) is specified as follows:

holds(occupyAcknowledged(Participant,Date),do(A,S)):-

 A= acknowledgeOccupy(Participant,Date);

 holds(occupyAcknowledged(Participant,Date), S).

This says that a request to occupy Date on Participant's schedule has been

acknowledged in the situation that is the result of doing action A in situation S if and only

if the action A is to acknowledge this occupation, or if the occupation has already been

acknowledged in situation S.

The successor axiom for the fluent

submittedObtain(MS,Participant,Meeting) is as follows:

holds(submittedObtain(MS,Participant,Meeting),do(A,S)):-

 A = obtainAvailDates(MS,Participant,Meeting);

 holds(submittedobtain(MS,Participant,Meeting),S)

This says that a request by MS to obtain his available dates from Participant has bee

made in the situation that is the result of doing action A in situation S if and only if the

action A is to make a request by MS to obtain the available dates from Participant, or

if the request has already been made in situation S.

 140

The successor axiom for the functional fluent meetingCtr is as follows:

holds(val(meetingCtr,N),do(A,S)):-

 (A = requestScheduleMeeting(_,_,_),

 holds(val(meetingCtr,M),S), N is M + 1);

 (holds(val(meetingCtr,N),S),

 A \= requestScheduleMeeting(_,_,_)).

This says that the meeting counter meetingCtr will increase one at the situation that is

the result of doing action A in situation S if and only if the action A is to make a request

to schedule a meeting otherwise meetingCtr remains the same value as that in

situation S.

All successor state axioms are listed in Appendix A-2.

We also specify an action precondition axiom for each primitive action to indicate the

pre-condition to perform an action. For example, the precondition axiom for the action

acceptagreement(Participant, MS, ReqID, Date) is as follows:

poss(acceptAgreement(Participant,MS,ReqID,Date),S):-

 holds(agreementReqRcvd(Participant,MS,ReqID,Date),S).

This says that the action can be performed if Participant has received a request from

MS for an agreement to meet on Date.

The precondition axiom for the action occupyDateFromParticipant is as follows:

poss(occupyDateFromParticipant(Participant,Date),S):-

 holds(not(participantDateOccupied(Participant,Date)),S),

 holds(not(agreementAccepted(-,Participant,Date)),S)

This says that the action can be performed if Date is not occupied from

Participant's time schedule and he has not agreed to any meeting on Date.

 141

We consider most actions to be always possible in this domain. For example, we have

poss(requestSchedulerScheduleAMeeting(_,_,_),_) is always

possible to be performed. All precondition axioms appears in Appendix A-6.

The last element of the ConGolog model is the specification of the initial state. This

various depending what sort of scenario one wants to simulate or verify. It will include

axioms such as the following:

holds(val(participantDateInfo(jeff),[]),s0).

This says that jeff doesn't have any activities on his time schedule initially.

The complete initial state specification might include the following set of axioms:

holds(val(participantDateInfo(paige),[11,12,14]),s0)

 /* Initially paige has meetings on Feb 11, 12, 14*/

holds(val(participantDateInfo(yves),[10,12]),s0)

 /* Initially yves has meetings on Feb 10, 12*/

holds(val(feblist,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,

 20,21,22,23,24,25,26,27,28,29]),s0)

 /* Initially the meeting can only be arranged in Feburary */

 holds(val(meetingCtr,l),s0)

 /* Initially the value of meeting count is assumed to be l */

 holds(val(reqCtr, 1),s0)

 /* Initially the value of request count is assumed to be l */

 holds(val(allmergedlist(_),[]),s0)

 /* Initially the merged available date list is assumed to be empty */

Appendix A-3 lists all the actions and fluents in the ConGolog model of the meeting

scheduling process.

5.5 Validating the ConGolog Model by Simulation

The modeler can evaluate the ConGolog model through simulation. First, we specify an

instance of the system and then we run a simulation. By checking and comparing the

 142

results of simulation on different system instances or initial states, we can see whether the

system behaves as expected. Unforeseen occurrences may cause revisions in the model.

5.5.1 Specifying a System Instance

As mentioned earlier, complete ConGolog models can be executed to run process

simulation experiments. To do this, the modeler must first specify an instance of the

overall system. We do this by defining a main procedure and the agents' behavior

procedures. For example, we may want to study a system instance specified by the

following main procedure:

proc(main,[

initiator_behavior(initl,msl)#=

meetingScheduler_behavior(msl,initl)#=

participants_behavior(yves,msl)#=

participants_behavior(paige,msl)#=

]).

Here there is one initiator init1, one meeting scheduler ms1, two participants yves

and paige in the meeting scheduling process. The sign "#=" means that the behavior

of the agents execute concurrently (since they are independent from each other).

We also have to specify the details of the agents' behavior for this system instance. For

example, we may write the following procedure to specify that the behavior of an

initiator who wants to organize two meetings:

proc(initiator_behavior(Init,MS),

 [

tryOrganizeMeeting(Init,MS,[paige,yves],[12,14,15,16,17]),

tryOrganizeMeeting(Init,MS,[paige,yves],[12,14,15])

]).

Here, the possible meeting dates are limited to those of a February and represented as

integers. This procedure specifying that the initiator Init wants to schedule two

 143

meetings using the MS. One is with paige and yves on Feb. 12, 14, 15, 16, or 17.

Another is with paige and yves on Feb. 12, 14, or 15.

For the meeting scheduler and participant agents, we use the normal behavior

specification as described in the previous section:

proc(meetingScheduler_behavior(MS,Init),

 tryScheduleMeetings(MS,Init)

).

 proc(participant_behavior(Participant,MS),

 tryArrangeMeetingsAndMaintainSchedule(Participant,MS)

).

5.5.2 Simulation Examples

Here, we present some example simulation traces. The modeler must specify the initial

state of the system as explained in the previous section. For all our examples, we assume

that initially, the time schedule for participant paige is [11, 12, 14], i.e., paige

is busy on Feb. 11, 12, and 14, and the time schedule for the participant yves is [10,

12], i.e., yves is busy on Feb. 10, and 12.

Example 1: The initiator initl wants to schedule a meeting with paige and yves on

Feburary 12 or 14, since paige is busy on both of these days, meeting scheduling

should fail. The modeler executes the main procedure to obtain a simulation trace. The

simulation trace that will be obtained for this instance of the system is as follows:

requestScheduleMeeing(inil,msl,[paige,yves])

 /* inil requests msl to schedule a meeting with paige and yves*/

requestEnterDateRange(msl,inil,l)

 /* ms1 requests ini1 to enter the possible date range for the meeting No. 1 */

enterDaterange(ini1,ms1,1,[12,14])

 /* ini1 enters Feb. 12, 14 as the possible meeting dates */

obtainAvailDates(msl,yves,1)

 /* ms1 requests available dates from all participants */

obtainAvailDates(msl,paige,l)

 144

sendAvailDates(yves,msl,2,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21

,22,23,24,25,26,27,28]) /* yves sends his available dates */

sendAvailDates(paige,msl,l,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,2

0,21,22,23,24,25,26,27,28]) /* paige sends his available dates */

setAllMergedlist(msl,1,[])

 /* msl finds the merged available dates to be empty */

notifyFail(msl,inil,l,[paige,yves])

 /* msl notifies inil , yves, and paige that it has failed to schedule meeting No. 1 */

notifyFail(msl,paige,l,[paige,yves])

notifyFail(msl,yves,l,[paige,yves])

The above trace shows that after obtaining available dates from yves and paige, the

MS finds out that the merged date list, which is merged from the lists of available dates of

yves and paige and the proposed meeting dates offered by the initiator, is empty. So

he cannot schedule the meeting and notifies the initiator initl, yves, and paige of

his failure. This shows that the specification produces the expected behavior in this case.

It also shows that using the MS to schedule meetings is convenient for the initiator, and

that obtaining available dates first also decreases the number of exchanges with the

participants. See Appendix A-4 for the complete simulation trace for the example. The

simulation shows that even if no date is available, the process will proceed as expected.

Generally, in this validation step of the methodology, we try to find gaps or errors in the

specification by simulating the processes. Alternative specifications can be also

compared. We could specify an alternative where the initiator schedules meetings by

himself and compare the resulting simulation traces.

Example 2: The initiator wants to arrange a meeting with paige and yves on Feb. 12,

14, 15, 16, or 17. The scheduling will still succeed after dealing with the occupation of a

date on paige's schedule during the process. The simulation trace obtained is as

follows:

requestScheduleMeeting(ini1,msl,[paige,yves])

 /* initl requests msl to schedule a meeting with paige and yves */

requestEnterDateRange(msl,inil,1)

 145

 /* msl requests initl to send the date range for the above meeting no.1 */

enterDateRange(initl,msl,1,[12,14,15,16,17])

 /* initl enters the meeting date to msl regarding the meeting no.1 */

obtainAvailDates(msl,paige,l)

 /* msl requests paige and yves to send their available dates */

obtainAvailDates(msl,yves,l)

sendAvailDates(paige,msl,l,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,2

1,22,23,24,25,26,27,28,29]) /* paige sends his available dates to ms1 */

sendAvailDates(yves,msl,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20

,21,22,23,24,25,26,27,28,29]) /* yves sends his available dates to ms1 */

occupyDateFromParticipant(paige,15) ,

 /* An outside activity occupies the date of Feb. 15 from paige's free time schedule */

addDateToSchedule(paige,15) /* paige adds the date Feb. 15 into his busy time schedule */

acknowledgeOccupy(paige,15) /* paige acknowledges the occupation of the date of Feb.15 */

setAllMergedlist(msl,l,[15,16,17])

 /* msl sets a merged date list for meeting no.1 as Feb.15, 16 and 17 */

requestAgreement(msl,paige,1,15)

 /* msl requests agreement from paige for meeting No.1 on Feb. 15 */

requestAgreement(msl,yves,1,15)

 /* msl requests agreement from yves for meeting No.1 on Feb. 15 */

rejectAgreement(paige,msl,4,15) /* paige rejects meeting No. 1 on Feb. 15 */

addDateToSchedule(yves,15)

 /* yves adds Feb. 15 into his time schedule and accepts the agreement */

acceptAgreement(yves,msl,5,15)

cancelAgreement(msl,yves,1,15),

 /* msl requests yves cancel the agreement to meeting No.1 on Feb.15 */

requestAgreement(msl,paige,1,16)

 /* msl picks up next date in the merged date list Feb.16 and requests agreement again */

requestAgreement(msl,yves,1,16)

addDateToSchedule(yves,16) /* both of yves and paige accept to meet on Feb.16 */

acceptAgreement(yves,msl,8,16)

rmvDateFromSchedule(yves,15)

 /* yves removes Feb.15 from his time schedule and accept the request to cancel agreement on it */

acceptCancel(yves,msl,6,15)

addDateToSchedule(paige,16),

 /* paige adds Feb.16 into his time schedule for meeting no.1 */

acceptAgreement(paige,msl,7,16) /* paige agrees to meeting no.1 on Feb 16 */

notifySuccess(msl,initl,l,[paige,yves],l6),

 /* ms1 notifies initl, yves, and paige of successfully scheduling meeting no. 1 */

notifySucess(msl,paige,1,16),

notifySucess(msl,yves,1,16),

 146

The above simulation trace shows that although paige originally sends his available

dates to ms1 which include Feb. 15, later something happens and occupies the date Feb.

15 from the time schedule of paige — The exogenous action

OccupyDateFromParticipant. ms1 does not know about that, so it still picks

Feb. 15 from the merged date list to request paige and yves to agree to hold the

meeting on Feb. 15. paige rejects the meeting on Feb. 15 because now his is

unavailable on Feb. 15, while yves accepts the agreement and adds Feb. 15 into his busy

time schedule. ms1 finds out that paige is no longer available on Feb. 15 because

paige rejects the request to meet on Feb. 15, so it has to request yves to cancel the

agreement on Feb. 15. Then ms1 picks an alternative date Feb. 16 in the merged date list

and asks paige and yves whether they agree to have the meeting on Feb. 16. Both

agree and the organization of the meeting concludes successfully. This simulation shows

that even when an outside activity occupies a date from a participant's time schedule, the

ConGolog model continues trying to find a suitable date for all participants to schedule

the meeting. This behavior was not captured by the original i* model.

Example 3: The initiator arranges multiple meetings using the scheduler. There are two

meetings are to be scheduled: meeting No. 1 can be on Feb. 12, 14, 15, 16, or 17 with

paige and yves; meeting No. 2 can be on Feb. 12, 14, or 15 with paige and yves.

See appendix A-5 for the simulation trace. It shows that meeting No.1 is scheduled on

Feb. 16 and meeting No.2 fails to be scheduled because paige is busy on Feb. 12 and

14, and Feb. 15 is occupied by an outside acitivity.

5.5.3 Discussion

The ConGolog model is certainly helpful for modeling repetitive processes, complex

tasks, goals, and even dependencies. For example, in the meeting scheduling process,

how to achieve the goal FindAvailDateSlot is not clearly shown in the original

model, but in the ConGolog model, there is a recursive function to find the agreeable slot

to reach the goal FindAvailDateSlot. Also in the initial SR model, the possibility

 147

of failing to achieve the goal meetingBeScheduled is not clearly shown, but in the

ConGolog model, this is handled; if the meeting organization fails, the meeting scheduler

will notify the initiator about the failure. On the other hand, the ConGolog gives no hints

about how to achieve the softgoals. In the meeting scheduling process example, the

softgoal LowEffort inside the initiator is not modeled in the ConGolog model, but the

initial SR model clearly shows how the different tasks can help to achieve this softgoal.

The two models really complement each other well.

5.6 Refining the i* and ConGolog Models Based on

Validation Results

The above five steps will need to be repeated if errors are found or if aspects of the i*

model and ConGolog model do not satisfy the client's needs. Based on the ConGolog

model and simulation experiments, if the i* model lacks some part of the desired

requirements, modifications to the i* model will be performed. Similarly if the ConGolog

model needs to specify additional details or aspects of the i* model, modifications to the

ConGolog model will be made. Once a satisfactory model of the required system has

been developed, a requirements specification document is produced.

Consider the following example of model revision/refinement. In our meeting scheduling

example, the alternative we selected allowed the exogenous action

occupyDateFromParticipant which commands the participant to occupy a date

for another activity if this date is available at the current time. This action is made by an

agent outside the organization. If the client decides that all scheduling will have to be

made by the scheduler agent, then this exogenous action can no longer occur. Let us

describe how the models would be modified for this case.

 148

• Modifications of the SR Diagram

In the annotated SR diagram of Figure 5.10 (c), we remove the subtask OccupyDate

(and its subtasks) under the TryArrangeMeetingsAndMaintainSchedule task,

as well as the concurrency annotation on the decomposition link between them. We also

remove the exogenous action/task OccupyDateFromParticipant.

• Modifications of the ConGolog model

Modification in the ConGolog model will be to the parts corresponding to those modified

in the annotated SR diagram for the participant. The modification parts are listed as

follows:

Two actions acknowledgeOccupy(Participant,Date) and

occupyDateFromParticipant(Participant,Date) will be removed from

the ConGolog model. Action precondition axioms related to these two actions will be

eliminated:

 poss(acknowledgeOccupy(_,_),_).

 poss(occupyDateFromParticipant(Participant,Date),S):-

 holds(not(participantDateOccupied(Participant,Date)),S),

 holds(not(agreementAccepted(-,Participant,Date)),S).

Successor state axioms which are related to the above two primitive actions will be

modified and the effects of these two actions to these successor state axioms will be

eliminated:

holds(occupyAcknowledged(Participant,Date),do(A,S)):-

 A= acknowledgeOccupy(Participant,Date);

 holds(occupyAcknowledged(Participant,Date),S).

holds(participantDateOccupied(Participant,Date),do(A,S)):-

 A = occupyDateFromParticipant(Participant,Date);

 holds(participantDateOccupied(Participant,Date),S).

 151

sendAvailDates(yves,msl,2,[I,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20

,21,22,23,24,25,26,27,28,29]) /* yves sends his available dates to msl */

setAllMergedlist(msl,1,[15,16,17])

 /* msl set the merged date list for the meeting no.1 as Feb.15, 16 and 17 */

requeStAgreement(msl,paige,1,15)

 /* msl picks up next date in the merged list Feb.15 and requests agreement */

requestAgreement(msl,yves,1,15)

 /* both of yves and paige agree to meet on Feb.15 */

addDateToSchedule(yves,15)

acceptAgreement(yves,msl,2,15)

addDateToSchedule(paige,15)

 /* paige adds Feb.15 into his time schedule for meeting no.1 */

acceptAgreement(paige,msl,1,15)

notifySuccess(msl,inil,l,[paige,yves],l5)

 / * ms1 notifies initl, yves and paige of the successful scheduling of meeting no.1 */

notifySucess(msl,paige,1,15)

notifySucess(msl,yves,1,15)

As we can see, the meeting with paige and yves is scheduled on Feb. 15, because

there is no exogenous action that can occupy the date Feb. 15 from paige's time

schedule. We also see the process proceeds faster than the one that has exogenous

actions. This means that the second version of the meeting scheduling process will save

time and efforts if none of the participants accepts activities other than the requests from

the MS.

Parts of the source document of the ConGolog model are included in Appendix A.

 152

6 Case Study II:

 A Mail-Order Business Application

In this chapter, our methodology for the combined use of the i* and ConGolog

frameworks will be demonstrated on a mail-order business application taken from

Bissener’s thesis [Bissener97]. In this mail-order business process example, we mainly

focus on dealing with roles, positions, the decomposition links inside them, and the

dependencies between them. The example raises some new issues for our methodology

and we will illustrate how they can be handled. Bissener [Bissener97] developed i* and

ALBERT-II models of the example. We will discuss how his work compares to ours later

in chapter 8. Our example involves a process that might proceed as follows. A customer

submits an order to the mail-order company. The mail-order company first has to check

whether there is sufficient stock to serve the order. Then, the company interacts with the

bank to debit the customer’s account and credit the company’s account, removes the

ordered item from stock, and ships it to the customer. If there is no stock or the customer

does not have sufficient credit to make payment for the order, the order must be rejected

and the ordered items have to be returned to stock.

The mail-order business application involves different actors: customers, the mail-order

company, and the bank. There would also be different agents playing different roles

within the mail-order company. This brings out different alternatives for the system. One

alternative is that the mail-order company might have two agents to accomplish its tasks,

an office clerk and a stock clerk. The office clerk accepts the orders made by customers,

requests the stock clerk to provide stock for the orders, requests the bank to transfer

payment for them, and rejects orders when there is no stock or the customer cannot pay.

The stock clerk processes the requests for stock information concerning the ordered items

 153

from the office clerk, updates stock quantities, and ships orders. Another alternative for

the system is that the mail-order company just has an office clerk who does all the work.

Then, the office clerk would not need to request stock information from himself and

might just update the stock quantities when he ships an order.

One important issue in designing the process for our application is whether one attempts

to acquire stock to fill the order first and then attempts to debit the customer’s account or

whether one does these activities in the reverse order. Which alternative one chooses may

have important implications with respect to cost (perhaps the bank charges for each

transaction) or how fast the process can be completed. Later, we discuss how to model

these two alternatives and compare them.

Note that what we do here is more a business process modeling/reengineering case study.

There is no clearly identified computerized component in the process that is modeled.

This shows that our combined methodology can also be used for this kind of work, which

is an important part of RE. We could modify the selected process to include a

computerized component fairly easily. For example, we could assign the stock informant

role, which is responsible for processing stock requests from the office clerk, to a

computerized inventory management system agent. Our methodology supports modeling

and analysis for both business process reengineering and RE.

6.1 Building the Strategic Dependency Model

Our Strategic Dependency (SD) model of the mail-order business process is shown in

Figure 6.1. It is essentially based on the SD model developed by Bissener [Bissener97]

with some minor changes. In the SD model of Figure 6.1, there are four agents:

Customer, OfficeClerk, StockClerk, and MailOrderCompany.

OfficeClerk and StockClerk are parts of MailOrderCompany. There are two

positions: BankClerk and Bank, and BankClerk is part of Bank. There are three

 154

roles: OrderProcessor, ShipmentProcessor, and StockInformant;

StockClerk plays the two roles ShipmentProcessor and StockInformant,

and OfficeClerk plays the role OrderProcessor. (One could also take

Customer to be a role that is played by various concrete agents.)

Within the MailOrderCompany, the OfficeClerk agent accepts orders, requests

payments from the bank, and notifies the customer that the order has been accepted or

rejected; the StockClerk agent provides stock information to the OfficeClerk,

maintains stock, and ships the ordered items. Within the Bank, the BankClerk position

processes the transactions which are requested by the OfficeClerk to check customer

account information, debit customers’ accounts, and credit the company’s account.

In figure 6.1, the Customer agent makes orders. We model the customer as an agent

because he is the person who actively makes the order and is waiting for the order to be

shipped. The mail-order company wants to distinguish the responsibilities of

communicating with the customer about his order, processing the stock for the ordered

items, and shipping the ordered items. So we identify three roles: OrderProcessor,

StockInformant, and ShipmentProcessor. The OfficeClerk agent plays

one role, OrderProcessor, which involves accepting the customer’s order, requesting

stock from the stock clerk, and then requesting the bank to process payment for the order

as necessary. The StockClerk agent plays two roles ShipmentProcessor and

StockInformant. The StockInformant role processes stock requests from the

office clerk. The ShipmentProcessor role ships the order to the customer if the

order is accepted. We model the bank and bank clerk as positions because they are

institutionalized actors and we do not specify what bank it is and who the bank clerk is.

We want the bank to realize the process of transferring the money paid for the orders

from the customer’s account to the company’s account. The position BankClerk within

the bank fulfills this responsibility.

 155

 Item

 MailOrder

 Company

 HAS

 Efficient

 Customer (Processing)

 Office

 Confidential Clerk MakeMax

 (Processing) Profit

 Orders Stock

 Clerk

 Accurate PLAY Stock

 (Orders) PLAY

 Shipment

 Shipped Processor PLAY

 (Item)

 Order

 Processor Stock

 OnHold

 StockInfo(Item)

 AccountInfo Accurate Stock

 (Info) Informant

 Transfer

 Money

 Bank PART

 Clerk Bank

 LEGEND

 Resource Dependency

 Task Dependency Agent

 Goal Dependency Role

 Softgoal Dependency Position

Figure 6.1 The Strategic Dependency model for the mail-order business process.

The dependencies between the agent Customer and the role OrderProcessor are as

follows. The order processor depends on the customer to make an order; this is modeled

as a resource dependency Orders. On the other hand, the customer depends on the order

processor for processing orders confidentially and efficiently; this is modeled as two

softgoals dependencies Efficient(Processing) and

HAS

 156

Confidential(Processing). The order processor depends on the customer to

provide accurate orders; this is modeled as a goal dependency Accurate(Orders).

The customer also depends on the order processor for obtaining the ordered items; this is

modeled as a resource dependency Item.

The dependencies between the role OrderProcessor and the position BankClerk

are as follows. The order processor depends on the bank clerk to provide customer

account information and check whether the customer has sufficient credit to pay for the

order; this is modeled as a resource dependency AccountInfo. To avoid shipping

orders to customers who cannot pay or rejecting orders from customers who can pay, the

order processor depends on the bank clerk to provide the accurate information about the

customer’s credit; this is modeled as a softgoal dependency Accurate(Info). To get

paid by the customer, the order processor depends on the bank clerk to transfer money

from the customer account to the company’s account. This is modeled a goal dependency

TransferMoney. The order processor also depends on the shipment processor to ship

ordered items; this is modeled as a goal dependency Shipped(Item) between them.

Some interesting issues are raised when we have dependencies within a single agent. The

mail-order company depends on the order processor to make maximum profit from

orders. This is modeled as a softgoal dependency MakeMaxProfit between the mail-

order company and the order processor. How the mail-order company measures whether

this softgoal is achieved is up to the company. The order processor tries to satisfy this

softgoal when he processes the orders. The strategy to maximize profit is decided jointly

by the mail-order company and the order processor. The order processor depends on the

stock informant to provide information concerning the stock on ordered items; this is

modeled as a resource dependency StockInfo(Item). The shipment processor

depends on the stock clerk to update the stock information for the shipped items; this is

modeled as a resource dependency Stock. The stock informant also depends on the

stock clerk to put the ordered items on hold if the informant accepts an order for them;

 157

this is modeled as a resource dependency StockOnHold. The dependency relationships

between the roles inside the agent StockClerk explicitly show how one role is

distinguished from another and what effects one role has on another. Later, when we

operationalize the dependencies between roles inside a single agent, some interesting

issues will arise.

The SD model of Figure 6.1 models the mail-order business process in terms of

intentional relationships among the actors, rather than as a flow of entities. This allows

the modeler analyze opportunities and vulnerabilities for the actors. For example, the

ability of the stock informant to maintain accurate stock and on-hold information for the

whole mail-order company and provide it to other roles/positions/agents represents an

opportunity for the other roles/positions/agents. They do not need to maintain stock

information by themselves and ensure that their information is consistent. They can just

communicate with the stock clerk to obtain stock information and perform transactions

on it. On the other hand, if the stock clerk fails to maintain stock information correctly,

then the other roles/positions/agents become vulnerable.

6.2 Building the Strategic Rationale Model

The SR model of Figure 6.2 for the application is also closely based on the SR model

developed by Bissener [Bissener97]. It elaborates on the relationships between the

customer, the mail-order company, and the bank as depicted in the SD model in Figure

6.1. This model provides a more detailed level of analysis and captures the activities

inside the actors in order to model internal relationships. Intentional elements such as

goals, tasks, resources, and softgoals are modeled as internal elements as well as external

dependencies like in the SD model. These intentional elements describe the strategies of

actors and how they try to satisfy their needs and maximize profits without affecting the

success of the whole process. Internal elements are linked by means-ends, task-

 158

decomposition, and contribution links that model the internal relationships between the

intentional elements inside the actors.

 Item

 Orders

 Accurate Order Shipped
 (Orders) Processor (Item)

 Process

 (Order)

 Verify Less
 (Order) Errors

 AccountOk Fast
 Turnaround

 Money

 Transferred

 AccountInfo Accurate
 (info)

 Transfer

 Money

 Bank
 Clerk Bank

 LEGEND

 Goal Task Resource Softgoal

 Task-Decomposition link Actor

 Actor Boundary

 +,-

 Contribution to softgoals Means-Ends link

 Figure 6.2 The initial Strategic Rationale model of the mail-order process

StockOnHold

AvailOfStock
 (Item)

StockInfo(Item)

Stock
Informant

ProcessStock
Request(Item)

Stock

Customer Efficient

(Processing)

Confidential

(Processing)

MakeMax
Profit

Office

Clerk

MailOrder

Company

Stock

Clerk

Shipment

Processor

Process

Shipment
(Item)

HAS

HAS

PLAY

PLAY

PLAY

PART

 159

The SR model of Figure 6.2 focuses on analyzing the internal goals/tasks/resources inside

the office clerk and stock clerk agents. These two agents largely control the whole

process of processing an order. The customer only initiates the process and the bank clerk

passively participates in it. We don’t show the internal elements of the customer and bank

clerk for now. Later, as our analysis about the process proceeds, we will fill out the SR

diagram for the customer and bank clerk as necessary.

For the order processor, his top task is to process the order made by the customer; this is

modeled as an internal task Process(Order). This task can be decomposed into a

subtask Verify(Order), a subgoal AccountOk, a subgoal AvailOfStock, a

subgoal MoneyTransferred, and two softgoals LessErrors and

FastTurnaround. The subtask Verify(Order) represents how the order processor

checks whether the order that was made is correct or not. This task will fulfill the goal

dependency Accurate(Order). The internal goal AccountOk models how the order

processor wants to ensure that the customer has sufficient credit to pay for the order. This

goal depends on the bank clerk to provide accurate account information. In this SR

model, how the bank clerk fulfills the dependency is not shown. Later, in our annotated

SR diagrams, we will provide complete information about how the bank clerk fulfills the

goal dependency. The internal goal AvailOfStock models how the order processor

wants to make sure that there is sufficient stock for the order to be filled. The order

processor depends on the StockInformant to provide the stock information resource

StockInfo(Item)for this order. The internal goal MoneyTransferred represents

how the order processor wants the payment for the order to be paid by the customer. This

goal relies on the bank clerk to achieve the goal dependency TransferMoney.

The stock clerk plays two main roles and also provides some dependencies himself. The

role StockInformant replies to requests from the office clerk for stock information

 160

about ordered items; this is modeled as an internal task ProcessStockRequest to

provide the stock information. The StockInformant also depends on the stock clerk

to maintain the resource StockOnHold, i.e., keep stock on hold for orders he has been

informed of. The role ShipmentProcessor handles requests from the office clerk for

shipping ordered items; this is modeled as an internal task

ProcessShipment(Item). He also depends on the stock clerk to update the real

stock information when the item is shipped; this is modeled as a resource dependency

Stock.

In the SR diagram of Figure 6.2, there is no much detail about how the internal goals and

tasks can be achieved and decomposed: how the stock clerk maintains the stock

information and the on-hold stock information for the company, how the customer makes

an order, and how the bank clerk processes the payments. Later, in our annotated SR

diagrams we will decompose tasks and goals to a more detailed level, operationalize the

dependencies between actors, and specify the processes precisely. Also we will introduce

some additional roles to distinguish between functions of the agents.

The SD model and SR model developed can support analysis, design, and reasoning

during early-phase requirements engineering. With the notions of ability, workability,

viability, and believability, the i* framework provide a number of levels of analysis and

high level design.

6.3 Building the Annotated i* SR Model

The SR model of Figure 6.2 provides a sketchy description of the process in the mail

order business application. In this section, we want to show how one alternative for the

process is chosen and how a detailed description of this process is represented in an

annotated SR model.

 161

6.3.1 Suppressing Unnecessary Information

 MailOrder Stock

 Company Clerk

 Office

 Customer Clerk Shipment

 Processor Stock

 Process

 Shipment(Item)

 Order Shipped

 Processor (Item)

 Process

 (Order)

 Stock

 Verify OnHold

 (Order)

 AccountOk AvailOfStock(Item)

 Transfer

 Money

 Stock

 AccountInfo Info(Item) Stock

 Informant

 MoneyTransferred

 ProcessStock

 Request(Item)

 BankClerk Bank

Figure 6.3 The second version of the SR model for the mail-order process.

As described in chapter 4, we start by suppressing less important information from the

SR diagram of Figure 6.2. Softgoals, softgoal dependencies, and the links associated with

them will be suppressed because they are qualitative goals which are less important for

developing a precise process specification and will be not modeled in the ConGolog

model. Because we want to focus on the activities in the processing of orders, the goal

Item

Orders

(Item)

PLAY

PLAY

HAS

HAS

PLAY

PART

 162

dependency Accurate(Orders) between Customer and OrderProcessor will

also be suppressed. We will not model how the customer can make sure that his order is

accurate. After this, we obtain the simplified SR model of Figure 6.3.

6.3.2 Operationalizing Dependencies

Now, the dependencies between actors need to be operationalized. In the SR model of

Figure 6.3, some of the dependencies are not related specifically to nodes inside actors.

Before we discuss the operationalization, we have to specify from which nodes inside the

depender the dependencies start and at which nodes inside the dependee the dependencies

terminate. When we do this, we obtain the SR model in Figure 6.4.

In the SR diagram of Figure 6.3, the stock clerk plays two roles ShipmentProcessor

and StockInformant. These two roles depend on the stock clerk to provide

information about the stock and the on-hold stock. In the SR diagram of Figure 6.4, we

introduce another role UpdateStockProcessor to be played by the StockClerk,

whose job is to maintain and update the stock and on-hold stock information as

necessary. The top task inside this role UpdateStockProcessor is modeled as the

internal task node UpdateStockInfo. We make the dependencies between the

ShipmentProcessor and StockInformant roles and the StockClerk agent

end at the UpdateStockInfo node in the new UpdateStockProcessor.

 163

 Office

 Customer Clerk Shipment

 Processor Stock

 Process

 ObtainItems Shipment(Item)

 Item

 Orders(Item)

 Order Shipped

 Processor (Item)

 Process

 (Order)

 Stock

 Verify OnHold

 (Order)

 AccountOk AvailOfStock

 (Item)

 Transfer

 Money

 Stock

 AccountInfo Info(Item) Stock

 Informant

 MoneyTransferred

 ProcessStock

 Request(Item)

 ProcessTransactions

Figure 6.4 The third version of the SR model for the mail-order process.

BankClerk
Bank

StockClerk

MailOrder
 Company

 Update
 StockInfo UpdateStock

Processor

PLAY

PLAY

PLAY

PLAY

HAS

HAS

PART

 164

In Figure 6.3, the Customer agent's behavior is not specified. We introduce a top task

ObtainItems inside Customer into the SR diagram of Figure 6.4, which describes

the customer’s activities to obtain items from the mail-order company. All the

dependencies between Customer and the role OrderProcessor are made to

originate/terminate at this new task node. Similarly, in the SR diagram of Figure 6.3, the

activities of the BankClerk position are also not shown. We introduce a top task

ProcessTransactions inside BankClerk into the SR diagram of figure 6.4. This

task specifies that the BankClerk is responsible for processing transactions requested

by the bank's clients. The dependencies between BankClerk and OrderProcessor

are made to terminate at this new node.

Next, we start operationalizing the dependencies in the SR diagram of Figure 6.4. Some

of the resource/task/goal dependencies are between different agents or roles played by

different agents. These dependencies can be operationalized as we did for the examples

of chapter 5. Other dependencies are between roles played by the same agent. For

example, the stock clerk plays both the ShipmentProcessor and

UpdateStockProcessor roles, and there is a resource dependency between them.

We will discuss in detail how we operationalize such dependencies.

The dependencies between the three roles ShipmentProcessor,

UpdateStockProcessor, and StockInformant played by the StockClerk

agent are shown in Figure 6.5.

When we operationalize these dependencies, we obtain the SR diagram in Figure 6.6.

 165

Figure 6.5 Dependencies between roles played by StockClerk agent.

Figure 6.6 SR diagram for the dependencies of Figure 6.5 after operationalization.

StockClerk

Shipment
Processor

Stock
Informant

Stock OnHold

Update
StockInfo

UpdateStock
Processor

PLAY

PLAY

PLAY

StockClerk

Shipment
Processor Stock

Informant

Remove
FromHold

PutOnHold

Update
StockInfo

UpdateStock
Processor

PLAY

PLAY

PLAY

Process
Shipment(Item)

ProcessStock
Request(Item)

Process
Shipment(Item)

ProcessStock
Request(Item)

 166

Let us go over this new SR model. To obtain the dependum in the resource dependency

Stock, the ShipmentProcessor doesn’t need to make a request to the

UpdateStockProcessor because these two roles are played by a single agent,

StockClerk, and he does not need to make a request to himself. The stock clerk just

updates the stock information when he has shipped the ordered item. But the

UpdateStockProcessor has to perform a task to remove the item from the on-hold

stock, and this modeled as a subtask RemoveFromHold of the task

UpdateStockInfo.

Similarly, to obtain the dependum in the resource dependency OnHoldStock, the

StockInformant does not need to make a request to the

UpdateStockProcessor because StockClerk plays both roles. The

StockClerk just updates the stock information himself when the StockInformant

has accepted the stock request for the ordered item. But the UpdateStockProcessor

has to perform a task to remove the item from the real stock and put it in the on-hold

stock, and this modeled as a subtask PutOnHold of UpdateStockInfo.

So let us summarize how the operationalization of dependencies between roles played by

the same agent can be done. Generally, we can operationalize such dependencies simply

by adding a task into the dependee to supply the dependum. This is because we assume

that the agent knows when the dependum has to be supplied between two roles played by

the same agent. The depender role does not need to make a request to the dependee role

to supply the dependum and the dependee role does not need to confirm the dependum

has been supplied. The agent will know what is the state of the system when the

appropriate actions are performed by its roles.

 167

Note that, in some cases, the mail-order company may want to keep a record or trace of

the whole process at a detailed level, and then it might be necessary for the stock clerk

agent to make a request to himself to ask for stock information, perhaps by filling a form.

The stock clerk may also have to confirm the stock allocation by signing the form. Then,

the role StockInformant would have to perform a subtask to request the on-hold

stock information and the role UpdateStockProcessor would have to perform a

subtask to confirm that stock has been put on hold for the order.

Next, we operationalize the dependencies between the position BankClerk and the role

OrderProcessor. This is done in the same way as in the examples of chapter 5, i.e.,

the dependencies between agents and roles in the SR model of Figure 5.4. The depender

and dependee associated with a dependency here will both participate in having the

dependum supplied. The depender may have to make a request to the dependee, and the

dependee may have to wait for the request from the depender, and then the dependee has

to perform some task to supply the dependum, while the depender waits for the

dependum to be supplied. Figure 6.7 shows the SR diagram after operationalizing the

dependencies between BankClerk and OrderProcessor.

To supply the resource dependency AccountInfo between OrderProcessor and

BankClerk in the SR diagram of Figure 6.4, OrderProcessor first requests

BankClerk to check whether the customer has sufficient money to pay for his order;

this is modeled as a subtask RequestDebit of the goal node AccountOk. Note that

RequestDebit does not mean requesting the bank to debit the customer's account, but

just requesting the bank to check whether the customer's account has enough money to

pay for the order. (We use the same name as in [Bissener97] to represent the action)

BankClerk replies to such a request whenever it is received; this is modeled as a task

ReplyDebit with the link annotation *whenever(requestedDebit);

ReplyDebit is a subtask of ProcessTransactions. Then, OrderProcessor

 168

waits for the answer to the debit request; this is modeled as a subtask

WaitForDebitAnswer of AccountOk; the two subtasks are performed in sequence.

 Process

 (Order)

 ||

Figure 6.7 SR diagram for dependencies between BankClerk and OrderProcessor

after operationalization.

To supply the goal dependency MoneyTransferred between OrderProcessor

and BankClerk in the SR diagram of Figure 6.4, first OrderProcessor requests

BankClerk to transfer money from the customer’s account into the company’s account;

this is modeled as a task RequestTransferMoney. Then, BankClerk performs a

task TransferMoney, which is its means to achieve the goal dependum

MoneyTransferred, which must be achieved whenever the request received; this is

modeled as an internal goal MoneyTransferred with a goal-decomposition link to

the task TransferMoney. Finally, OrderProcessor has to wait for the money to

Money
Transferred

Order
Processor

AccountOk TransferMoney

RequestDebit
WaitFor
DebitAnswer

Request

Transfer

Money

WaitForMoney
Transferred

Process

Transactions

Transfer
Money

ReplyDebit

Bank
Clerk

Bank
*whenever

 (RequestedDebit)

*whenever
 (RequestedTransfer)

PART

 169

be transferred, and this is modeled as task WaitForMoneyTransferred with a goal-

decomposition link to the goal TransferMoney.

Next, we operationalize the dependencies between the Customer and the

OrderProcessor. Figure 6.8 shows the SR diagram of the dependencies between

Customer and OrderProcessor after the operationalization.

 Customer

Figure 6.8 SR diagram for the dependencies

between Customer and OrderProcessor after operationalization.

To supply the resource dependency Orders, Customer has to make a request for the

order to OrderProcessor, so we introduce an internal task inside the Customer

agent MakeOrder(Item). OrderProcessor has to process an order when he gets

such a request. We added a top task ProcessOrders into OrderProcessor, which

means OrderProcessor will process multiple orders, and a link with an interrupt

annotation *whenever(orderMade) between the tasks ProcessOrders and

Process(Order) to model how the subtask is triggered when an order is made. To

supply the resource dependency Item(Order), OrderProcessor has to perform a

ObtainItem
 (Item)

MakeOrder
 (Item)

 Process
 (Order)

Verify
(Order)

 Order
 Processor

Notify
Shipment

 Process
 Orders

 *whenever
(orderMade)

 170

task NotifyShipment to notify Customer that the item has been shipped. We

assume that it is not necessary for Customer to wait for or confirm having received the

notification. We also assume that the task NotifyShippment will be performed only

when the mail-order company has shipped the ordered item to the Customer.

Finally, we operationalize the dependencies between OrderProcessor,

StockInformant and ShipmentProcessor in the SR diagram of Figure 6.4. See

Figure 6.9 for the SR diagram after operationalizing these dependencies.

In Figure 6.9, to supply the resource dependency StockInfo between

OrderProcessor and StockInformant, OrderProcessor has to make a

request for an ordered item to StockInformant; this is modeled as a subtask

RequestStock of the task AvailOfStock inside OrderProcessor.

StockInformant replies to such stock requests whenever they are received; this is

modeled as a task ReplyStockRequest inside StockInformant with a

*whenever(requestedStock) annotation. OrderProcessor has to wait for the

reply from StockInformant for the stock request; this is modeled as a task

WaitForStockRequestAnswer inside OrderProcessor.

To supply the goal dependency Shipped(Item) between OrderProcessor and

ShipmentProcessor, OrderProcessor has to make a request to

ShipmentProcessor to ship the ordered item to the customer; this is modeled as a

task MakeInvoice inside OrderProcessor. The goal Shipped(Item) is moved

into ShipmentProcessor as a subgoal of the task ProcessShipment(Order).

An internal task inside ShipmentProcessor is added to provide a means to achieve

the internal goal Shipped(Item), the task ShipOrder.

 171

 Process

 (Order)

 ProcessStock

 Request(Item)

Figure 6.9 The SR model for the mail-order process after operationalizing all

dependencies.

BankClerk
Bank

StockClerk MailOrder
 Company

 Update
 StockInfo

PLAY

PLAY

PLAY

PLAY

HAS

HAS

Customer

ObtainItems

MakeOrder
(Item)

 Order
 Processor

 Process
 Orders

*whenever(orderMade)

 Verify

(Order)

 AccountOk

 Transfer

 Money

 AvailOf

Stock(Item) Request

 Debit

WaitFor

DebitAnswer
 Request

Transfer
Money

 WaitFor

MoneyTransfer

Request

Stock

 WaitForStock

RequestAnswer

Make
Invoice

Notify
Shipment

 Shipped(Item)

Office
Clerk

 Process

Shipment

Shipment

Processor

 UpdateStock

 Processor

ShipOrder

Remove
FromHold

Put

OnHold

 Reply
 StockRequest

*whenever
(requestedStock)

Reply
Debit

Process

Transactions

Money
Transfered

||

*whenever
(requestedTransfer)

*whenever
(requestedDebit)

Stock
Informant

PART

Transfer
Money

 172

6.3.3 Relativizing the Goals that Cannot Always Be Achieved

In this step, goals that cannot always be achieved by actors are refined into weaker goals

that can always be achieved. The decompositions related to these goals are modified as

appropriate. In the SR diagram of Figure 6.9, the goal AvailOfStock cannot always

be achieved because the company may not have stock for an ordered item. So we have to

relativize this goal into TriedFindAvailOfStock, which means that

OrderProcessor tries to find available stock for an order. Also the goal AccountOk

cannot always be achieved because the customer may not have enough money to pay for

his order. So we have to relativize this goal into DetermineWhetherAccountok.

The steps in the process that follow these goals also have to be changed to depend on the

outcome. The SR diagram incorporating these changes appears in Figure 6.10 (d).

6.3.4 Filling out Process Details Using Decomposition and Annotations

 Process(Order) EfficientOrder

 Processor

 NotifyShipment(Item)

6.10 (a) The annotated SR diagram for the agent Customer agent.

ObtainItem

(Item)

MakeOrder
(Item)

Customer

 173

The SR diagram of Figure 6.9 doesn’t show how an order is processed in detail. For

example, when an ordered item is put on hold, and later we find out from the bank that

the customer does not have enough money to pay for the order, then the stock clerk has to

cancel the hold on the ordered item and return it to free stock. We want to detail all

circumstances that can occur when processing an order. The annotated SR diagrams are

shown in Figure 6.10 (a), (b), (c), and (d).

 Efficient

 Order

 Processor ProcessPaymentAnd

 MakeInvoice

 if(acceptedDebit)

 DetermineWhether Transfer

 AccountOK Money

 ProcessTransactions

 *whenever(requestedTransfer)

 *whenver(requestedDebit) TransferredMoney

 ReplyDebit

 Request TransferMoney

 if(notMoneyEnough)

 if (moneyEnough) ComfirmTransfer

 AcceptDebit RejectDebit DebitCustomer

 Account Credit

 CompanyAccount

6.10 (b) The annotated SR diagram for positions Bank and BankClerk.

BankClerk

Bank

PART

 174

 Efficient

 OrderProcessor

 Process ProcessPaymentAnd

 Shipment MakeInvoice

 *whenever(requestedShip)

 Shipped(Item) Make

 Invoice

 ShipOrder

 Shipment

 Processor

 StockClerk

 Stock

 UpdateStock Informant

 Processor

 Process

 UpdateStock StockRequests

 *whenever(requestedStock)

 ReplyStockRequest

 CancelStockRequest

 *whenever(StockAccepted) if(inStock) if(notInStock)

 PutOnHold

 AcceptStock RejectStock

 *whenever(itemShipped)

 Remove

 FromHold

6.10 (c) The annotated SR diagram for agent StockClerk with its three roles.

PLAY

PLAY

PLAY

 moveFromHold
 ToStock

*whenever
(stockCanceled)

*whenever

 (requestedCancel)

 175

 Efficient OfficeClerk

 OrderProcessor

 ProcessOrders

 *whenever(orderMade)

 Process(Order)

 If(notSoldItem)

 Verify(Order) if(soldItem)

 Process

 StockAndPayment

 TriedFindAvailOfStock

 RequestStock if(acceptedStock)

 ProcessPaymentAndship

 WaitForStock

 RequestAnswer if(debitAccepted)

 RejectOrder TransferMoney

 Request AndInvoice

 Debit

 WaitForRequest if(debitRejected) WaitFor

 DebitAnswer OrderShipped

 Process

 CancelStock MakeInvoice

 StockRequest WaitForMoney

 Cancel WaitForCancel Transferred

 StockAnswer

 RejectOrder

 ProcessShipment

 BankClerk

 ProcessTransactions Shipped(Item)

 *whenever(requestedTransfer)

 *whenver(requestedDebit) TransferredMoney

 ReplyDebit Shipment

 Request TransferMoney Processor

6.10(d) The annotated i* SR diagram for the agent OfficeClerk

MakeOrder(Item)

ObtainItems

NotifyShipment

if(rejectedStock)

DetermineWhether
 AccountOk

Transfer

Money

Request
TransferMoney

PLAY
Customer

 176

Let us explain how these annotated SR diagrams capture the details of the mail-order

business process. We start with the OfficeClerk agent, whose behavior is described

in the annotated SR diagram in Figure 6.10(d). We say that the OfficeClerk agent

plays one role, EfficientOrderProcessor (renamed from OrderProcessor

because we want orders to be processed efficiently). This role is to accept orders from

customers and process them; this is modeled as a top task ProcessOrders. Whenever

an order is made, the top task performs a subtask Process(Order) to process this

specific order. So the top task ProcessOrders is decomposed into a subtask

Process(Order) with a link annotation *whenever(orderMade).

The task Process(order) processes a specific order that has been made. This process

goes as follows. If the ordered item is not of a type that is sold, the order processor alarms

the customer that the ordered item is not of a type that is sold and rejects the order; this is

modeled as a subtask Verify(Order) with a link annotation if(notSoldItem).

Here we simplify the process of verifying orders as that of alarming the customer and

rejecting the order. If the ordered item is of a type that is sold, then the order processor

continues to process the order; this is modeled as a subtask

ProcessStockAndPayment with a link annotation if(SoldItem).

The subtask ProcessStockAndPayment proceeds as follows. First, the order

processor queries whether there is enough stock for this order; this is modeled as a

subgoal TriedFindAvailOfStock. Then, if there is not enough stock for the order,

the order processor rejects it. This is modeled as a subtask RejectOrder with a link

annotation if(rejectedStock). If there is enough stock for the order, then the order

processor continues by processing payment and shipping the order. This is modeled as a

subtask ProcessPaymentAndShip with a link annotation if(acceptedStock).

The subgoal TriedFindAvailStock can be decomposed into two subtasks: a

subtask RequestStock of requesting the stock information for the ordered item and a

 177

subtask WaitForStockRequestAnswer of waiting for the reply from the stock

informant. A default sequence annotation “;” is applied to this group of goal-

decomposition links.

The subtask ProcessPaymentAndShip can be decomposed into the following sub-

processes. First, the order processor requests the bank clerk to check the customer’s

account and see whether the customer has enough credit to pay for the order. This is

modeled as a goal DetermineWhetherAccountOk. This goal is decomposed into

two subtasks: a subtask RequestDebit of querying whether the debit is possible and a

subtask WaitForDebitRquestAnswer of waiting for the reply from the bank. A

default sequence annotation “;” is applied to this group of goal-decomposition links. If

the debit request is rejected, then the order processor has to request the stock informant to

cancel the stock request for the ordered item, and reject the order. This is modeled as a

subtask ProcessCancelStock with a link annotation if(debitRejected). If

the debit request is accepted (modeled as a link annotation if(debitAccepted)),

then the order processor continues with a subtask TransferMoneyAndInvoice.

The subtask ProcessCancelStock is further decomposed into the following

subprocesses. First, the order processor has to request the stock informant to cancel the

stock request for the ordered item; this is modeled as a subtask

StockRequestCancel. Then the order processor has to wait for a confirmation that

the stock request has been canceled; this is modeled as a subtask

WaitForCancelStockAnswer. Finally, the order processor has to reject the order;

this is modeled as a subtask RejectOrder.

The subtask TransferMoneyAndInvoice is decomposed into the following

subprocesses. First, the order processor requests the bank clerk to transfer money from

the customer’s account to the company’s account; this is modeled as a goal

 178

TransferMoney. This goal is decomposed into a subtask

RequestTransferMoney and a subtask WaitForMoneyTransferred as

described in the SR diagram of Figure 6.9. The default sequence annotation “;” is

applied to this group of goal-decomposition links. Then, the order processor makes an

invoice for the order; this is modeled as a subtask MakeInvoice. Then, the order

processor waits for the order being shipped; this is modeled as a subtask

WaitForOrderShipped. Finally, the order processor notifies the customer that the

ordered item has been shipped; this is modeled as a task NotifyShipment. The

default sequence annotation “;” is applied to the group of decomposition links.

Next, let us look at the annotated SR diagram for Bank and its BankClerk position,

which appears in Figure 6.10(b). The bank clerk is mainly responsible for processing

transactions involving debits and credits to accounts. This is modeled as a top task

ProcessTransactions. This top task can be decomposed into the following.

Whenever the bank clerk receives a request for checking account information, he will

perform a task to reply to the request. This is modeled as a subtask

ReplyDebitRequest with a link annotation *whenever(requestedDebit).

Whenever the bank clerk receives a request for transferring money, he will achieve the

subgoal TransferredMoney by performing a task TransferMoney. A link

annotation *whenever(requestedTransfer) is attached to the link between the

subgoal and its super-task. The task TransferMoney is the only means to achieve this

subgoal.

The task ReplyDebitRequest can be further decomposed into the following

subprocesses. If the customer’s account has enough credit to pay for the order, the bank

clerk accepts the debit request. This is modeled as a subtask AcceptDebit with a link

annotation if(moneyEnough). If the customer’s account does not have enough credit

 179

to pay, then the bank clerk rejects the debit request. This is modeled as a subtask

RejectDebit with a link annotation if(notMoneyEnough).

The task TransferMoney is decomposed as follows. First, the bank clerk debits the

customer’s account; this is modeled as a subtask DebitCustomerAccount. Then, he

credits the company’s account; this is modeled as a subtask

CreditCompanyAccount. Finally, he notifies the order processor that the payment

for the order has been transferred; this is modeled as a subtask ConfirmTransfer.

These subtasks are performed in sequence.

Next, let us explain the annotated SR diagram for the StockClerk with its three roles

UpdateStockProcessor, StockInformant, and ShipmentProcessor. It

appears in Figure 6.10(c). StockInformant only processes requests from the order

processor to obtain stock for an order and to cancel a stock request for an order. This is

modeled as a top task ProcessStockRequesets. This top task can be decomposed

into two subtasks: a subtask of replying to a stock request whenever the order processor

makes one, modeled as a subtask ReplyStockRequest with a link annotation

*whenever(requestedStock), and a subtask of replying to a request for canceling

a stock request for an order, modeled as a subtask CancelStockRequest with a link

annotation *whenever(requestedCancel).

The ShipmentProcessor only processes requests from the order processor to ship an

invoiced order. This is modeled as a top task ProcessShipment. This top task can be

decomposed into one subgoal Shipped(Item) to supply the goal dependency between

the order processor and the shipment processor Shipped(Item). A link annotation

*whenever(requestedShip) is attached to the link between this subgoal and its

super-task. The subgoal can be achieved by a task ShipOrder, attached with a means-

ends link.

 180

The UpdateStockProcessor role maintains the free stock and on-hold stock

information; this is modeled as a top task UpdateStock. Whenever an item is shipped

by the shipment processor, the update stock processor will remove the item from the on-

hold stock; this is modeled as a subtask RemoveFromHold with a link annotation

*whenever(itemShipped). Whenever the stock informant accepts an order, the

update stock processor will remove the item from the free stock and put it into the on-

hold stock; this is modeled as a subtask PutOnHold with a link annotation

*whenever(OrderAccepted). Whenever the stock informant accepts an request for

canceling reserved stock for an order, the update stock processor will remove the item

from the on-hold stock and put it back to the free stock; this is modeled as a subtask

moveOnHoldToStock with a link annotation *whenever(stockCanceled). As

we mentioned earlier, there is no need for communication actions between the roles

UpdateStockProcessor and ShipmentProcessor and StockInformant

because these roles are played by the same agent.

Finally, let us explain the annotated SR diagram for the Customer agent, which is

shown in Figure 6.10(a). The Customer agent has a top task OtainItems(Item)

which is decomposed into a task MakeOrder(Item), which means that the customer

obtain the item from the mail-order company by making an order for the item.

6.4 Developing the Initial ConGolog Model

After the annotated SR diagrams of the mail-order business process has been specified,

the initial ConGolog model can be developed by mapping elements of the SR diagrams

into corresponding entities in the ConGolog model according to the mapping rules we

specified in chapter 4. How to map roles, agents, tasks, goals, task decompositions, and

goal decompositions into elements of a ConGolog model is explained in chapter 4 and

some examples of how to map these components were shown in section 5.4. So we will

 181

not explain this again here as we map the annotated SR diagrams of Figure 6.10 into a

ConGolog model. There are some types of components in the annotated SR diagrams of

Figure 6.10 whose mapping has not been explained before. For example, how does one

map position nodes such as Bank and BankClerk? How does one map the links that

specify that an agent such as StockClerk plays three different roles, such as

StockInformant, UpdateStockProcessor, and ShipmentProcessor? We

will now explain these cases in detail.

First, let us discuss how a position node can be mapped. We take the BankClerk

position as an example. This node is mapped into a ConGolog procedure

bankClerk_behavior which specifies the behavior this position. The mapping is as

follows:

 m(BankClerk) proc(bankClerk_behavior,

 BanClerk processTransactions

).

The task ProcessTransaction is the top-level node in this position. As we can see,

positions are mapped just like roles.

Next, let us explain how to map an agent that has several sub-agents. We take the

MailOrderCompany as an example. MailOrderCompany has both StockClerk

and OfficeClerk agents working within its order processing business. The mapping is

as follows:

 182

proc(mailOrderCompany_behavior(OfficeClerk,StockClerk,CompanyName),

 officeClerk_behavior(OfficeClerk,CompanyName,StockClerk)#=

 stockClerk_behavior(StockClerk,CompanyName,OfficeClerk)

).

The MailOrderCompany agent is mapped into a ConGolog procedure

mailOrderCompany_behavior and an agent name company1. The procedure

mailOrderCompany_behavior invokes the ConGolog procedure

officeClerk_behavior which is mapped from the agent OfficeClerk and the

ConGolog procedure stockClerk_behavior which is mapped from the agent

StockClerk, and the behavior of these agents is executed concurrently. As we will see

below, OfficeClerk agent will be mapped into a ConGolog procedure

officeClerk_behavior and an office clerk clerk1. The StockClerk agent

will be mapped into a ConGolog procedure stockClerk_behavior and an stock

clerk clerk2. The relationship between the two sub-agents OfficeClerk and

StockClerk and their super agent MailOrderCompany is reflected in the

invocation of the procedures officeClerk_behavior and

stockClerk_behavior inside the procedure mailOrderCompany_behavior.

The behaviors of the sub-agents run concurrently in the super-agent.

HAS

HAS

StockClerk

OfficeClerk

MailOrder

Company

m_agent

company1

m_behavior

 183

Next, let us discuss the case where an agent plays one or more roles. For instance, the

OfficeClerk agent plays the EfficientOrderProcessor role. This relationship

is reflected in the mapping. The OfficeClerk agent is mapped into the ConGolog

procedure officeClerk_behavior, specifying its behavior, and this procedure

invokes the ConGolog procedure efficientOrderProcessor, specifying the

behavior of the EfficientOrderProcessor role that the agent plays.

proc(officeClerk_behavior(OfficeClerk,CompanyName,StockClerk),
 efficientOrderProcessor(OfficeClerk,CompanyName,StockClerk)

).

The StockClerk agent plays three roles: StockInformant,

UpdateStockProcessor, and ShipmentProcessor. So the StockClerk

agent is mapped into the ConGolog procedure stockClerk_behavior, which

invokes the ConGolog procedure stockInformant, specifying the behavior of the

StockInformant role, the ConGolog procedure updateStockProcessor,

specifying the behavior of the UpdateStockProcessor role, and the ConGolog

procedure shipmentProcessor, specifying the behavior of the

ShipmentProcessor role. These behaviors are executed concurrently inside their

agent.

 proc(stockClerk_behavior(StockClerk,CompanyName,OfficeClerk),
 stockInformant(StockClerk,CompanyName,OfficeClerk)#=
 updateStockProcessor(StockClerk,CompanyName)#=
 shipmentProcessor(StockClerk,CompanyName)
).

 184

6.4.1 Developing the Initial ConGolog Model for StockClerk

The initial ConGolog model for the StockClerk agent is shown below. The

StockClerk agent plays three roles UpdateStockProcessor,

StockInformant, and ShipmentProcessor, and this is reflected in the

ConGolog model as explained earlier. It can be checked that the ConGolog model

corresponds to the annotated SR diagram of Figure 6.10(c) as required by the mapping

rules.

 /*behavior of the StockClerk agent*/
 proc(stockClerk_behavior(StockClerk,CompanyName,OfficeClerk),
 stockInformant(StockClerk,CompanyName,OfficeClerk)#=

 updateStockProcessor(StockClerk,CompanyName)#=
 shipmentProcessor(StockClerk,CompanyName)

).

 /* behavior of shipmentProcessor role */

proc(shipmentProcessor(StockClerk,Company),
 processShipment(StockClerk,Company)
).

proc(processShipment(StockClerk,Company),
 ==>([orderID,itemID,custID],
 and(val(orderItem(orderID),itemID),
 and(val(orderCustomer(orderID),custID),
 and(val(orderCompanyName(orderID),Company),
 and(invoiceMade(orderID),
 not(orderShipped(orderID))
)))),
 achieve_ItemShipped(StockClerk,Company,custID,orderID,itemID)
)
).

proc(achieve_ItemShipped(StockClerkName,CompanyName,Customer,OrderID,ItemID),
 [
 shipOrder(StockClerkName,CompanyName,Customer,OrderID,ItemID),
 orderShipped(OrderID)?
]
).

/* behavior of UpdateStockProcessor role */
proc(updateStockProcessor(StockClerk,Company),
 updateStock(StockClerk,Company)
).

proc(updateStock(StockClerkName,CompanyName),
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(val(orderCompanyName(orderID),CompanyName),
 and(stockRequestAccepted(orderID),
 not(onHoldPut(orderID))
))),
 putOnHold(StockClerkName,CompanyName,item,orderID)
)
 #=
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(val(orderCompanyName(orderID),CompanyName),

 185

 and(orderShipped(orderID),
 not(itemRmvFromHoldForshipment(orderID))
))),
 rmvFromHoldForShipment(StockClerkName,CompanyName,item,orderID)
)
 #=
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(stockcancelled(orderID),
 and(val(orderCompanyName(orderID),CompanyName),
 not(stockRtndToInventory(orderID))
))),
 moveOnHoldBackToStock(StockClerkName,CompanyName,item,orderID)
)
).

/* behavior of StockInformant role */
proc(stockInformant(StockClerkName,CompanyName,OfficeClerk),
 processStockRequest(StockClerkName,CompanyName,OfficeClerk)
).

proc(processStockRequest(StockClerkName,CompanyName,OfficeClerk),
 ==>([orderID,itemID],
 and(requestedStock(itemID,orderID),
 not(stockRequestAnswered(orderID))
),
 replyStockRequest(StockClerkName,CompanyName,OfficeClerk,orderID,itemID)
)
 #=
 ==>([orderID,itemID],
 and(stockRequestCancelled(orderID,itemID),
 not(stockRtndToInventory(orderID))
),
 cancelStockRequestProcess(StockClerkName,CompanyName,OfficeClerk,
 orderID,itemID)
)
).

proc(replyStockRequest(StockClerkName,CompanyName,OfficeClerk,OrderID,ItemID),
 if(some(n,and(val(inStock(ItemID),n),n > 0)),
 acceptRequestStock(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),

 rejectStockRequest(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID)
)

).

proc(cancelStockRequestProcess(StockClerkName,CompanyName,OfficeClerk,
 OrderID,ItemID),

 [
 confirmCancelStock(StockClerkName,CompanyName,OfficeClerk,OrderID,ItemID),

 stockRtndToInventory(OrderID)?
]

).

proc(acceptRequestStock(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),
 [acceptStockRequest(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),
 onHoldPut(OrderID)?
]
).

 186

The initial ConGolog models for the OfficeClerk role, BankClerk position, and

Customer agent contain no new features and are shown in Appendix B-4, B-5, and B-6

respectively.

6.4.2 Specifying the Domain Dynamics

We must produce the ConGolog domain dynamics specification for the mail-order

business application as we did for the meeting scheduling application in chapter 5.

Primitive actions and fluents are introduced to model aspects of the domain. Precondition

axioms, successor state axioms, and initial state axioms are also given to specify their

dynamics. See Appendix B-7 for a list of all actions and fluents in the ConGolog model

for the mail-order business process. Here we will give some examples to illustrate the

ConGolog model.

• Primitive Actions

The primitive actions in the mail-order domain include:

mkOrder(Customer1,Item1,CardNo1,Company1), i.e., customer1 makes

an order for Item1 to Company1 and the order is to be charged to CardNo1,

transferMoneyForOrder(OfficeClerk,Company,Customer,Order,Ca

rdNo,Amt), i.e., OfficeClerk asks the bank clerk to transfer Amt of money from

the Customer’s account CardNo to the Company’s account to pay for the Order

made by Customer.

• Predicate Fluents

The primitive predicate fluents include:

 187

orderMade(OrderID), which represents the fact that an order OrderID has been

made to the company (the attributes of the order are modeled by functional fluents, e.g.,

OrderCustomer(OrderID) denotes the order’s customer),

transferMoneyAccepted(OrderID), which represents the fact what the bank

clerk has transferred the money for the order OrderID.

• Functional Fluents

The functional fluents include:

price(Item), which represents the price for the Item,

inStock(Item), which represents the quantity of Item that are currently in stock,

onHold(Item), which represents the quantity of Item that are currently on-hold for

some orders.

acctBalance(CardNo), which represents the current balance of account CardNo.

The defined fluents include:

stockRequestAnswered(Order), which becomes true when the stock informant

has accepted the stock request or rejected the stock request for Order,

debitRequestAnswered(Order), which becomes true when the bank clerk has

confirmed or rejected the debit request for Order.

 188

• Precondition Axioms

The precondition axioms include:

poss(putOnHold(Item,_),S):- holds(val(inStock(Item),N),S),

N > 0,

which means that only when the stock for Item is greater than zero, can Item be put on

hold for some order, otherwise the action putOnHold cannot be performed.

• Successor State Axioms

The successor state axioms include:

holds(stockRequestAccepted(OrderID),do(A,S)):-
 A = acceptStockRequest(OrderID);
 holds(stockRequestAccepted(OrderID),S),

The axiom means that the stock request for the order OrderID has been accepted in

situation do(A,S) if and only if the action A is the stock informant's accepting the stock

request or if the stock request had already been accepted in situation S.

See Appendix B-7 for a complete list of the action precondition and successor state

axioms specified in the ConGolog model for the mail-order business domain. .

6.5 Validating the ConGolog Model by Simulation

In the next step, the ConGolog model is evaluated through simulation and its

shortcomings are identified. For simulation, one must first specify a system instance and

the initial state of the simulation.

6.5.1 Specifying a System Instance

To specify an instance of the overall system, one first defines a main procedure, which

corresponds to the whole system's behavior:

 189

 proc(main,
 customer(cust1,item4,1111,company1)
 /* this can be adjusted according to the situation */
 #>
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)
 #=

 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)
 #=
 bank_behavior

).

This main procedure specifies the actors involved in the mail-order business process and

their behavior by invoking the corresponding actor procedures and assigning specific

individuals to the role, position, and agent parameters. In the system instance specified

above, there is one customer agent cust1 whose account number is 1111, two mail-

order company agents company1 and company2, and the bank position. The bank

position is not assigned to an individual because we don't care who this bank is. "#="

means that the behaviors of the actors are performed concurrently without any priority.

"#>" means that the behavior of the actor on the left side has higher priority to perform

its actions. This is used here to ensure that the customer cust1 makes an order first, and

then the mail-order companies, the bank, and their sub-actors get to execute and process

this order.

Then, the behavior of the actors is specified. The behavior of the customer agent is

specified by the following procedure:

 proc(customer(CustID,Item,CardNo,Company),
 obtainItem(CustID,Item,CardNo,Company)

).

The customer agent performs one task: to obtain Item from Company; the customer's

name is CustID and its account is CardNo.

 190

The behavior of the mail-order company agent is specified as shown in the previous

section:

proc(mailOrderCompany_behavior(OfficeClerk,StockClerk,CompanyName),
 officeClerk_behavior(OfficeClerk,CompanyName,StockClerk)#=
 stockClerk_behavior(StockClerk,CompanyName,OfficeClerk)
).

That is, the mail-order company has two sub-agents: the office clerk and the stock clerk.

So the procedures corresponding to the behaviors of the office clerk and stock clerk are

invoked concurrently inside the procedure corresponding to the mail-order company. The

names of the instances of the company, office clerk, and stock clerk are assigned to the

CompanyName, OfficeClerk, and StockClerk parameters by the main

procedure.

The bank and the bank clerk position procedures have their behaviors specified as

follows:

proc(bank_behavior,
 bankClerk_behavior

).

proc(bankClerk_behavior,
 processTransactions

).

The bank position has one sub-position, the bank clerk, who works for it. The bank clerk

is responsible for processing the transactions for checking customers' credit and

transferring payment from customers' accounts to company’s accounts. No specific

individual is assigned to these positions.

The office clerk behavior is specified as shown earlier:

 191

 proc(officeClerk_behavior(OfficeClerk,CompanyName,StockClerk),
 efficientOrderProcessor(OfficeClerk,CompanyName,StockClerk)

).

That is, it plays the role of an efficient order processor.

The stock clerk is also specified as shown earlier:

proc(stockClerk_behavior(StockClerk,CompanyName,OfficeClerk),
 stockInformant(StockClerk,CompanyName,OfficeClerk)#=
 updateStockProcessor(StockClerk,CompanyName)#=
 shipmentProcessor(StockClerk,CompanyName)
).

That is, it plays three roles: stock informant, update stock processor, and shipment

processor. The stock clerk performs the behaviors for these roles concurrently.

6.5.2 Simulation Examples

The complete ConGolog model for our mail-order process example appears in Appendix

B-7. We will now go over some simulation examples. Appendix B-1 contains the

complete simulation trace for our examples. The initial state of the system for all our

examples is as follows:

holds(val(creditLimit,-10),_). /* The credit limits of all account is –10. */

holds(val(inStock(item1),10),s0).
holds(val(inStock(item2),0),s0).
holds(val(inStock(item3),3),s0).

 /* Initially, the stock for item1 is 10, for item2 is 0, and for item3 is 3.*/

holds(val(acctBalance(1111),100),s0).
holds(val(acctBalance(2222),20),s0).

 holds(val(acctBalance(3333),0),s0).

 /* Initially, the account balance for the card number 1111 is 100, */

 /* for the card number 2222 is 20, and for the card number 3333 is 0. */

holds(val(acctBalance(c1),0),s0).
holds(val(acctBalance(c2),0),s0).

 /* Initially, the account balance for companies' accounts c1 and c2 are both 0. */

 192

holds(val(price(item1),10),s0).
holds(val(price(item2),20),s0).
holds(val(price(item3),30),s0).

 /* The price for item1 is 10, for item2 is 20, and for item3 is 30. */

non_fluent(isSoldItem(_)).
isSoldItem(item1).
isSoldItem(item2).
isSoldItem(item3).

 /* item1, item2, and item3 are sold items, and other items are not sold. */

Now, let us look at our simulation examples.

Example 1: A customer makes an order for item4 which is not a type of item sold:

 /*the customer CUST1 make an order for item4 which is not a type of item sold */
 proc(main,
 customer(cust1,item4,1111,company1) #>
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 bank_behavior
).

The sequence of actions performed is as follows:

mkOrder(cust1,item4,2222,company1)

 /* cust1 orders a non-sold item4 from company1 and his credit card number is 1111 */

alarmCustomer(officeClerk1,company1,cust1,1,item4))

 /* officeClerk1 in company1 alarms cust1 that item4 is not a sold type.

do(rejectOrder(officeClerk1,company1,cust1,1,item4)

 /* officeClerk1 in company1 rejects cust1’s order for item4. */

The trace result shows that if the ordered item is not of a sold type, then the office clerk

rejects the customer’s order.

Example 2: A customer makes an order for an item item2 that is of a sold type to

company1, but item2 is out of stock:

 193

 proc(main,
 customer(cust1,item2,1111,company1) #>
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 bank_behavior
).

The trace of actions performed in the simulation is:

mkOrder(cust1,item2,2222,company1)

 /* cust1 makes an order to company1 for item2, and his credit card number is 1111. */

requestStock(officeClerk1,company1,stockClerk1,item2,1)

 /* officeClerk1 in company1 requests stockClerk1 to provide stock for ordered item2.*/

rejectStockRequest(stockClerk1,company1,officeClerk1,item2,1)

 /* stockClerk1 in tells officeClerk1 that there is no stock for the ordered item2. */

rejectOrder(officeClerk1,company1,cust1,1,item2)

 /* officeClerk1 in company1 rejects the order from cust1 for the ordered item2. */

The trace shows that if an ordered item is out of stock, then the office clerk rejects the

customer’s order for this item.

Example 3: A customer makes an order for an item item3 that is in stock, but the

customer does not have enough money to pay for this order:

proc(main,
 customer(cust3,item3,3333,company1) #>
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 bankClerk
).

The trace of actions performed is:

mkOrder(cust3,item3,3333,company1)

 /* cust3 makes an order for item3 from company1 and his credit card number is 3333. */

requestStock(officeClerk1,company1,stockClerk1,item3,1)

 /* officeClerk1 in company1 requests stockClerk1 to provide */

 /* the stock for item3 for order no.1 */

 194

acceptStockRequest(stockClerk1,company1,officeClerk1,item3,1)

 /* stockClerk1 in company1 accepts the stock request for item3 of order no.1. */

putOnHold(stockClerk1,company1,item3,1)

 /* stockClerk1 in company1 puts one of the item3 into the on-hold stock. */

requestDebit(officeClerk1,company1,1,cust3,3333,30)

 /* officeClerk1 in company1 requests the bank to check whether cust3’s */

 /* credit account 3333 has enough money to pay the amount of 30 for order no.1. */

rejectDebit(1,company1,cust3,3333,30)

 /* The bank rejects the request to check the possibility of debiting 30 */

 /* from cust3’s card number 3333 for order no.1 */

cancelStockRequest(officeClerk1,company1,stockClerk1,item3,1)

 /* officeClerk1 in company1 asks stockClerk1 to */

 /* cancel the reserved stock for item3 for order no.1. */

confirmCancelStock(stockClerk1,company1,officeClerk1,1,item3)

 /* stockClerk1 confirm canceling the reserved stock for item3 to officeClerk1 */

moveOnHoldBackToStock(stockClerk1,company1,item3,1)

 /* stockClerk1 in company1 moves an item3 from the on-hold stock back to real stock. */

rejectOrder(officeClerk1,company1,cust3,1,item3)

 /* officeClerk1 in company1 rejects order no.1 made by cust3 for item3. */

The trace shows that when the ordered item is in stock, but the customer does not have

enough money to pay for the ordered item, then the office clerk gets the stock clerk to

cancel the reservation of stock for the ordered item and rejects the customer’s order.

Example 4: A customer makes an order for a sold item that is in stock and he has enough

money to pay for this order:

proc(main,
 customer(cust3,item1,3333,company1) #>
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 bank_behavior
).

The trace is:

mkOrder(cust3,item1,3333,company1)

 /* cust3 makes an order for item3 from company1 and his credit card number is 3333. */

 195

requestStock(officeClerk1,company1,stockClerk1,item1,1)

 /* officeClerk1 requests stockClerk1 to provide stock for item1 for order no.1. */

acceptStockRequest(stockClerk1,company1,officeClerk1,item1,1)

 /* stockClerk1 accepts officeClerk1’s the stock request for item1 for order no.1. */

putOnHold(stockClerk1,company1,item1,1)

 /* stockClerk1 in company1 puts an item1 into the on-hold stock for order no.1. */

requestDebit(officeClerk1,company1,1,cust3,3333,10)

 /* officeClerk1 in company1 requests the bank to check cust3’s account 3333 */

 /* to see whether cust3 has enough money to be debited 10 for order no.1. */

acceptDebit(1,company1,cust3,3333,10))

 /* The bank tells company1 that cust3’s account 3333 can be debit 10. */

transferMoneyForOrder(officeClerk1,company1,cust3,1,3333,10)

 /* officeClerk1 in company1 requests the bank to transfer an amount of 10 */

 /* from cust3’s account 3333 into company1’s account . */

debitAcct(3333,10) /* The bank debits 10 from the account 3333. */

creditAcct(c1,10) /* The bank credits 10 into the account c1. */

confirmTransferMoney(2,cust3,3333,company1,10)

 /* The bank confirms that an amount of 10 was transferred from the account 3333 */

 /* into the company1’s account. */

mkInvoice(officeClerk1,company1,stockClerk1,item1,1)

 /* officeClerk1 makes an invoice for item1 in order no.1 and gives it stockClerk1 */

shipOrder(stockClerk1,company1,cust3,1,item1)

 /* stockClerk1 ships item1 for order no. 1 to cust3. */

rmvFromHoldForShipment(stockClerk1,company1,item1,1)

 /* stockClerk1 in company1 removes an item3 from the on-hold stock for shipment. */

notifyShipment(officeClerk1,company1,cust3,item1,1)

 /* officeClerk1 notifies cust3 that item1 was shipped to him for order no.1. */

The trace shows that if the customer has enough money to pay for the ordered item and if

the ordered item is in stock, then the process will be completed successfully. The stock

clerk will ship the ordered item and the office clerk will notify the customer that the item

has been shipped.

 196

Example 5: Our ConGolog model also supports multiple orders made by various

customers to different mail-order companies. In the following system instance, there are

three customers: cust1, cust2, and cust3, and two mail-order companies:

company1 and company2. Four orders are made, as specified by the main procedure

below:

proc(main,
 customer(cust1,item2,1111,company1) #=
 customer(cust1,item1,1111,company1) #=
 customer(cust3,item3,3333,company2) #=
 customer(cust2,item2,2222,company2) #>
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 bank_behavior

).

The four orders are:

Order no. 1: cust1 makes an order for item2 from company1 and his card number is

1111

Order no. 2: cust1 makes an order for item1 from company1 and his card number is

1111.

Order no. 3: cust3 makes an order for item3 from company2 and his card number

3333.

Order no. 4: cust2 makes an order for item2 from company 2 and his card number is

2222.

The simulation trace is long and appears in Appendix B-2. It shows the following:

For order no. 4, officeClerk2 requests StockClerk2 to provide stock for item2,

but stockClerk2 rejects the stock request because item2 is out of stock in

company2. Then officeClerk2 rejects this order made by cust2 without

proceeding into processing payment.

 197

For order no. 3, officeClerk2 requests StockClerk2 to provide stock for item3,

and stockClerk2 accepts the stock request and puts the reserved stock for item3 on

hold. Then, officeClerk2 requests the bank to check whether cust3 has enough

money to pay the order in the account 3333. The bank finds out that cust3 does not

have enough money to pay for the order and notifies officeClerk2. Then,

officeClerk2 requests stockClerk2 to cancel the reserved stock of item3.

stockClerk2 confirms his cancellation and removes the reserved stock for item3

from the on-hold stock back to real stock. Then, officeClerk2 rejects the order no. 3

made by cust3.

For order no. 2, officeClerk1 first requests stock for item1 from stockClerk1.

Then, stockClerk1 accepts the stock request and puts an item1 on hold. Then,

officeClerk1 requests the bank to check cust1’s account 1111 and the bank

confirms that cust1 has enough money to pay for the ordered item1. Then,

officeClerk1 asks the bank to transfer payment for the ordered item1 from

cust1’s account into company1’s account. Then, the bank debits cust1’s account,

and credits the same amount of money into company1’s account. Then,

officeClerk1 makes an invoice for the ordered item1 and stockClerk1 ships

the ordered item1 to cust1. Finally, officeClerk1 notifies cust1 that the

ordered item1 has been shipped.

For order no. 1, the process is similar to the one for processing order no. 4. Because the

stock for item2 has run out, officeClerk1 rejects the order without proceeding into

processing payments.

 198

6.6 Refining the i* and ConGolog Models Based on

Validation Results

The example simulation traces presented show that our ConGolog model of the mail-

order business behaves as expected. Here, we want to briefly show how the model can be

modified when one finds that some aspects of the specification are not as expected or as

desired. We discuss how the model could be changed to allow new supplies of items to

arrive as the system operates. Also, we discuss how alternatives for the process could be

modeled with our methodology.

6.6.1 Modifying the ConGolog Model and Corresponding Parts of the i*

Model ! An Example

In our model of the mail-order business process, the stock for items never increases and

getting new supplies is not modeled. Suppose that we want to allow for this. Then, we

could model the reception of supplies in our ConGolog model as an exogenous action

supply(Item, Quantity). We really don’t care who will supply the new stock.

So we leave out the supplier. This modification of the ConGolog model is specified as

follows.

We specify the precondition axiom for this exogenous action:

 poss(supply(Item,_),S):-holds(isSoldItem(Item),S).

i.e., only sold items can be supplied.

We modify the successor state axioms for the fluents that are affected by the exogenous

action:

 199

 holds(val(inStock(Item),N),do(A,S)):-

 (A = rmvFromHold(_,_,Item,_),

 holds(val(inStock(Item),M),S), N is M + 1);

 (A = supply(Item,Q),

 holds(val(inStock(Item),M),S), N is M + Q);

 (A = putOnHold(_,_,Item,_),

 holds(val(inStock(Item),M),S), N is M - 1);

 (holds(val(inStock(Item),N),S), ground(Item),

 A \= rmvFromHold(_,_,Item,_), A \= supply(Item,Q),

 A \=putOnHold(_,_,Item,_)).

i.e., the stock for Item will increase by Q when the exogenous action

supply(Item,Q) is performed (shown by the bold line above).

We also have to modify the corresponding elements in the annotated SR diagram. We

introduce an outside environment agent OutSideEnv who will performs the exogenous

action supply(Item,Quantity). The fluent modeling the stock of items will be

affected and the update stock processor maintains the stock. We view this relationship

between the outside environment and the update stock processor as a resource

dependency SupplyStock(Item), which is modeled as follows.

 OutsideEnv UpdateStock

 Processor Processor

 Supply(Item) UpdateStock

 SuppyStock(Item)

Once the modifications have been done, we can validate the modified model by

simulation.

Example 6: There are two orders for item2 which is out of stock:

 200

Order no. 1: cust2 makes an order for item2 to company1 and his card number is

2222.

Order no. 2: cust1 makes an order for item2 to company1 and his card number is

1111.

We specify the system instance with the following main procedure:

proc(main,
 customer(cust2,item2,2222,company1) #=
 customer(cust1,item2,1111,company1) #>
 bank_behavior#>
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)

).

The simulation trace for this example is long and appears in Appendix B-3. The

exogenous action supply(item2,6) is generated during the execution. In the

simulation trace, before the exogenous action supply(item2,6) is performed, the

stock for item2 is 0. So officeClerk1 rejects cust1’s order for item2 in order

no. 2 because there is no stock when it tries to obtain it. After the exogenous actions

occurs, the stock for item2 increases to 6. So when OfficeClerk1 later requests stock for

cust2’s order for item2 the request will be accepted and the order can be shipped. In

the simulation, the process of handling orders is the same as before except the stock being

supplied by the exogenous action.

6.6.2 The Process Alternatives for the Example

In the above ConGolog model, we suppose that the processing of orders proceeds in a

certain way. We mentioned at the beginning of chapter 6 that there is another option for

the process. After the customer has made an order for an item, the office clerk could

request the bank to debit the customer for the order first before checking whether the

company has stock for it. If the customer cannot pay, then the office clerk rejects the

order without proceeding to request stock for the order. On the other hand, if the debit

 201

goes through, but later it is found that there is no stock, then the company must get the

bank to credit the customer back for his payment.

Let us call the alternative process described above alternative 2, and the one that we have

modeled alternative 1. If we compare the two alternatives, we can make the following

observations:

• These two alternatives don’t differ significantly in terms of processing orders. Both

alternatives can successfully complete the whole process of processing orders.

• Alternative 1 grants higher priority to processing stock for the order than to

processing payment for it. This is reasonable because stock availability can be

determined within the company. The shortcoming is that if stock is reserved for an

order, and later the company finds out that the customer has no enough money to pay

for it, then the reserved stock has to be returned to free stock. Moreover orders that

come in during the interval cannot be allocated the reserved stock and have to wait. If

the item involved is expensive, high profit, and in short supply, then a waiting

customer might cancel his order because of the waiting time. The profit of the

company may be affected. On the other hand, this alternative minimizes bank

transactions. This may lead to lower transaction fees for the company.

• Alternative 2 grants higher priority to processing payments than to processing stock

requests. This can be good for the company, because the company wants to make

sure that the customer has enough money to pay for the order before it puts efforts

into processing the stock and shipping the ordered items. If the customer does not

have money to pay for the order, the company doesn’t want to spend time on the

order and hold stock for it especially for expensive items. On the other hand, this

alternative leads to more bank transactions. If the company finds out there is no stock

for the ordered item, then it has to have the bank to refund payment to the customer’s

account. This could lead to higher bank fees for the company and a higher error rate.

 202

• For the customer, when he makes sure that he has enough money to pay the order, it

is better if he is allocated stock earlier because then he cannot lose it to another

customer. So he would prefer alternative 1.

• We would analyze the above two alternatives for processing orders in terms of the

interests of each actor using i* notions, such as contribution to softgoals, workability,

believability, etc.

• In our i* and ConGolog models, we can model the two alternatives together as well as

separately. In i* modeling alternatives together is the normal way to proceed (as we

saw in the early examples of chapter 5). The alternatives are represented as different

means for achieving goals or as different alternative task decompositions. In

ConGolog, we can use the nondeterministic constructs provided by ConGolog to

specify the alternative processes in one model.

We leave modeling these two alternatives together for future work. Also we could assign

the StockInformant role into a computerized inventory management system agent.

We could modify the selected process to include this computerized component easily.

This would be an interesting modification to study too.

 203

7 Discussion

Our methodology supports the combined use of the i* and ConGolog frameworks. We

have evaluated the methodology in light of two case studies: a meeting scheduling

application and a mail-order business process. In this chapter, we evaluate our approach

in light of the case studies. We also discuss various issues involved in mapping i* and

ConGolog.

7.1 An Evaluation of the Methodology

Our preliminary work suggests the following advantages to our methodology:

• Using i* is helpful for capturing intentional goals and the rationales behind the

selected process, and analyzing actor vulnerabilities.

The SD model describes the dependency relationships between the actors involved in the

process, and helps in identifying stakeholders, analyzing opportunities and

vulnerabilities, and recognizing patterns of relationships, such as various mechanisms for

mitigating vulnerability. The SD model shows external (but nevertheless intentional)

relationships among actors, while hiding the intentional constructs within each actor. The

SD model can be useful in understanding organizational and systems configurations as

they exist, or as proposed new configurations.

The SR model provides a way of modeling stakeholder interests, and how they might be

met, and the stakeholder’s evaluation of various alternatives with respect to his interests.

Task-decomposition links provide a hierarchical description of intentional elements that

make up a routine. The means-ends links in the SR model provide understanding about

why an actor would engage in some tasks, pursue a goal, need a resource, or want a

softgoal. From the softgoals, one can tell why one alternative may be chosen over others.

 204

• Using ConGolog is helpful for modeling complex processes involving loops,

concurrency, multiple agents etc., producing formal specifications, and validating

them by simulation and verification.

ConGolog is based on a logical formalism, the situation calculus. It is very expressive

and fully formal. It is well adapted to the late-requirements-engineering and early-design

stages of system development, when detailed alternative process designs have to be

specified and need to be compared. The ConGolog framework can be used to model

complex processes involving loops, nondeterminism, concurrency and multiple-agents.

Because of its logical foundations, ConGolog can accommodate incompletely specified

models, either in the sense that the initial state of the system is not completely specified,

or in the sense that the processes involved are nondeterministic and may evolve in any

number of ways. These features are especially useful when one models business process

and open-ended real world situations. A process simulation tool can be used for process

model validation. The framework also supports verification.

• Both graphical/informal and non-graphical/formal notations are used, which

supports a progressive specification process and helps in communicating with the

clients.

The i* SD model uses a graphical notation involving actor nodes and dependency

relationships to represent the intentional relationships between actors. The i* SR model

uses a graphical notation involving task/goal/resource/softgoal internal nodes and mean-

ends and task-decomposition links, to represent the intentional behavior inside the actors

and the rationale behind their activities. i* provides analysis methods for early-phase RE

using notions such as ability, workability, viability, believability, etc., which help the

analyst understand the process, how actors' and stakeholders' goals can be met, and how

alternatives can be chosen.

The ConGolog framework has a fully logical semantic based on the situation calculus. It

supports precise modeling of the actions performed by agents, when the actions can be

 205

performed, what the result of performing the actions is, how the actions are composed in

the process, and how the whole process proceeds under given initial conditions. Process

evolution can be traced using a simulation tool that can be used for validating the process

specification. Verification can also be performed.

The annotated SR diagram notation that we have developed is both graphical and

intuitive and allows a precise and formal specification of processes.

• Several process alternatives can be studied and compared; simulation, which is

supported by the ConGolog framework, will help the modeler and client choose

suitable alternatives.

Using the i* model, the modeler can analyze actor vulnerability based on the dependency

network and choose alternatives for the process based on this and on contribution to

softgoals. Different alternatives selected by i* analysis can be mapped into ConGolog

models. Simulation can be performed on the models for different system instances and

initial states. The results can help the modeler and client choose a suitable process

alternative.

Disadvantages of our methodology identified in our study include:

• The methodology does not currently have tool support except for simulation.

This hinders the analyst in applying the methodology. But work is in progress to address

this. Yu and his colleagues are working on a support tool for developing an i* model

from the initial system requirements and performing analysis. There is also a graphical

viewer tool for displaying simulations of ConGolog models. These tools need to be

integrated and extended in future work. Problems with traceability may arise too. We

discuss this in chapter 8.

 206

• It is not clear how to go from requirements analysis to the design phase.

ConGolog can be used to produce a preliminary design for the whole process of the

system that focuses on the main alternative and suppresses unnecessary details. But how

to obtain a whole system design specification from the resulting requirements

specification is not addressed by our methodology. This could cause problems for

traceability. We discuss this in chapter 8.

7.2 Issues in Mapping i* to ConGolog

There are several issues that should be explored further with respect to mapping i* SR

models into ConGolog models and the definition of mapping rules:

• How complete must the mapping be? Must all SR diagram nodes and links be

mapped? Must all ConGolog procedures, actions, and fluents be mapped into? It may

be the case that some goals or tasks in the SR diagram are not important to modeling

and specifying the core processes of interest. Here we allow the modeler to suppress

unimportant nodes and associated links in the annotated i* SR diagram before

defining the mapping. But this could be resolved in another way. From a practical

point of view, a possible answer to the question is that the mapping must be complete

enough to allow analysis through simulation or verification.

• How should parameters in procedures and goals be handled? In i* diagrams, they are

often absent, while in ConGolog, they are always listed explicitly. Perhaps we can

think of them as present in i* diagrams, but kept hidden unless explicitly made visible

(a tool could easily support that).

• Goals have both a declarative and procedural interpretation. The associated procedure

specifies a selected set of means for achieving the goal (usually not complete), and

the procedure must achieve the goal to terminate. Is this treatment satisfactory?

 207

• The diagram notation does not support well the distinction between a generic system

and a system instance (one used in particular simulation experiment). How do we

extend it to capture this?

• We haven’t distinguished between design goals and execution-time goals. But the

distinction can be fuzzy. Should we distinguish, and if so, how?

• Must the incompleteness of i* diagrams be captured in the ConGolog model resulting

from the mapping? i* diagrams are not assumed to be complete. There may be ways

of achieving goals or performing tasks that are not represented. In ConGolog models,

however, all of the alternative ways to accomplish a task/goal are assumed to be

specified (since tasks/goals are specified by procedures). Here, we suppose that a

“closure assumption” is made when going from the SR diagram to the annotated SR

diagram. One could also write open ConGolog specifications, for example by

mapping a goal g into a procedure as follows:

 proc(achieve_Goal_g,

 [task1 $ task2 $ (pi(a , a)@, g?]

)

This says that one can achieve goal g by doing task1, or by doing task2, or by

doing zero or more actions after which g is true (@ is the nondeterministic iteration

operator).

• Can non-annotated SR models be mapped to ConGolog models? We have not

pursued this, but we think it is possible. This would involve imposing much weaker

constraints in mapping elements of the SR models to elements of the ConGolog

models. For example, when there is a decomposition link between a subtask node and

a super-task node, we could only require that there be some execution of the super-

 208

task in the ConGolog model that involves executing the subtask. This can be specified

in the ConGolog semantics as follows:

 − s,s',s1,s2 (Do(m(super-task), s, s') #

 Do((m(subtask) || pi(a,a)@), s1, s2) #

 s <= s1 # s2 <= s').

Here Do(&, s1, s2) means that there is an execution of process & that starts in

situation s1 and terminates in situation s2. We use pi(a,a)@ to allows other

concurrent activities to be performed during the interval [s1,s2]. m(subtask) is

the result of the mapping for the subtask and m(super-task)is the result of the

mapping for the super-task.

The mapping rules can be viewed as giving a formal semantics to annotated SR diagrams

by mapping this notation into ConGolog, a language which already has one. We believe

that this semantics is largely consistent with the somewhat abstract (based on the notion

of an actor having a routine) axiomatic semantic for i* developed in [YU95B]. As such, it

could perhaps be viewed as a formal semantics for SR diagrams more generally. But as

mentioned above, one point where the two semantics diverge is with respect to

completeness: in i*, task/goal decompositions are generally not assumed to be complete,

but in ConGolog and in our mapping rules they are assumed to be. Should we try to

accommodate incompleteness? Should we distinguish between a set of task/goal

decompositions and its completion? More study of these questions is required.

 209

8 Conclusion

This thesis has developed a methodology for the combined use of the i* and ConGolog

frameworks for requirements engineering. The methodology allows the requirements

engineer to exploit the complementary features of the two frameworks to develop better

models of the application of interest and produce requirements specifications that fulfill

the client’s goals.

8.1 Contributions

We can summarize the main contributions of the thesis as the follows:

• A methodology for the combined use of the i* model and the ConGolog framework for

requirements engineering has been developed.

The methodology was presented in chapter 4 and tested in two case studies in chapters 5

and 6. The methodology involves using the i* framework to perform early-phase RE, that

is, model and analyze intentional relationships between actors, the rationale behind their

activities, vulnerabilities and opportunities for actors, and compare different alternatives

for the process. It also involves using an intermediate notation, annotated SR diagrams, to

specify processes precisely so that they can be mapped into the ConGolog framework.

Finally, the methodology involves using the ConGolog model of the process to validate

the specification by performing simulation experiments. This shows whether the process

proceeds as the modeler expected. The methodology also allows for modifying the i* and

ConGolog models based on the clients’ opinion and the simulation results.

• To support the methodology, a set of annotations was introduced into the i* SR

diagram notation to allow more detailed information about processes to be

represented.

 210

Link annotations are used to specify under what conditions a task/goal should be

performed, and whether it should be performed repeatedly. Composition annotations are

used to specify whether the subtasks/subgoals of a decomposition should be performed

concurrently, sequentially, concurrently with different priorities, or whether they are

alternatives. The annotations allow the analyst to specify the details of how a process

should proceed and help him and the client clarify their system specification choice. A

formal semantics for these annotations is defined in chapter 4 through a mapping into

ConGolog.

• We have explained how annotated i* SR diagrams can be developed. These bridge the

gap between the i* and ConGolog models.

This involves among others things the operationalization of dependencies to clarify the

communication behavior of the different actors to achieve the goal/perform the

task/provide the resource. Decomposition links are also annotated using the defined link

notations and composition annotations. This produces a precise specification of the

processes involved in the system. The modeler is required to define a mapping from the

components of his annotated SR diagram into the components of a ConGolog model

which respects some mapping rules.

• A set of mapping rules is defined to help ensure consistency between the i* and

ConGolog models.

The mapping rules constrain the modeler to map elements of the annotated SR diagram

into appropriate entities in the ConGolog model and ensure that the models are

consistent. This allows us to trace corresponding elements in the two models when

changes are made.

 211

Every element in the annotated SR diagram must be mapped into an appropriate element

of the ConGolog model. If some part of the annotated SR diagram needs to be changed,

then the corresponding part of the ConGolog model can be updated too, and vice versa.

The mapping rules provide a kind of formal semantic for annotated SR diagrams by

reducing them to ConGolog, which already has a formal semantics.

• Two case studies are performed to show how the methodology is applied.

The meeting scheduling application involves a computerized scheduling system in an

organization. We apply the methodology to this case study and show how the initiator,

the participants, and the meeting scheduler’s interests are addressed, how alternatives can

be chosen, and how the process is specified and validated by ConGolog simulation. The

mail-order business case study is more of a business process modeling exercise. We

compare alternatives and discuss how different choices affect the actors. We show how

alternative processes for handling an order can be simulated in the ConGolog model. We

also discuss how one can model agents that play different roles to fulfill their

responsibilities; we show how the dependencies between these roles can be

operationalized.

8.2 Comparison to Related Work

As mentioned earlier, there are various agent-oriented or goal-oriented requirements

engineering frameworks in existence that are related to ours. One is ALBERT-II

[DuBois95], a formal framework designed for specifying distributed real-time systems.

ALBERT-II is based on temporal logic. Agents’ states and behavior are specified through

constraints expressed in a logic-based notation. Which aspects of agents’ states or actions

are known/visible to other agents is also specified formally through “cooperation

constraints”. Typical patterns of constraints are identified to support the analyst in

requirements elaboration. In [YDDM97] and [Bissener97], the combined use of i* and

 212

ALBERT-II for requirements engineering is investigated. The approach proposed in these

papers is very different from ours. In Bissener’s approach [Bissener97], there are no

detailed steps to be followed in developing the ALBERT-II model from the i* SR model.

There is no attempt to develop an intermediate notation to enable a direct mapping from

i* to the ALBERT-II formal framework. No process specification annotations are

introduced to elaborate the original i* SR diagram into one that specifies the process in

detail. There is no discussion of operationalizing dependencies in order to specify how

agents interact each other to have these dependencies supplied. There are no explicit

constraints for mapping the elements of the i* SR diagram into corresponding elements in

ALBERT-II. The process models do not specifically show how the whole system proceeds

step by step. Also there is no executable model can be simulated.

On the other hand, ALBERT–II does specify the differences between what agents know

through cooperation constraints. Action perception and state perception constraints

specify what agents know about others. Action information and state information

constraints specify what agents show to others. Local constraints, such as operational

constraints and declarative constraints, specify how agents perform their actions and what

their effects are, and how agents perform a complex process by decomposing it into

atomic actions. But ALBERT-II does not have a rich procedural process specification

language. It also does not have a support tool for simulation. ConGolog provides these,

but does not support modeling what different agents know (unless one uses the extended

version of ConGolog defined in [SL01]).

Our work is also related to the KAOS framework [DVF93], which focuses on the formal

modeling of functional and non-functional requirements. KAOS has a formal

specification language based on temporal logic. There is also an elaboration method to

help the modeler refine the system goals into more operational components that can be

 213

assigned to agents. As for ALBERT-II, there is no rich procedural process specification

language and simulation tool for validating the model. The framework addresses issues in

requirements acquisition, i.e., goal-directed, scenario-directed, and viewpoint-directed

strategies, and the reuse of requirements specifications. We are not aware of attempts to

use KAOS in combination with i* or another early-phase RE framework.

8.3 Future Work

Future work is necessary to fully realize the benefits of our approach. This involves work

in the following areas:

• Support tool

The work in this thesis should be followed by efforts to develop a computerized tool to

help the modeler complete the steps of the methodology. Once a user-friendly tool has

been developed for applying this methodology in requirements analysis, broader use of

the methodology could be achieved.

Some existing tools could be used for this. A support tool called OME was built for

developing i* models; it is discussed in [OME00]. The tool supports graphical editing to

help the modeler build SD and SR models. There is also some support for analysis. There

is also a graphical viewer for displaying the simulations in ConGolog [LKMY99]. The

tool shows the trace of actions performed during the process and the change in the world

state when an action is performed.

We suggest that a computerized graphical tool be developed based on these components.

The computerized graphical tool would instruct the modeler to apply the methodology

step by step with on-line help. First, the tool would ask the modeler to identify the roles,

positions, and agents in the system, and the dependency relationships between them.

From this, the SD model would be built. After this, the tool would ask the modeler to fill

 214

out every role, position, and agent to specify their goals, tasks, and softgoals, the

decompositions of the goals/tasks, and the contribution links to the softgoals. From this,

the SR model would be built. Different alternatives would be included in the SR model

and the tool would help the analyst and clients clarify what their real needs for the desired

system are. Then, based on the initial SR model, the computerized tool would allow the

modeler to suppress softgoals and related links, as well as tasks/goals and dependencies

that do not need to be modeled in ConGolog. In this step, a second version of SR model

would be built. Then, the tool would ask the modeler to operationalize every dependency,

producing a third version of the SR model. After this, the tool would ask the modeler to

go over every role, position, and agent node to clarify its top task. Then, the tool would

ask the modeler to go over every task/goal in every actor (role/position/agent) from the

top level to decompose it, and put composition annotations on groups of decomposition

links and link annotations on single decomposition link if appropriate. The result of this

step is the annotated SR diagram. Then, the tool would have the modeler to go over every

entity in the annotated SR diagram and map it into the corresponding entities of a

ConGolog model according to the mapping rules. Much of the process code generation

would be done automatically. The ConGolog domain specification could be written in the

high-level Golog Domain Language (GDL) [LRLLS97] and automatically translated into

Prolog code. Then, the tool would help the modeler specify the initial state for the system

and simulate the process. The above steps would be repeated when some modification

has to be done in the i* or ConGolog model.

• Extending the methodology to the design phase.

If the analyst decides that the requirements specification obtained by applying the

methodology is satisfactory, then he would move to the next phase of obtaining a design

specification. The annotated SR diagram could be used as a starting point to develop an

architectural design and detailed design using UML, BON or some agent-oriented design

notation. UML might be appropriate based on the work of Odell et al. on agent-UML

[OPB2000]. Suppressed information would be considered in the design to select among

 215

alternatives. The design would also refer to the ConGolog model and simulation traces to

make sure that the system design captures the details of the process. The implementation

of the system would be based on this design specification. Some aspects of this task could

be automated.

• Verification of ConGolog process specifications

Some work has already been done on verification methods and tools for the ConGolog

framework [LS99]. It would be good to integrate them in our methodology.

• Refining the Mapping Rules

As we discussed in section 7.3, issues remain with respect to the mapping rules, such as

whether every element in the i* SR diagram should be mapped into an element of the

ConGolog model, whether softgoals should be relativized into hard goals which can be

satisfied by performing some tasks/goals, and whether all alternatives should be

compared.

• Extending the methodology to formally model agents mental states

We would like to refine the methodology to better model agent’s metal states ! what

agents know and want. For this, we will use an extended version of the ConGolog

framework [SL01] [SSL98] [LS99] [LLR99] that explicitly represents agents’ knowledge

and goals (using modal operators) and their dynamics, i.e., how they are affected by

communication actions (e.g., inform, request, cancel-request, etc.) and perception actions.

• Testing the methodology in more realistic case studies/projects.

 216

Bibliography

[Ben85] J. Benett. A Knowledge-Based System for Acquiring the Conceptual Structure

of a Diagnostic Expert System, Journal of Automated Reasoning, Vol.1, 1985 pp. 49-74.

[Bissener97] M. Bissener. A Proposal For A Requirements Engineering Method Dealing

with Organizational, Non-Functional and Functional Requirements, Ph.D. Thesis,

Computer Science Department, University of Namur, 1997.

[Boe81] B.W. Boehm. Software Engineering Economics, Englewood Cliffs, NJ: Prentice-

Hall, 1981.

[BMR92] A. Borgida, J. Mylopoulos, and R. Reiter. On the Frame Problem in Procedure

Specifications, IEEE Transactions on Software Engineering, 21(10), Oct., pp.785-798

1995.

[BD95] F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur. Formal Specification

of Multi-Agent Systems: A Real-World Case. In Proceedings of the First International

Conference on Multi-Agent Systems (ICMAS-95), pages 25-32, San Francisco, CA, June

1995, Springer-Verlag.

[Bubenko80] J.A. Bubenko. Information Modeling in the Context of System

Development, Proc. IFIP, 1980, pp. 395-411.

[Bubenko95] J.A. Bubenko. Challenges in Requirements Engineering, Proc. 2
nd

 IEEE

Int. Symposium on Requirements Engineering, York, England, March 1995, pp. 160-165.

[Burmeister96] B. Burmeister. Models and Methodologies for Agent-Oriented Analysis

and Design, in Klaus Fischer, editor, Working Notes of the KI'96 workshop on agent-

oriented programming and distributed systems, 1996, KFKI Document D-96-06.

 217

[CK00] J. Castro, M. Kolp and J. Mylopoulos. A Requirements-Driven Development

Methodology, to appear in Proc of the 13th International Conference on Advanced

Information Systems Engineering CAiSE 01, Interlaken, Switzerland, June 4-8, 2001.

[CRFS98] F. Chabot, J.-F. Raskin, L. Férier, and P.-Y. Schobbens. The Formal

Semantics of Albert-II, Technical report (draft), 1998.

[DVF93] A. Dardenne, A.Van Lamsweerde, and S. Fickas. Goal-Directed Requirements

Acquisitions, Science of Computer Programming, 20, pp.3 -50, 1993

[DDMV98] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde.

GRAIL/KAOS: An Environment for Goal-Driven Requirements Engineering, IEEE,

Proceedings of the 20th International Conference on Software Engineering, Kyoto, April

1998, Vol. 2, pp. 58-62.

[DV96] R. Darimont and A. van Lamsweerde. Formal Refinement Patterns for Goal-

Driven Requirements Elaboration, Proc. FSE'4 - Fourth ACM SIGSOFT Symp. on the

Foundations of Software Engineering, San Francisco, October 1996, pp.179-190.

[Davis90] A.M. Davis. Software Requirements: Analysis and specification, Prentice-hall,

Englewood Cliffs, New Jersey, 1990.

[Davis95] A. M. Davis. 201 Principles of Software Development, McGraw-Hill Inc.,

1995.

[DLL97] G. De Giacomo, Y. Lespérance, and H. J. Levesque. Reasoning About

Concurrent Execution, Prioritized Interrupts and Exogenous Actions in the Situation

 218

Calculus, in Proceedings of the Fifteenth International Joining Conference on Artificial

Intelligence, pp. 1221-1226, Nagoya, Japan, August 1997.

[DLL00] G. De Giacomo, Y. Lespérance, and H.J. Levesque. ConGolog, a Concurrent

Programming Language Based on the Situation Calculus, Artificial Intelligence, 121, pp.

109 –169, 2000.

[Deloach99] S. A. DeLoach. Multiagent Systems Engineering: a Methodology and

Language for Designing Agent Systems. Proceedings of Agent Oriented Information

Systems '99 (AOIS'99), pp. 45-57. Seattle WA, May 1999.

[DW00] S. A. DeLoach and M. Wooldridge. Developing Multiagent Systems with Agent

Tool, in Proceedings of The Seventh International Workshop on Agent Theories,

Architectures, and Languages, Boston, Massachusetts, July 2000.

[Dubois98] E. Dubois. ALBERT: a Formal Language and Its Supporting Tools for

Requirements Engineering in Proceedings Fundamental Aspects of Software Engineering

(ETAPS/FASE'98) LNCS 1382, Springer-Verlag, Lisboa, 1998.

[DUDU94] E. Dubois, Ph. Du Bois, F. Dubru, and M. Petit. Agent-Oriented

Requirements Engineering - a Case Study Using the ALBERT Language. In Proceedings

of the 4th International Working Conference on Dynamic Modeling and Information

Systems, 1994.

[DUDZ95] E. Dubois, Ph. Du Bois, and J.-M. Zeippen. A Formal Requirements

Engineering Method for Real-Time, Concurrent, and Distributed Systems, Computer

Science Department, University of Namur, January 1995.

 219

[DUHLPR86] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut. A

Knowledge Representation Language for Requirements Engineering, Proc. IEEE, 74(10),

Oct. 1986, pp. 1431-1444.

[DUP94] E. Dubois and M. Petit. The Formal Requirements Engineering of

Manufacturing Systems In S.M. Deen (ed.), Proc. of the Second International Working

Conference on Cooperative Knowledge Based Systems - CKBS'94, Keele (UK), June 14-

17, 1994, pp. 67-82

[DUYP98] E. Dubois, E. Yu, and M. Petit. From Early to Late Formal Requirements: a

Process-Control Case Study. In Proc. of IWSSD9, Isobe, Japan, April 1998.

[DuBois95] Ph. Du Bois. The ALBERT-II Language — On the Design and the Use of a

Formal Specification Language for Requirements Analysis, Ph.D. thesis, Dept. of

Computer Science, University of Namur, Namur, Belgium, 1995.

[DuBois97] Ph. DuBois. The ALBERT II Reference Manual - Version 2.0, Computer

Science Department, University of Namur, March 1997.

[GH93] J.V. Guttag and J.J. Horning. LARCH: Languages and Tools for Formal

Specification, Springer-Verlag, 1993.

[HHJ98] P. Haumer, P. Heymans, M. Jarke, and K. Pohl. Bridging the Gap Between Past

and Future in RE: A Scenario-based Approach, to appear in Proc. of the Fourth IEEE

International Symposium on Requirements Engineering (RE'99), Limerick, Ireland, 1999

 220

[HD98] P. Heymans and E. Dubois. Scenario-based Techniques Supporting the

Elaboration and Validation of Formal Requirements, to appear in the Requirements

Engineering Journal, September 1998, Springer-verlag.

[IG98] C.A.Iglesias, M. Garijo, and J. Gonzalez. A Survey of Agent-Oriented

Methodologies, In: Müller, J.P., Singh, M.P., Rao, A.S., (Eds.): Intelligent Agents V.

Agents Theories, Architectures, and Languages. Lecture Notes in Computer Science, Vol.

1555. Springer-Verlag, Berlin Heidelberg (1998) 4.

[IEEE83] Institute of Electrical and Electronics Engineers, IEEE Standard Glossary of

Software Engineering Terminology. ANSI/IEEE Standard 729-1983, New York, 1983.

[JP84] M. Jarke and K. Pohl. Requirements Engineering in 2001: (virtually) Managing a

Changing Reality, Joint Special Issue on Software Engineering beyond 2001, IEE

Software Engineering Journal 9, 5 (1994).

[JSW98] N. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research

and Development, Journal of Autonomous Agents and Multi-Agent Systems, 1:275--306,

1998.

[JW98] N.R. Jennings and M. Wooldrige (Eds.). Agent Technology: Foundations,

Applications, and Markers, Springer-Verlag, Berlin, 1998.

[JW00] N. R. Jennings and M Wooldridge. Agent-Oriented Software Engineering in

Handbook of Agent Technology (ed. J. Bradshaw), AAAI/MIT Press (to appear), 2000.

 221

[KG97] D. Kinny and M. Georgeff. Modeling and Design of Multi-agent Systems, In J.

P. Muller, M. Wooldridge, and N. R. Jennings, editors, Intelligent Agents III (LNAI

Volume 1193), pp.1-20. Springer-Verlag: Berlin, Germany, 1997.

[KGR96] D. Kinny, M. Georgeff, and A. Rao. A methodology and Modeling technique

for systems of BDI agents, in W. Van De Velde and J. W. Perram, editors, agents

breaking away: proceedings of the seventh European Workshop on modeling autonomous

agents in a multi-agent world, (LNAI Volume 1038), pp. 56-71. Springer-Verlag: Berlin,

Germany, 1996.

[Leach2000] R. J. Leach. Introduction to Software Engineering, CRC Press, Boca Raton,

Florida, 2000.

[LKMY99] Y. Lespérance, T.G. Kelley, J. Mylopoulos, and E. Yu. Modeling Dynamic

Domains with ConGolog, in Advanced Information Systems Engineering, 11th

International Conference, CAiSE-99, Proceedings, pp. 365-380, Heidelberg, Germany,

June 1999, LNCS vol. 1626, Springer-Verlag, Berlin.

[LLR99] Y. Lespérance, H.J. Levesque, and R. Reiter. A Situation Calculus Approach to

Modelling and Programming Agents, Foundations of Rational Agency, pp. 275-299. M.

Wooldridge and A.Rao (eds.), Kluwer Academic Publishers, Printed in the Netherlands,

1999.

[LLRU97] Y. Lespérance, H.J. Levesque, and S. Ruman. An Experiment in Using Golog

to Build a Personal Banking Assistant, in Intelligent Agent systems: Theoretical and

Practical Issues, Cavedon, L.,Rao, A., and Wobcke, W.,(Eds.), LNAI volume 1209, 27-

43, Springer-Verlag, 1997.

 222

[LLLS00] Y. Lespérance, H.J. Levesque, F. Lin, and R.B. Scherl. Ability and Knowing

How in the Situation Calculus, Studia Logica, 66(1), 165-186, October 2000.

[LS99] Y. Lespérance and S. Shapiro. On Agent-Oriented Requirements Engineering,

Position paper for the Agent-Oriented Information Systems Workshop (AOIS'99),

Heidelberg, Germany, June 1999, available at http://www.cs.yorku.ca/~lesperan/

[LTJ98] Y.Lespérance, K.Tam, and M.Jenkin. Reactivity in a Logic-Based Robot

Programming Framework, Cognitive Robotics, papers for the 1998 AAAI Fall

Symposium, Technical Report FS-98-02, AAAI Press, pp. 98-105, Orlando, FL, USA,

October 1998.

[LRLLS97] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG:

A Logic Programming Language for Dynamic Domains, Journal of Logic Programming,

31(59-84), 1997.

[ML97] Ph. Massonet and A. van Lamsweerde. Analogical Reuse of Requirements

Frameworks, Proceedings RE'97 - Third International Conference on Requirements

Engineering, Washington DC, IEEE, January 1997, pp. 26-37.

[Meyer91] B. Meyer. Design by contract, in D. Mandrioli and B. Meyer, editors,

Advances in Object-Oriented Software Engineering, pages 1—50, Prentice Hall,

Englewood Cliffs, N.J., 1991.

[MH79] J. McCarthy and P. Hayes. Some Philosophical Problems Form the Stand Point

of Artificial Intelligence, in B. Meltzer and D. Michie, editors, Machine intelligence,

Volume 4, pp. 463-502. Edinburgh University Press, Edinburgh, UK, 1979.

 223

[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time Constrained Automata, in

Concur’91: 2nd Intl Conf. on Concurrency Theory. LNCS 527, Springer-Verlag, 1991.

[MYBJK91] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos:

Representing Knowledge about Information Systems, ACM Trans. Info. Sys., 8 (4), 1991.

[MYCY99] J. Mylopoulos, L. Chung, and E. Yu. From Object-Oriented to Goal-Oriented

Requirements Analysis, Communications of the ACM, pp. 31-37, Jan. 1999.

[OPB2000] J. Odell, H.V.D. Parunak, and B. Bauer. Extending UML for Agents, in

Proceedings of the Agent-Oriented Information Systems, Workshop at the 17th National

conference on Artificial Intelligence, 2000.

[OME00] OME Online Document,

http://www.cs.toronto.edu/km/ome/documentation.html, University of Toronto, April

2001.

[Reiter91] R. Reiter. The frame problem in the situation calculus: a simple solution

(sometimes) and a completeness result for goal regression, in Vladimire Lifschitz, ecitro,

Artificial Intelligence and Mathematical Theory of Computations, Papers in Honor of

John McCarthy, pp. 359-380, Academic Press, San Diego, CA, 1991.

[REQ97] Requirements Targeting Software and Systems Engineering: International

Workshop RTSE '97, Bernried, Germany, October 12 -14, 1997.

[ROY70] W. Royce. Managing the Development of Large Software Systems, In IEEE

WESCON, pp. 1-9, August 1970. Reprinted in Ninth IEEE International Conference on

 224

Software Engineering, Washington D.C.: Computer Society Press of the Institute of

Electrical and Electronics Engineers, 1987, pp. 328-38.

[RUJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual, Addison-Wesley, 1999.

[SL01] S. Shapiro and Y. Lespérance. Modeling Multiagent Systems with the Cognitive

Agents Specification Language - A Feature Interaction Resolution Application, To

appear in Castelfranchi, C. and Lespérance, Y., editors, Intelligent Agents Volume VII -

Proceedings of the 2000 Workshop on Agent Theories, Architectures, and Languages

(ATAL-2000), LNAI, Springer-Verlag, Berlin, 2001.

[SLL97] S. Shapiro, Y. Lespérance, and H.J. Levesque. Specifying Communicative

Multi-Agent Systems with ConGolog, in Working Notes of the AAAI Fall 1997

Symposium on Communicative Action in Humans and Machines, pp. 75-82, Cambridge,

MA, AAAI Press, November 1997.

[SLL98] S. Shapiro, Y. Lespérance, and H.J. Levesque. Specifying Communicative

Multi-Agent Systems with ConGolog, in Agents and Multi-Agent Systems – Formalisms,

Methodologies, and Applications, W. Wobcke, M. Pagenucco, and C. Zhang, eds., 1-14,

LNAI, Springer-Verlag, Berlin, 1998.

[Spivey92] J. Spivey. The Z Notation: A Reference Manual, Prentice Hall, 1992.

[Tam98] K. Tam. Experiments in High-Level Robot Control Using ConGolog -

Reactivity, Failure Handling, and Knowledge-Based Search, M.Sc. Thesis, Dept. of

Computer Science, York University, 1998.

 225

[UML98] Unified Modeling Language Specification, Object-Management Group, 1998.

 [VanL91] A. van Lamsweerde. Learning Machine Learning, in: Introducing a Logic

Based Approach to Artificial Intelligence, A. Thayse (Ed.), Vol. 3, Wiley, 1991, 263-356.

[VanL98] A. van Lamsweerde. Divergent Views in Goal-Driven Requirements

Engineering, Proceedings of the ACM SIGSOFT Workshop on Viewpoints in Software

Development, San Francisco, pp. 252-256, Oct. 1996.

[VanL00] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research

Perspective, Proc. 22
nd

 International Conference on Software Engineering, Limerick,

ACM Press, June 2000.

[VLDD91] A. van Lamsweerde, A. Dardenne, and F. Dubisy. KAOS Knowledge

Representations as Initial Support for Formal Specification Processes, Report RR-91-8,

Unite d'Informatique, University of Louvain, 1991.

[VLDDD91] A. van Lamsweerde, A. Dardenne, B. Delcourt, and F. Dubisy. The KAOS

Project: Knowledge Acquisition in Automated Specification of Software, Proceedings

AAAI Spring Symposium Series, Track: “Design of Composite Systems”, Stanford

University, 59-62, March 1991.

[VLDM95] A. van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed

elaboration of requirements for a meeting scheduler: Problems and lessons learnt. In

Second IEEE International Symposium on Requirements Engineering, IEEE CS Press,

March 1995.

 226

[VLW98] A. van Lamsweerde and L. Willemet. Inferring Declarative Requirements

Specifications from Operational Scenarios, IEEE Transactions on Software Engineering,

Special Issue on Scenario Management, December 1998.

[WN95] K. Walden and J.-M. Nerson. Seamless Object-Oriented Software Architecture,

Prentice-Hall, 1995.

[Web84] Webster’s Ninth new collegiate dictionary, Springfield, Mass.: G. and C.

Merriam, 1984.

[Wooldridge92] M. Wooldridge. The Logical Modeling of Computational Multi-Agent

Systems, Ph.D. thesis, Department of Computation, UMIST, Manchester, UK. (Also

available as Technical Report MMU-- DOC--94--01, Department of Computing,

Manchester Metropolitan University, Chester St., Manchester, UK), 1992.

[Wooldridge97] M. Wooldridge. Agent-based software engineering, IEEE Proc. Software

Engineering, 144: pp. 25-37, 1997.

[Wooldridge98] M. Wooldridge. Agents and software engineering, In AI*IA Notizie

XI(3), pages 31-37, September 1998.

[WD00] M. Wooldridge and S. A. DeLoach. An Overview of the Multiagent Systems

Engineering Methodology, The First International Workshop on Agent-Oriented

Software Engineering (AOSE-2000), Limerick, Ireland, June 10, 2000.

[WJ95] M. Wooldridge, and N. Jennings. Intelligent Agents: Theory and Practice,

Knowledge Engineering Review, 10(2): 115-152, 1995

 227

[WJ96] M. Wooldridge and N.R. Jennings. Agent Theories, Architectures and

Languages: A Survey, in Wooldridge and Jennings (ed.), Intelligent Agent, Springer-

Verlag, 1-22. 1996.

[WJK99] M. Wooldridge, N. R. Jennings, and D. Kinny. A Methodology for Agent-

Oriented Analysis and Design, In Proc. 3rd Int. Conf. on Autonomous Agents (Agents

'99), pages 69--76. Seattle, WA, 1999.

[WJK00] M Wooldridge, N. Jennings, and D. Kinny. The Gaia Methodology for Agent-

Oriented Analysis and Design, Journal of Autonomous Agents and Multi-Agent Systems,

3 (3), 2000.

[Yu93] E. Yu. Modeling Organizations for Information Systems Requirements

Engineering, Proc. 1st IEEE International Symposium on Requirements Engineering, San

Diego, California, USA. pp. 34-41, January 1993.

[Yu95A] E. Yu. Models for Supporting the Redesign of Organizational Work,

Proceedings, Con. on Organizational Computing Systems (COOCS'95), Milpitas,

California, USA, pp. 225-136, August 13-16, 1995.

[Yu95B] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D.

Thesis, Department of Computer Science, University of Toronto, 1995.

[Yu97] E. Yu. Towards Modelling and Reasoning Support for Early-Phase Requirements

Engineering, Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering

(RE'97), Washington D.C., USA. pp. 226-235, Jan. 6-8, 1997.

 228

[YDDM95] E. Yu, Ph. Du Bois, E. Dubois, and J. Mylopoulos. From Organizational

Models to System Requirements -- A "Cooperating Agents" Approach, Proc. 3rd

International Conference on Cooperative Information Systems--CoopIS-95, Vienna,

Austria, pp. 194-204, May 9-12, 1995.

[YDDM97] E. Yu, Ph. Du Bois, E. Dubois, and J. Mylopoulos. From Organization

Models to System Requirements – A "Cooperating Agents" Approach, in Cooperative

Information System: Trends and Directions, M.P. Papazoglou and G. Schlageter, eds.,

293 –312, Academic Press, 1997.

[Yu2000] E. Yu and L. Liu, Modeling Trust in the i* Strategic Actors Framework,

Proceedings of the 3rd Workshop on Deception, Fraud and Trust in Agent Societies,

Barcelona, Catalonia, Spain (at Agents2000), June 3-4, 2000.

[YM93] E. Yu and J. Mylopoulos. An Actor Dependency Model of Organizational Work

--With Application to Business Process Reengineering, Proc. Conference on

Organizational Computing Systems, Milpitas, Calif., USA, Simon Kaplan, ed., ACM

Press, pp. 258-268, Nov. 1-4, 1993.

[YM94] E. Yu and J. Mylopoulos. Using Goals, Rules, and Methods To Support

Reasoning in Business Process Reengineering, Proceeding of the 27th Annual Hawaii

International Conference on Systems Sciences, Hawaii, Vol. 4, pp. 234-243, Jan. 1994.

[YM94A] E. Yu and J. Mylopoulos. Understanding "Why" in Software Process

Modeling, Analysis, and Design, Proceedings of 16th International Conference on

Software Engineering, Sorrento, Italy, pp. 159-168, May 16-24, 1994.

 229

[YM94B] E.Yu and J. Mylopoulos. Understanding "Why" in Requirements Engineering-

with an Example, Workshop on System Requirements: Analysis, Management and

Exploitation, Schloß Dagstuhl, Saarland, Germany, October 4-7, 1994.

[YM94C] E. Yu and J. Mylopoulos. Towards Modeling Strategic Actor Relationships for

Information Systems Development--With Examples from Business Processing

Reengineering, Proceedings of the 4th Workshop on Information Technologies and

systems, Vancouver, B.C., Canada, pp. 21-28, December 17-18, 1994.

[YM94D] E. Yu and J. Mylopoulos. From E-R to “A-R” –Modelling Strategic Actor

Relationships for Business Process Reengineering, in Entity-Relationship Approach

(ER’94) –Business Modelling and Re-Engineering, (Proc. 13
th

 Int. Conference on the

Entity-Relationship Approach, Manchester, U.K., December 1994) Springer-Verlag,

LNCS-889, pp. 548-565.

[YM97] E. Yu and J. Mylopoulos. Modeling Organizational Issues for Enterprise

Integration, Proceedings of International Conference on Enterprise Integration of

Modeling Technology, Turin, Italy, October 28-30, 1997.

[YML96] E. Yu, J. Mylopoulos, and Y. Lespérance. AI Models for Business Process

Reengineering, IEEE Expert: Intelligent Systems and Their Applications, August 1996,

pp. 16-23.

[ZDD98] J.-M. Zeippen, E. Dubois, Ph. Du Bois. Supporting the Analyst when

Reasoning on Requirements Specifications for Real-Time and Distributed Systems, in the

Proceedings of the First IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC '98), Kyoto (Japan), April 20-22, 1998, pp. 215-219.

 A ! 1

Appendix A:

Modeling the Meeting Scheduling Process.

A-1 The ConGolog Model for Participant

proc(participant_behavior(Participant,MS),

tryArrangeMeetingsAndmaintainSchedule(Participant,MS)

).

 proc(tryArrangeMeetingsAndMaintainSchedule(Participant,MS),

 tryArrangeMeetings(MS,Participant)

 #=

==>([reqID,date,xlist],

and(val(reqParticipant(reqID),Participant),

and(val(reqDate(reqID),date),

and(participantDateoccupied(Participant,date),

and(val(participantDateInfo(Participant),xlist),

not(occupyAcknowledged(Participant,date))

)))),

occupyDate(Participant,date)

)

).

 proc(tryArrangeMeetings(MS,Participant),

 findAgreeableDateUsingScheduler(MS,Participant)

).

 proc(findAgreeableDateUsingScheduler(MS,Participant),

 ==>([reqID,xlist],

 and(obtainReqRcvd(reqID),

 and(not(obtainReqProc(reqID)),

 and(val(reqParticipant(reqID),Participant),

 val(availableDates(Participant),xlist)

))),

 sendAvailDates(Parlticipant,MS,reqID,XliSt)

)

 #=

 tryAgreeToDate(Participant,MS)

).

 proc(tryAgreeToDate(Participant,MS),

 ==>([reqID,date,tlist],

 and(agreementReqRcvd(reqID),

 and(not(agreementReqProc(reqID)),

 A ! 2

 and(val(participantDateInfo(Participant),tlist),

 and(val(reqDate(reqID),date),

 val(reqParticipant(reqID),Participant)

)))),

 replyAgreement(Participant,MS,reqID,date,tlist)

)

 #=

 ==>((reqID,date,tlist],

 and(cancelReqRcvd(reqID),

 and(val(reqParticipant(reqID),Participant),

 and(not(cancelReqProc(reqID)),

 and(val(participantDateInfo(Participant),tlist),
val(reqDate(reqID),date)

)))),
cancelAgreementOnDate(Participant,MS,reqID,date)

)
).

proc(cancelAgreementOnDate(Participant,MS,ReqID,Date),
 [

 rmvDateFromSchedule(Participant,Date),
 acceptCancel(Participant,MS,ReqID,Date)

]
).

proc(replyAgreement(Participant,MS,ReqID,Date,Datelist),
 [if(dateIsFree(Date,Datelist),
 rejectAgreement(Participant,MS,ReqID,Date),
 acceptAgreementOnDate(Participant,MS,ReqID,Date)

)
]
).

proc(acceptAgreementOnDate(Participant,MS,ReqID,Date),
 [addDateToSchedule(Participant,Date),
 acceptAgreement(Participant,MS,ReqID,Date)

]
).

proc(occupyDate(Participant,Date),
 [

 addDateToSchedule(Participant,Date),
 acknowledgeoccupy(Participant,Date)

]
).

A-2 Successor State Axioms for Actions

holds(allMergedlistSet(SchedulerID),do(A,S)):-
 (A = setAllMergedlist(_,SchedulerID,_));
 holds(allMergedlistSet(SchedulerID),S).

holds(letedSchedulerSked(SchedulerID),do(A,S)):-
 (A = requestSchedulemeeting(_,_,_),

 holds(val(schedulerCtr,SchedulerID),S));
 holds(letedSchedulerSked(SchedulerID),S).

holds(requestedEnterDateRange(SchedulerID),do(A,S)):-
A = requestEnterDateRange(_,_,SchedulerID);

 A ! 3

holds(requestedEnterDateRange(SchedulerID),S).

holds(enteredDateRange(SchedulerID,Tlist),do(A,S)):-
A = enterDateRange(_,_,SchedulerID,Tlist);
holds(enteredDateRange(SchedulerID,Tlist),S).

holds(dateRangeEntered(SchedulerID),do(A,S)):-
 A = enterDateRange(_,_,SchedulerID,-);
 holds(dateRangeEntered(SchedulerID),S).

holds(waitingForAgreeAns(SchedulerID,Participant,Date),do(A,S)):-
 A = requestAgreement(_,Participant,SchedulerID,Date);
 (holds(waitingForAgreeAns(SchedulerID,Participant,Date),S),
 A\=acceptAgreement(Participant,_,_,Date),
 A\=rejectAgreement(Participant,_,_,Date)).

holds(waitingForCancelAns(SchedulerID,Participant,Date),do(A,S)):-

A = cancelAgreement(-,Participant,SchedulerID,Date);
(holds(waitingForCancelAns(SchedulerID,Participant,Date),S), A\=
acceptCancel(Participant,_,_,Date)).

holds(acceptedCancel(SchedulerID,Participant,Date),do(A,S)):-
 (A=acceptCancel(Participant,_,_,Date),
 holds(waitingForCancelAns(SchedulerID,Participant,Date),S));
 holds(acceptedCancel(SchedulerID,Participant,Date),S).

holds(submittedAgreement(SchedulerID,Participant,Date),do(A,S)):-

A = requestAgreement(_,Participant,SchedulerID,Date);
holds(submittedAgreement(SchedulerID,Participant,Date),S).

holds(agreementAccepted(SchedulerID,Participant,Date),do(A,S)):-
 (A = acceptAgreement(Participant,MS,_,Date),
 holds(waitingForAgreeAns(SchedulerID,Participant,Date),S));
 holds(agreementACcepted(SchedulerID,Participant,Date),S).

holds(agreementRejected(SchedulerID,Participant,Date),do(A,S)):-
 (A = rejectAgreement(Participant,_,_,Date),
 holds(waitingForAgreeAns(SchedulerID,Participant,Date),S));
 holds(agreementRejected(SchedulerID,Participant,Date),S).

holds(waitingSendAns(SchedulerID,Participant),do(A,S)):-
 A = obtainAvailDates(_,Participant,SchedulerID);
 (holds(waitingSendAns(SchedulerID,Participant),S),
 A \= sendAvailDates(Participant,_,_,_)).

holds(submittedCancel(SchedulerID,Participant,Date),do(A,S)):-

A = cancelAgreement(_,Participant,SchedulerID,Date);
holds(submittedCancel(SchedulerID,Participant,Date),S).

holds(submittedObtain(SchedulerID,Participant),do(A,S)):-

A = obtainAvailDates(_,Participant,SchedulerID);
holds(submittedobtain(SchedulerID,Participant),S).

holds(agreementReqRcvd(ReqID),do(A,S)):-
 (A = requestAgreement(_,_,_,_),
 holds(val(reqCtr,ReqID),S));
 holds(agreementReqRcvd(ReqID),S).

holds(agreementReqProc(ReqID),do(A,S)):-
 A = acceptAgreement(_,_,ReqID,_);
 A = rejectAgreement(_,_,ReqID,_);
 holds(agreementReqProc(ReqID),S).

holds(cancelReqRcvd(ReqID),do(A,S)):-
 (A = cancelAgreement(_,_,_,_),
 holds(val(reqCtr,ReqID),S));
 holds(cancelReqRcvd(ReqID),S).

 A ! 4

holds(cancelReqProc(ReqID),do(A,S)):-
 A = acceptCancel(_,_,ReqID,_);
 holds(cancelReqProc(ReqID),S).

holds(obtainReqRcvd(ReqID),do(A,S)):-

 (A = obtainAvailDates(_,_,_), holds(val(reqCtr,ReqID),S));
 holds(obtainReqRcvd(ReqID),S).

holds(obtainReqProc(ReqID),do(A,S)):-
 A = sendAvailDates(_,_,ReqID,_);
 holds(obtainReqProc(ReqID),S).

holds(succeSsNotified(SchedulerID,Participant,Date),do(A,S)):-

A = notifySuccess(_,_,SchedulerID,Participant,Date);
holds(successNotified(SchedulerID,Participant,Date),S).

holds(failNotified(SchedulerID,Peoplelist,Dlist),do(A,S)):-
 (A = notifyFail(-,-,SchedulerID,Peoplelist),
 holds(and(val(skedTlist(SchedulerID),Dlist),
 val(skedPeoplelist(SchedulerID),Peoplelist)),S));
 holds(failNotified(SchedulerID,Peoplelist,Dlist),S).

holds(agreementNotified(SchedulerID,Participant,Date),do(A,S)):-

A = notifyAgreement(_,Participant,SchedulerID,Date);
holds(agreementNotified(SchedulerID,Participant,Date),S).

holds(participantDateOccupied(Participant,Date),do(A,S)):-

A = occupyDateFromParticipant(Participant,Date);
holds(participantDateOccupied(Participant,Date),S).

holds(occupyAcknowledged(Participant,Date),do(A,S)):-

 A= acknowledgeoccupy(Participant,Date);
 holds(occupyAcknowledged(Participant,Date),S).

holds(oneSubmittedCancel(SchedulerID,Peoplelist,Date),S):-

 member(P,Peoplelist),holds(submittedCancel(SchedulerID,P,Date),S).

/* function fluent*/

holds(val(skedPeoplelist(ID),Peoplelist),do(A,S)):-

 (A = requestScheduleMeeting(_,_,Peoplelist),

 holds(val(schedulerCtr,ID),S));

holds(val(skedPeoplelist(ID),Peoplelist),S).

holds(val(skedTlist(ID),Tlist),do(A,S)):-

 A = enterDateRange(_,_,ID,Tlist);

 holds(val(skedTlist(ID),Tlist),S).

holds(val(reqParticipant(ID),Participant),do(A,S)):-

 (A = requestAgreement(_,Participant,_,_), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(-,Participant,-,-), holds(val(reqCtr,ID),S));

 (A = obtainAvailDates(_,Participant,_), holds(val(reqCtr,ID),S));

 (A = occupyDateFromParticipant(Participant,-),holds(val(reqCtr,ID),S));

 holds(val(reqParticipant(ID),Participant),S).

 holds(val(reqDate(ID),Date),do(A,S)):-

 (A = requestAgreement(_,_,_,Date), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(_,_,_,Date), holds(val(reqCtr,ID),S));

 (A = occupyDateFromParticipant(_,Date),holds(val(reqCtr,ID),S));

 holds(val(reqDate(ID),Date),S).

 A ! 5

 holds(val(reqSchedulerID(ID),SchedulerID),do(A,S)):-

 (A = requestAgreement(-,-,SchedulerID,_), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(-,-,SchedulerID,-), holds(val(reqCtr,ID),S));

 (A = obtainAvailDates(_,_,SchedulerID),holds(val(reqCtr,ID),S));

 holds(val(reqSchedulerID(ID),SchedulerID),S).

 holds(val(participantDateInfo(Participant),TliSt),do(A,S)):-

 (A = addDateToSchedule(Participant,Date),

holds(val(participantDateInfo(Participant),Mlist),S),

merg(Date,MliSt,Tlist));

 (A = rmvDateFromSchedule(Participant,Date),

holds(val(participantDateInfo(Participant),Mlist),S),

delete(Date,Mlist,Tlist));

 (holds(val(participantDateInfo(Participant),Tlist),S),

A\= rmvDateFromSchedule(Participant,-),

A\= addDateToSchedule(Participant,_)).

 holds(val(allmergedlist(SchedulerID),Dlist),do(A,S)):-

(A = setAllMergedlist(_,SchedulerID,Dlist));

(holds(val(allmergedlist(SchedulerID),Dlist),S),

 A\= setAllMergedlist(_,SchedulerID,_)).

 holds(val(schedulerCtr,N),do(A,S)):-

(A = requestScheduleMeeting(_,_,_), holds(val(schedulerCtr,M),S), N is M 1);

(holds(val(schedulerCtr,N),S), A \= requestScheduleMeeting(_,_,_)).

holds(val(reqCtr,N),do(A,S)):-

(A = requestAgreement(_,_,_,_), holds(val(reqCtr,M),S), N is M + 1);

(A = cancelAgreement(_,_,_,_), holds(val(reqCtr,M),S), N is M + 1);

(A = obtainAvailDates(_,_,_), holds(val(reqCtr,M),S), N is M + 1);

(A = occupyDateFromParticipant(_,_),holds(val(reqCtr,M),S),N is M + 1);

(holds(val(reqCtr,N)IS),

 A\= requestAgreement(_,_,_,_), A \= cancelAgreement(_,_,_,_),

 A\= obtainAvailDates(_,_,_), A \= OCCUPyDateFromParticipant(_,_)

holds(val(availableDates(Participant),Tlist),S):-

 holds(val(feblist,mlist),S),

 holds(val(participantDateInfo(Participant),NliSt),S),

 deletelist(Nlist,Mlist,Tlist).

holds(sentAvailDates(SchedulerID,Participant,Tlist),do(A,S)):-

 (A=sendAvailDates(Participant,-,_,Tlist),

 holds(waitingSendAns(SchedulerID,Participant),S));

 holds(sentAvailDates(SchedulerID,Participant,TliSt),S).

/* Defined Fluents */

holds(agreementAnswered(SchedulerID,Participant,Date),S):-

 holds(agreementAccepted(SchedulerID,Participant,Date),S);

 holds(agreementRejected(SchedulerID,Participant,Date),S).

 A ! 6

 holds(oneNotRequestAnswered(SchedulerID,Peoplelist,Date),S):-

 member(P,Peoplelist),

\+holds(agreernentAnswered(SchedulerID,P,Date),S).

 holds(oneDateRequestAnswered(SchedulerID,Peoplelist,Date),S):-

holds((member(P,Peoplelist)-->agreementAnswered(SchedulerID,P,Date)),S).

 holds(oneObtainSubmitted(SchedulerID,Peoplelist),S):-

 member(Participant,Peoplelist),

holds(submittedobtain(SchedulerID,Participant),S).

 holds(oneRejected(SchedulerID,Peoplelist,Date),S):-

 member(Participant,Peoplelist),

 holds(agreementRejected(SchedulerID,Participant,Date),S).

holds(allRejected(SchedulerID,Peoplelist,Dlist),S):-

holds(member(Date,Dlist)-->oneRejected(SchedulerID,Peoplelist,Date),S).

 holds(oneNotifySuccess(SchedulerID,Peoplelist,Dlist),S):-

 member(Date,Dlist),

holds(successNotified(SchedulerID,Peoplelist,Date),S).

holds(oneAnsReq(SchedulerID,Peoplelist,Dlist),S):-

 member(Participant,Peoplelist),

 member(Date,Dlist),

 holds(submittedAgreement(SchedulerID,Participant,Date),S).

 holds(someNotSendAvailDates(SchedulerID,Peoplelist),S):-

 member(Participant,Peoplelist),

 \+holds(sentAvailDates(SchedulerID,Participant,_),S).

holds(allAccepted(schedulerID,Peoplelist,Date),S):-

holds(member(P,Peoplelist)-->agreementAccepted(SchedulerID,P,Date),S).

 holds(waitForAllParticipantSendAvailDates(SchedulerID,Peoplelist),S):-

 holds(not(someNotSendAvailDates(SchedulerID,Peoplelist)),S).

 holds(someDateNotTryAndNoAgreement(SchedulerID,Peoplelist,Xlist),S):-

 holds(some(date,and(member(date,Xlist),

 not(oneDateRequestAnswered(SchedulerID,Peoplelist,date)))),S),

 holds(not(some(date,and(member(date,xlist),

allAccepted(SchedulerID,Peoplelist,date)))),S).

 holds(meetingFail(SchedulerID,Peoplelist,Date),S):-

 member(Participant,Peoplelist),

\+holds(agreementACcepted(SchedulerID,Participant,Date),S).

holds(meetingBeScheduledIfPossible(SchedulerID),do(A,S)):-

A = notifyFail(_,_,SchedulerID,-);A = notifySuccess(_,_,SchedulerID,_,_);

holds(meetingBeScheduledIfPossible(SchedulerID),S).

 A ! 7

holds(waitForSchedulingResultFromScheduler(Init,MS,Peoplelist,Datelist),S):-

holds(some(date,and(member(date,Datelist),succeSsNotified(_,Peoplelist,date))),S);

 holds(failNotified(_,Peoplelist,Datelist),S).

 holds(waitForSchedulerRequeStDateRange(Init,MS,Peoplelist,Datelist),S):-

 holds(some(CschedulerIDI,and(val(skedPeoplelist(schedulerID),Peoplelist),

 and(requestedEnterDateRange(schedulerID),

 not(dateRangeEntered(schedulerID))

))),S).

 holds(meetingBeenScheduledIfPossible(Peoplelist,Datelist),S):-

 holds(some(date,and(member(date,Datelist),successNotified(-

 ,Peoplelist,date))),S);

 holds(failNotified(_,Peoplelist,Datelist),S).

 holds(agreeableDateForMeeting(SchedulerID,Participant),S):-

 holds(some(date,agreementNotified(SchedulerID,Participant,date)),

 holds(some(datelist,failNotified(SchedulerID,_,datelist)),S).

holds(waitForAllAnswerRequest(SchedulerID,Peoplelist,Date),S):-

 holds(oneDateRequestAnswered(SchedulerID,Peoplelist,Date),S).

holds(findAvailDateSlot(SchedulerID),S):-

 holds(allmergedlistSet(SchedulerID),S).

holds(dateIsFree(Date,Datelist),S):-

 holds(member(Date,Datelist),S).

holds(val(interSection(Tllist,T21ist),T31ist),do(A,S)):-

 (A=setIntersection(Tllist,T21ist),intersectionlist(Tllist,T21ist,T31ist));

 holds(val(interSection(Tllist,T21ist),T31ist),S).

holds(added(Participant,Date),do(A,S)):-

 A=addDateToParticipant(Participant,Date);

 holds(added(Participant,Date),S).

holds(interSectionlist(TlLIST,T2LIST,T3LIST),S):-

 intersectionlist(TlLIST,T2LIST,T3LIST),holds(true=true,S).

A-3 Actions and Fluents

(1) Primitive Actions

requestScheduleMeeting(Init,MS,People)

requestEnterDateRange(MS,Init,SchedulerID)

enterDateRange(Init,MS,SchedulerID,Tlist)

obtainAvailDates(MS,Participant,SchedulerID)

sendAvailDates(Participant,MS,ReqID,Tlist)

 A ! 8

requestAgreement(MS,Participant,SchedulerID,Date)

acceptAgreement(Participant,MS,ReqID,Date)

rejectAgreement(Participant,MS,ReqID,Date)

cancelAgreement(MS,Participant,SchedulerID,Date)

acceptCancel(Participant,MS,ReqID,Date)

notifyAgreement(MS,Participant,SchedulerID,Date)

notifySuccess(MS,Init,SchedulerID,Peoplelist,Date)

notifyFail(MS,Participant,SchedulerID,Peoplelist)

setAllMergedlist(MS,schedulerID,Dlist)

addDateToSchedule(Participant,Date)

rmvDateFromSchedule(Participant,Date)

(2) Exogenous Actions
occupyDateFromParticipant(Participant,Date)

(3) Predicate Fluents

letedSchedulerSked(SchedulerID)

requestedEnterDateRange(SchedulerID,Datelist)

enteredDateRange(SchedulerID,Datelist)

submittedObtain(SchedulerID,Participant,Date)

sentAvailDates(SchedulerID,Participant,AvailDates)

submittedAgreement(SchedulerID,Participant,Date)

agreementAccepted(SchedulerID,Participant,Date)

agreementRejected(SchedulerID,Participant,Date)

waitingForAgreeAns(SchedulerID,Participant,Date)

submittedCancel(SchedulerID,Participant,Date)

cancelAccepted(SchedulerID,Participant,Date)

agreementReqRcvd(ReqID,Participant,Date)

cancelReqRcvd(ReqID,Participant,Date)

obtainReqRcvd(ReqID,Participant,Date)

agreementReqProc(ReqID,Participant,Date)

cancelReqProc(ReqID,Participant,Date)

obtainReqProc(ReqID,Participant,Date)

AgreementNotified(SchedulerID,Participant,Date)

successNotified(SchedulerID,Peoplelist,Date)

failNotified(SchedulerID,Peoplelist,Dlist)

ParticipantDateOccupied(Participant,Date)

(4) Functional Fluents

allmergedlist(SchedulerID)

participantDateInfo(Participant)

skedTlist(SchedulerID)

skedPeoplelist(SchedulerID)

reqParticipant(ReqID)

reqDate(ReqID)

 A ! 9

reqDlist(ReqID)

reqSchedulerID(ReqID)

schedulerCtr

reqCtr

A-4 Obtaining Simulation Traces under Unix

tiger 41 % ConGolog meetingscheduling.pl

% compiling file /cs/home/fac1/lesperan/cogrobo/ConGolog98/congolog.pl

Disabled further Prolog informational messages.

WARNING: The GDL compiler has not yet been hooked up to this version

 of the system.

ConGolog Interpreter and GDL compiler

Loaded model from file /cs/home/grad2/xiyun/thesis/meetingscheduling.pl

Use the 'viewer.' goal to launch the viewer.

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.5.1)

Copyright (C) 1994, Quintus Corporation. All rights reserved.

301 East Evelyn Ave, Mountain View, California U.S.A. (415) 254-2800

Licensed to York Univerity, Canada

| ?- run.

$$$ >>>> startInterrupts in do([],s0)

$$$ >>>> requestScheduleMeeting(ini1,ms1,[paige,yves]) in do([startInterrupts],s0)

$$$ >>>> requestEnterDateRange(ms1,ini1,1) in do([

requestScheduleMeeting(ini1,ms1,[paige,yves]) startInterrupts],s0)

$$$ >>>> enterDateRange(ini1,ms1,1,[12,14]) in do([requestEnterDateRange(ms1,ini1,1)

requestScheduleMeeting(ini1,ms1,[paige,yves]) startInterrupts],s0)

$$$ >>>> obtainAvailDates(ms1,paige,1) in do([enterDateRange(ini1,ms1,1,[12,14])

requestEnterDateRange(ms1,ini1,1) requestScheduleMeeting(ini1,ms1,[paige,yves]) ...],s0)

$$$ >>>> obtainAvailDates(ms1,yves,1) in do([obtainAvailDates(ms1,paige,1)

enterDateRange(ini1,ms1,1,[12,14]) requestEnterDateRange(ms1,ini1,1) ...],s0)

$$$ >>>>

sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]) in do([obtainAvailDates(ms1,yves,1) obtainAvailDates(ms1,paige,1)

enterDateRange(ini1,ms1,1,[12,14]) ...],s0)

$$$ >>>>

sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29]) in do([

 A ! 10

sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]) obtainAvailDates(ms1,yves,1) obtainAvailDates(ms1,paige,1) ...],s0)

$$$ Exog occupyDateFromParticipant(paige,15) in do([

sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29])

sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]) obtainAvailDates(ms1,yves,1) ...],s0)

$$$ >>>> addDateToSchedule(paige,15) in do([occupyDateFromParticipant(paige,15)

sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29])

sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]) ...],s0)

$$$ >>>> acknowledgeOccupy(paige,15) in do([addDateToSchedule(paige,15)

occupyDateFromParticipant(paige,15)

sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29]) ...],s0)

$$$ >>>> setAllMergedlist(ms1,1,[]) in do([acknowledgeOccupy(paige,15)

addDateToSchedule(paige,15) occupyDateFromParticipant(paige,15) ...],s0)

$$$ >>>> notifyFail(ms1,ini1,1,[paige,yves]) in do([setAllMergedlist(ms1,1,[])

acknowledgeOccupy(paige,15) addDateToSchedule(paige,15) ...],s0)

$$$ >>>> notifyFail(ms1,paige,1,[paige,yves]) in do([notifyFail(ms1,ini1,1,[paige,yves])

setAllMergedlist(ms1,1,[]) acknowledgeOccupy(paige,15) ...],s0)

$$$ >>>> notifyFail(ms1,yves,1,[paige,yves]) in do([notifyFail(ms1,paige,1,[paige,yves])

notifyFail(ms1,ini1,1,[paige,yves]) setAllMergedlist(ms1,1,[]) ...],s0)

$$$ >>>> stopInterrupts in do([notifyFail(ms1,yves,1,[paige,yves])

notifyFail(ms1,paige,1,[paige,yves]) notifyFail(ms1,ini1,1,[paige,yves]) ...],s0)

Final situation:

do(stopInterrupts,do(notifyFail(ms1,yves,1,[paige,yves]),do(notifyFail(ms1,paige,1,[paige

,yves]),do(notifyFail(ms1,ini1,1,[paige,yves]),do(setAllMergedlist(ms1,1,[]),do(acknowled

geOccupy(paige,15),do(addDateToSchedule(paige,15),do(occupyDateFromParticipant(paige,15),

do(sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25

,26,27,28,29]),do(sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,2

1,22,23,24,25,26,27,28,29]),do(obtainAvailDates(ms1,yves,1),do(obtainAvailDates(ms1,paige

,1),do(enterDateRange(ini1,ms1,1,[12,14]),do(requestEnterDateRange(ms1,ini1,1),do(request

ScheduleMeeting(ini1,ms1,[paige,yves]),do(startInterrupts,s0))))))))))))))))

yes

| ?-

 A ! 11

A-5 The Simulation Trace for Example 3 in Section 5. 5

Two meetings are to be scheduled: Meeting No.1: one of the dates of Feb. 12, 14, 15, 16,

and 17 for paige and yves. Meeting No. 2: one of the dates of Feb. 12, 14, and 15 for

paige and yves.

The sequence of actions performed are as follows:

requestScheduleMeeting(ini1,ms1,[paige,yves])

requestEnterDateRange(ms1,ini1,1)

enterDateRange(ini1,ms1,1,[12,14,15,16,17])

obtainAvailDates(ms1,paige,1),

obtainAvailDates(ms1,yves,1),

sendAvailDates(paige,ms1,1,[1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]),

sendAvailDates(yves,ms1,2,[1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26

,27,28,29]),

occupyDateFromParticipant(paige,15),

addDateToSchedule(paige,15),

acknowledgeOccupy(paige,15),

setAllMergedlist(ms1,1,[15,16,17]),

requestAgreement(ms1,paige,1,15),

requestAgreement(ms1,yves,1,15),

rejectAgreement(paige,ms1,4,15),do(

addDateToSchedule(yves,15),

acceptAgreement(yves,ms1,5,15),

cancelAgreement(ms1,yves,1,15),

requestAgreement(ms1,paige,1,16),

requestAgreement(ms1,yves,1,16),

addDateToSchedule(yves,16),

acceptAgreement(yves,ms1,8,16),do),do(

 A ! 12

rmvDateFromSchedule(yves,15),

acceptCancel(yves,ms1,6,15)

addDateToSchedule(paige,16),

acceptAgreement(paige,ms1,7,16),

notifySuccess(ms1,ini1,1,[paige,yves],16),

notifyAgreement(ms1,paige,1,16),

notifyAgreement(ms1,yves,1,16),

requestScheduleMeeting(ini1,ms1,[paige,yves]),

requestEnterDateRange(ms1,ini1,2),

enterDateRange(ini1,ms1,2,[12,14,15]),

obtainAvailDates(ms1,paige,2),

obtainAvailDates(ms1,yves,2),

sendAvailDates(paige,ms1,9,[1,2,3,4,5,6,7,8,9,10,13,17,18,19,20,21,22,23,24,25,26,27,28,2

9]),

sendAvailDates(yves,ms1,10,[1,2,3,4,5,6,7,8,9,11,13,14,15,17,18,19,20,21,22,23,24,25,26,2

7,28,29]),

setAllMergedlist(ms1,2,[]),

notifyFail(ms1,ini1,2,[paige,yves]),

notifyFail(ms1,paige,2,[paige,yves]),

notifyFail(ms1,yves,2,[paige,yves]),

 A ! 13

A-6 The Whole ConGolog Model for the Meeting

Scheduling Process

/* Declarations for Primitive and Exogenous Actions */

primAct(occupyDateFromParticipant(_,_)). /*Exogenous action*/

primAct(requestEnterDateRange(_,_,_)).

primAct(enterDateRange(_,_,_,_)).

primAct(requestScheduleMeeting(_,_,_)).

primAct(obtainAvailDates(_,_,_)).

primAct(sendAvailDates(_,_,_,_)).

primAct(setAllMergedlist(_,_,_)).

primAct(requestAgreement(_,_,_,_)).

primAct(acceptAgreement(_,_,_,_)).

primAct(rejectAgreement(_,_,_,_)).

primAct(cancelAgreement(_,_,_,_)).

primAct(acceptCancel(_,_,_,_)).

primAct(notifyAgreement(_,_,_,_)).

primAct(notifySuccess(_,_,_,_,_)).

primAct(notifyFail(_,_,_,_)).

primAct(acknowledgeOccupy(_,_)).

primAct(addDateToSchedule(_,_)).

primAct(rmvDateFromSchedule(_,_)).

/* Precondition Axioms for Primitive and Exogenous Actions */

poss(addDateToSchedule(_,_),_).

poss(rmvDateFromSchedule(_,_),_).

poss(acknowledgeOccupy(_,_),_).

poss(occupyDateFromParticipant(Participant,Date),S):-

 holds(not(participantDateOccupied(Participant,Date)),S),

 holds(not(submittedAgreement(_,Participant,Date)),S).

poss(requestScheduleMeeting(_,_,_),_).

poss(requestEnterDateRange(_,_,_),_).

poss(enterDateRange(_,_,_,_),_).

poss(obtainAvailDates(_,_,_),_).

poss(sendAvailDates(_,_,_,_),_).

poss(setAllMergedlist(_,_,_),_).

poss(requestAgreement(_,_,_,_),_).

poss(acceptAgreement(_,_,ReqID,_),S):- holds(agreementReqRcvd(ReqID),S).

poss(rejectAgreement(_,_,ReqID,_),S):- holds(agreementReqRcvd(ReqID),S).

poss(cancelAgreement(_,_,_,_),_).

 A ! 14

poss(acceptCancel(_,_,_,_),_).

poss(notifyAgreement(_,_,_,_),_).

poss(notifySuccess(_,_,_,_,_),_).

poss(notifyFail(_,_,_,_),_).

/* Successor State Axioms for actions*/

holds(allMergedlistSet(SchedulerID),do(A,S)):-

 (A = setAllMergedlist(_,SchedulerID,_));

 holds(allMergedlistSet(SchedulerID),S).

holds(letedSchedulerSked(SchedulerID),do(A,S)):-

 (A = requestScheduleMeeting(_,_,_),

 holds(val(schedulerCtr,SchedulerID),S));

 holds(letedSchedulerSked(SchedulerID),S).

holds(requestedEnterDateRange(SchedulerID),do(A,S)):-

 A = requestEnterDateRange(_,_,SchedulerID);

 holds(requestedEnterDateRange(SchedulerID),S).

holds(enteredDateRange(SchedulerID,Tlist),do(A,S)):-

 A = enterDateRange(_,_,SchedulerID,Tlist);

 holds(enteredDateRange(SchedulerID,Tlist),S).

holds(dateRangeEntered(SchedulerID),do(A,S)):-

 A = enterDateRange(_,_,SchedulerID,_);

 holds(dateRangeEntered(SchedulerID),S).

 holds(waitingForAgreeAns(SchedulerID,Participant,Date),do(A,S)):-

 A = requestAgreement(_,Participant,SchedulerID,Date);

 (holds(waitingForAgreeAns(SchedulerID,Participant,Date),S),

 A\=acceptAgreement(Participant,_,_,Date),

 A\=rejectAgreement(Participant,_,_,Date)).

holds(waitingForCancelAns(SchedulerID,Participant,Date),do(A,S)):-

 A = cancelAgreement(_,Participant,SchedulerID,Date);

 (holds(waitingForCancelAns(SchedulerID,Participant,Date),S),

 A\= acceptCancel(Participant,_,_,Date)).

holds(acceptedCancel(SchedulerID,Participant,Date),do(A,S)):-

 (A=acceptCancel(Participant,_,_,Date),

 holds(waitingForCancelAns(SchedulerID,Participant,Date),S));

 holds(acceptedCancel(SchedulerID,Participant,Date),S).

 A ! 15

holds(submittedAgreement(SchedulerID,Participant,Date),do(A,S)):-

 A = requestAgreement(_,Participant,SchedulerID,Date);

 holds(submittedAgreement(SchedulerID,Participant,Date),S).

holds(agreementAccepted(SchedulerID,Participant,Date),do(A,S)):-

 (A = acceptAgreement(Participant,MS,_,Date),

 holds(waitingForAgreeAns(SchedulerID,Participant,Date),S));

 holds(agreementAccepted(SchedulerID,Participant,Date),S).

holds(agreementRejected(SchedulerID,Participant,Date),do(A,S)):-

 (A = rejectAgreement(Participant,_,_,Date),

 holds(waitingForAgreeAns(SchedulerID,Participant,Date),S));

 holds(agreementRejected(SchedulerID,Participant,Date),S).

holds(waitingSendAns(SchedulerID,Participant),do(A,S)):-

 A = obtainAvailDates(_,Participant,SchedulerID);

 (holds(waitingSendAns(SchedulerID,Participant),S),

 A \= sendAvailDates(Participant,_,_,_)).

holds(submittedCancel(SchedulerID,Participant,Date),do(A,S)):-

 A = cancelAgreement(_,Participant,SchedulerID,Date);

 holds(submittedCancel(SchedulerID,Participant,Date),S).

holds(oneSubmittedCancel(SchedulerID,Peoplelist,Date),S):-

 member(P,Peoplelist),holds(submittedCancel(SchedulerID,P,Date),S).

holds(submittedObtain(SchedulerID,Participant),do(A,S)):-

 A = obtainAvailDates(_,Participant,SchedulerID);

 holds(submittedObtain(SchedulerID,Participant),S).

holds(agreementReqRcvd(ReqID),do(A,S)):-

 (A = requestAgreement(_,_,_,_), holds(val(reqCtr,ReqID),S));

 holds(agreementReqRcvd(ReqID),S).

holds(agreementReqProc(ReqID),do(A,S)):-

 A = acceptAgreement(_,_,ReqID,_);

 A = rejectAgreement(_,_,ReqID,_);

 holds(agreementReqProc(ReqID),S).

holds(cancelReqRcvd(ReqID),do(A,S)):-

 (A = cancelAgreement(_,_,_,_), holds(val(reqCtr,ReqID),S));

 holds(cancelReqRcvd(ReqID),S).

 A ! 16

holds(cancelReqProc(ReqID),do(A,S)):-

 A = acceptCancel(_,_,ReqID,_);

 holds(cancelReqProc(ReqID),S).

holds(obtainReqRcvd(ReqID),do(A,S)):-

 (A = obtainAvailDates(_,_,_), holds(val(reqCtr,ReqID),S));

 holds(obtainReqRcvd(ReqID),S).

holds(obtainReqProc(ReqID),do(A,S)):-

 A = sendAvailDates(_,_,ReqID,_);

 holds(obtainReqProc(ReqID),S).

holds(successNotified(SchedulerID,Participant,Date),do(A,S)):-

 A = notifySuccess(_,_,SchedulerID,Participant,Date);

 holds(successNotified(SchedulerID,Participant,Date),S).

holds(failNotified(SchedulerID,Peoplelist,Dlist),do(A,S)):-

 (A = notifyFail(_,_,SchedulerID,Peoplelist),

 holds(and(val(skedTlist(SchedulerID),Dlist),

 val(skedPeoplelist(SchedulerID),Peoplelist)),S));

 holds(failNotified(SchedulerID,Peoplelist,Dlist),S).

holds(agreementNotified(SchedulerID,Participant,Date),do(A,S)):-

 A = notifyAgreement(_,Participant,SchedulerID,Date);

 holds(agreementNotified(SchedulerID,Participant,Date),S).

holds(participantDateOccupied(Participant,Date),do(A,S)):-

 A = occupyDateFromParticipant(Participant,Date);

 holds(participantDateOccupied(Participant,Date),S).

holds(occupyAcknowledged(Participant,Date),do(A,S)):-

 A= acknowledgeOccupy(Participant,Date);

 holds(occupyAcknowledged(Participant,Date),S).

holds(val(skedPeoplelist(ID),Peoplelist),do(A,S)):-

 (A = requestScheduleMeeting(_,_,Peoplelist),

 holds(val(schedulerCtr,ID),S));

 holds(val(skedPeoplelist(ID),Peoplelist),S).

holds(val(skedTlist(ID),Tlist),do(A,S)):-

 A = enterDateRange(_,_,ID,Tlist);

 holds(val(skedTlist(ID),Tlist),S).

 A ! 17

holds(val(reqParticipant(ID),Participant),do(A,S)):-

 (A = requestAgreement(_,Participant,_,_), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(_,Participant,_,_), holds(val(reqCtr,ID),S));

 (A = obtainAvailDates(_,Participant,_), holds(val(reqCtr,ID),S));

 (A = occupyDateFromParticipant(Participant,_),holds(val(reqCtr,ID),S));

 holds(val(reqParticipant(ID),Participant),S).

holds(val(reqDate(ID),Date),do(A,S)):-

 (A = requestAgreement(_,_,_,Date), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(_,_,_,Date), holds(val(reqCtr,ID),S));

 (A = occupyDateFromParticipant(_,Date),holds(val(reqCtr,ID),S));

 holds(val(reqDate(ID),Date),S).

holds(val(reqSchedulerID(ID),SchedulerID),do(A,S)):-

 (A = requestAgreement(_,_,SchedulerID,_), holds(val(reqCtr,ID),S));

 (A = cancelAgreement(_,_,SchedulerID,_), holds(val(reqCtr,ID),S));

 (A = obtainAvailDates(_,_,SchedulerID),holds(val(reqCtr,ID),S));

 holds(val(reqSchedulerID(ID),SchedulerID),S).

holds(val(participantDateInfo(Participant),Tlist),do(A,S)):-

 (A = addDateToSchedule(Participant,Date),

 holds(val(participantDateInfo(Participant),Mlist),S),

 merg(Date,Mlist,Tlist));

 (A = rmvDateFromSchedule(Participant,Date),

 holds(val(participantDateInfo(Participant),Mlist),S),

 delete(Date,Mlist,Tlist));

 (holds(val(participantDateInfo(Participant),Tlist),S),

 A\= rmvDateFromSchedule(Participant,_),

 A\= addDateToSchedule(Participant,_)).

holds(val(allmergedlist(SchedulerID),Dlist),do(A,S)):-

 (A = setAllMergedlist(_,SchedulerID,Dlist));

 (holds(val(allmergedlist(SchedulerID),Dlist),S),

 A\= setAllMergedlist(_,SchedulerID,_)).

holds(val(schedulerCtr,N),do(A,S)):-

 (A = requestScheduleMeeting(_,_,_),

 holds(val(schedulerCtr,M),S), N is M + 1);

 (holds(val(schedulerCtr,N),S), A \= requestScheduleMeeting(_,_,_)).

holds(val(reqCtr,N),do(A,S)):-

 (A = requestAgreement(_,_,_,_), holds(val(reqCtr,M),S), N is M + 1);

 (A = cancelAgreement(_,_,_,_), holds(val(reqCtr,M),S), N is M + 1);

 A ! 18

 (A = obtainAvailDates(_,_,_), holds(val(reqCtr,M),S), N is M + 1);

 (A = occupyDateFromParticipant(_,_),holds(val(reqCtr,M),S),N is M + 1);

 (holds(val(reqCtr,N),S),

 A\= requestAgreement(_,_,_,_), A \= cancelAgreement(_,_,_,_),

 A\= obtainAvailDates(_,_,_), A \= occupyDateFromParticipant(_,_)).

holds(val(availableDates(Participant),Tlist),S):-

 holds(val(feblist,Mlist),S),

 holds(val(participantDateInfo(Participant),Nlist),S),

 deletelist(Nlist,Mlist,Tlist).

holds(val(feblist,Tlist),do(_,S)):-holds(val(feblist,Tlist),S).

holds(sentAvailDates(SchedulerID,Participant,Tlist),do(A,S)):-

 (A=sendAvailDates(Participant,_,_,Tlist),

 holds(waitingSendAns(SchedulerID,Participant),S));

 holds(sentAvailDates(SchedulerID,Participant,Tlist),S).

holds(agreementAnswered(SchedulerID,Participant,Date),S):-

 holds(agreementAccepted(SchedulerID,Participant,Date),S);

 holds(agreementRejected(SchedulerID,Participant,Date),S).

holds(oneNotRequestAnswered(SchedulerID,Peoplelist,Date),S):-

 member(P,Peoplelist),

 \+holds(agreementAnswered(SchedulerID,P,Date),S).

holds(oneDateRequestAnswered(SchedulerID,Peoplelist,Date),S):-

 holds((member(P,Peoplelist)-->agreementAnswered(SchedulerID,P,Date)),S).

holds(oneObtainSubmitted(SchedulerID,Peoplelist),S):-

 member(Participant,Peoplelist),

 holds(submittedObtain(SchedulerID,Participant),S).

holds(oneRejected(SchedulerID,Peoplelist,Date),S):-

 member(Participant,Peoplelist),

 holds(agreementRejected(SchedulerID,Participant,Date),S).

holds(allRejected(SchedulerID,Peoplelist,Dlist),S):-

 holds(member(Date,Dlist)-->oneRejected(SchedulerID,Peoplelist,Date),S).

holds(oneNotifySuccess(SchedulerID,Peoplelist,Dlist),S):-

 member(Date,Dlist),

 holds(successNotified(SchedulerID,Peoplelist,Date),S).

 A ! 19

holds(oneAnsReq(SchedulerID,Peoplelist,Dlist),S):-

 member(Participant,Peoplelist),

 member(Date,Dlist),

 holds(submittedAgreement(SchedulerID,Participant,Date),S).

holds(someNotSendAvailDates(SchedulerID,Peoplelist),S):-

 member(Participant,Peoplelist),

 \+holds(sentAvailDates(SchedulerID,Participant,_),S).

holds(allAccepted(SchedulerID,Peoplelist,Date),S):-

 holds(member(P,Peoplelist)-->agreementAccepted(SchedulerID,P,Date),S).

holds(waitForAllParticipantSendAvailDates(SchedulerID,Peoplelist),S):-

 holds(not(someNotSendAvailDates(SchedulerID,Peoplelist)),S).

holds(someDateNotTryAndNoAgreement(SchedulerID,Peoplelist,Xlist),S):-

 holds(some(date,and(member(date,Xlist),

 not(oneDateRequestAnswered(SchedulerID,Peoplelist,date)))),S),

 holds(not(some(date,and(member(date,Xlist),

 allAccepted(SchedulerID,Peoplelist,date)))),S).

holds(meetingFail(SchedulerID,Peoplelist,Date),S):-

 member(Participant,Peoplelist),

 \+holds(agreementAccepted(SchedulerID,Participant,Date),S).

holds(meetingBeScheduledIfPossible(SchedulerID),do(A,S)):-

 A = notifyFail(_,_,SchedulerID,_);

 A = notifySuccess(_,_,SchedulerID,_,_);

 holds(meetingBeScheduledIfPossible(SchedulerID),S).

holds(waitForSchedulingResultFromScheduler(Init,MS,Peoplelist,Datelist),S):-

 holds(some(date,and(member(date,Datelist),

 successNotified(_,Peoplelist,date))),S);

 holds(failNotified(_,Peoplelist,Datelist),S).

holds(waitForSchedulerRequestDateRange(Init,MS,Peoplelist,Datelist),S):-

 holds(some([schedulerID],and(val(skedPeoplelist(schedulerID),Peoplelist),

 and(requestedEnterDateRange(schedulerID),

 not(dateRangeEntered(schedulerID))))),S).

holds(meetingBeenScheduledIfPossible(Peoplelist,Datelist),S):-

 holds(some(date,and(member(date,Datelist),

 A ! 20

 successNotified(_,Peoplelist,date))),S);

 holds(failNotified(_,Peoplelist,Datelist),S).

holds(agreeableDateForMeeting(SchedulerID,Participant),S):-

 holds(some(date,agreementNotified(SchedulerID,Participant,date)),S);

 holds(some(datelist,failNotified(SchedulerID,_,datelist)),S).

holds(waitForAllAnswerRequest(SchedulerID,Peoplelist,Date),S):-

 holds(oneDateRequestAnswered(SchedulerID,Peoplelist,Date),S).

holds(findAvailDateSlot(SchedulerID),S):-holds(allMergedlistSet(SchedulerID),S).

holds(dateIsFree(Date,Datelist),S):-holds(member(Date,Datelist),S).

holds(val(interSection(T1list,T2list),T3list),do(A,S)):-

 (A=setIntersection(T1list,T2list),intersectionlist(T1list,T2list,T3list));

 holds(val(interSection(T1list,T2list),T3list),S).

holds(added(Participant,Date),do(A,S)):-

 A=addDateToParticipant(Participant,Date);

 holds(added(Participant,Date),S).

holds(interSectionlist(T1LIST,T2LIST,T3LIST),S):-

 intersectionlist(T1LIST,T2LIST,T3LIST),holds(true=true,S).

/* Initial State Axioms */

holds(val(participantDateInfo(paige),[11,12,14]),s0).

holds(val(participantDateInfo(yves),[10,12]),s0).

holds(val(feblist,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2

7,28,29]),s0).

holds(val(schedulerCtr,1),s0).

holds(val(reqCtr,1),s0).

holds(val(allmergedlist(_),[]),s0).

/* Density delaration forExogenous actions */

exoDensity(100). /* uncomment to get exogenous actions*/

exoAct(occupyDateFromParticipant(paige,15),47,60).

/* Tracing Controls */

/* tracingProg. */

/* tracingTest. */

tracingExec.

 A ! 21

/* prolog funtions */

less(X,Y):-X<Y.

eQual(X,Y):-X=Y.

unEqual(X,Y):-X<Y;X>Y.

merglist([],L2,L2).

merglist(L1,[],L1).

merglist([X|L1],[X|L2],[X|L]):-merglist(L1,L2,L).

merglist([X|L1],[Y|L2],[X|L]):-less(X,Y),merglist(L1,[Y|L2],L).

merglist([X|L1],[Y|L2],[Y|L]):-less(Y,X),merglist([X|L1],L2,L).

merg([],Y,[Y]).

merg(X,[],[X]).

merg(X,[X|L2],[X|L2]).

merg(X,[Y|L2],[X|L]):-less(X,Y),merg(Y,[Y|L2],L).

merg(X,[Y|L2],[Y|L]):-less(Y,X),merg(X,L2,L).

delete([],L2,[L2]).

delete(_,[],[]).

delete(X,[X|L2],L2).

delete(X,[Y|L2],[Y|L]):-unEqual(X,Y),delete(X,L2,L).

deletelist([],L2,L2).

deletelist(_,[],[]).

deletelist([X|L1],L2,L):-delete(X,L2,L3),deletelist(L1,L3,L).

intersection([],_,[]).

intersection(_,[],[]).

intersection(X,[X|_],X).

intersection(X,[Y|L2],L):-unEqual(X,Y),intersection(X,L2,L).

intersectionlist([],_,[]).

intersectionlist(_,[],[]).

intersectionlist([X|L1],[X|L2],[X|L]):-intersectionlist(L1,L2,L).

intersectionlist([X|L1],L2,[X|L]):-

member(X,L2),delete(X,L2,L3),intersectionlist(L1,L3,L).

intersectionlist([X|L1],L2,L):-

not(member(X,L2)),delete(X,L2,L3),intersectionlist(L1,L3,L).

/* Process model for actors */

/* Main process */

proc(main,[

 initiator_behavior(ini1,ms1)#=

 meetingScheduler_behavior(ms1,ini1)#=

 participant_behavior(paige,ms1)!#=

 participant_behavior(yves,ms1)!

]

).

 A ! 22

/* The initiator process model */

proc(initiator_behavior(Init,MS),

 [tryOrganizeMeeting(Init,MS,[paige,yves],[12,14,15,16,17])

 /* tryOrganizeMeeting(Init,MS,[paige,yves],[12,14,15])*/

]

).

proc(tryOrganizeMeeting(Init,MS,Peoplelist,Datelist),

 achieve_meetingBeenScheduledIfPossible(Init,MS,Peoplelist,Datelist)

).

proc(achieve_meetingBeenScheduledIfPossible(Init,MS,Peoplelist,Datelist),

 [letSchedulerScheduleMeeting(Init,MS,Peoplelist,Datelist),

 meetingBeenScheduledIfPossible(Peoplelist,Datelist)?

]

).

proc(letSchedulerScheduleMeeting(Init,MS,Peoplelist,Datelist),

 [requestScheduleMeeting(Init,MS,Peoplelist),

 waitForSchedulerRequestDateRange(Init,MS,Peoplelist,Datelist)?,

 enterDateRangeToScheduler(Init,MS,Peoplelist,Datelist),

 waitForSchedulingResultFromScheduler(Init,MS,Peoplelist,Datelist)?

]

).

proc(enterDateRangeToScheduler(Init,MS,Peoplelist,Datelist),

 pi([schedulerID],[

 and(val(skedPeoplelist(schedulerID),Peoplelist),

 and(requestedEnterDateRange(schedulerID),

 not(dateRangeEntered(schedulerID))

))?,

 enterDateRange(Init,MS,schedulerID,Datelist)

])

).

/* The process model for meeting scheduler */

proc(meetingScheduler_behavior(MS,Init),

 scheduleMeetings(MS,Init)

).

proc(scheduleMeetings(MS,Init),

 ==>([schedulerID,peoplelist],

 A ! 23

 and(letedSchedulerSked(schedulerID),

 and(val(skedPeoplelist(schedulerID),peoplelist),

 and(not(requestedEnterDateRange(schedulerID)),

 not(meetingBeScheduledIfPossible(schedulerID))

))),

 achieve_MeetingBeScheduledIfPossible(MS,Init,schedulerID,peoplelist)

)

).

proc(achieve_MeetingBeScheduledIfPossible(MS,Init,SchedulerID,Peoplelist),

 [tryScheduleMeeting(MS,Init,SchedulerID,Peoplelist),

 meetingBeScheduledIfPossible(SchedulerID)?

]

).

proc(tryScheduleMeeting(MS,Init,SchedulerID,Peoplelist),

 [requestEnterDateRange(MS,Init,SchedulerID),

 some(datelist,enteredDateRange(SchedulerID,datelist))?,

 for(participant,Peoplelist,[],

 obtainAvailDates(MS,participant,SchedulerID),

 true=true

),

 waitForAllParticipantSendAvailDates(SchedulerID,Peoplelist)?,

 achieve_findAvailDateSlot(MS,SchedulerID,Peoplelist),

 pi(xlist,[

 val(allmergedlist(SchedulerID),xlist)?,

 tryObtainAgreement(MS,Init,SchedulerID,Peoplelist,xlist)

])

]

).

proc(tryObtainAgreement(MS,Init,SchedulerID,Peoplelist,Xlist),

 [while(and(someDateNotTryAndNoAgreement(SchedulerID,Peoplelist,Xlist),

 not(Xlist=[])),

 tryARemainedDates(MS,Init,SchedulerID,Peoplelist,Xlist)

),

 if(or(allRejected(SchedulerID,Peoplelist,Xlist),Xlist=[]),

 notifyFailScheduleMeeting(MS,Init,SchedulerID,Peoplelist)

)

]

).

proc(tryARemainedDates(MS,Init,SchedulerID,Peoplelist,Xlist),

 pi([date], [

 A ! 24

 and(member(date,Xlist),

 not(oneDateRequestAnswered(SchedulerID,Peoplelist,date))

)?,

 tryTheDate(MS,Init,SchedulerID,Peoplelist,date)

])

).

proc(tryTheDate(MS,Init,SchedulerID,Peoplelist,Date),

 [for(participant,Peoplelist,[],

 requestAgreement(MS,participant,SchedulerID,Date),

 true=true

),

 waitForAllAnswerRequest(SchedulerID,Peoplelist,Date)?,

 if(oneRejected(SchedulerID,Peoplelist,Date),

 cancelAgreementForTheDate(MS,SchedulerID,Peoplelist,Date)

),

 if(allAccepted(SchedulerID,Peoplelist,Date),

 notifySuccessOnDate(MS,Init,SchedulerID,Peoplelist,Date)

)

]

).

proc(achieve_findAvailDateSlot(MS,SchedulerID,Peoplelist),

 [mergeAllAvailDates(MS,SchedulerID,Peoplelist),

 findAvailDateSlot(SchedulerID)?

]

).

proc(mergeAllAvailDates(MS,SchedulerID,Peoplelist),

 pi([datelist],[

 enteredDateRange(SchedulerID,datelist)?,

 mergeAll(MS,SchedulerID,Peoplelist,datelist)

])

).

/*procedure to merge all the available dates from participants of a meeting*/

proc(mergeAll(MS,SCHEDULERID,PEOPLELIST,TLIST),

 if(PEOPLELIST=[],

 setAllMergedlist(MS,SCHEDULERID,TLIST),

 [pi([f,r],[

 PEOPLELIST=[f|r]?,

 pi([availdate,templist],

 [sentAvailDates(SCHEDULERID,f,availdate)?,

 A ! 25

 interSectionlist(availdate,TLIST,templist)?,

 mergeAll(MS,SCHEDULERID,r,templist)

])

])

]

)

).

proc(cancelAgreementForTheDate(MS,SchedulerID,Peoplelist,Date),

 for(participant,Peoplelist,[],

 requestCancel(MS,participant,SchedulerID,Date),

 true

)

).

proc(requestCancel(MS,Participant,SchedulerID,Date),

 if(agreementAccepted(SchedulerID,Participant,Date),

 cancelAgreement(MS,Participant,SchedulerID,Date)

)

).

proc(notifySuccessOnDate(MS,Init,SchedulerID,Peoplelist,Date),

 [

 notifySuccess(MS,Init,SchedulerID,Peoplelist,Date),

 for(participant,Peoplelist,[],

 notifyAgreement(MS,participant,SchedulerID,Date),

 true=true

)

]

).

proc(notifyFailScheduleMeeting(MS,Init,SchedulerID,Peoplelist),

 [notifyFail(MS,Init,SchedulerID,Peoplelist),

 for(participant,Peoplelist,[],

 notifyFail(MS,participant,SchedulerID,Peoplelist),true=true

)

]

).

/* Process model for the Participant */

proc(participant_behavior(Participant,MS),

 tryArrangeMeetingsAndMaintainSchedule(Participant,MS)

).

 A ! 26

proc(tryArrangeMeetingsAndMaintainSchedule(Participant,MS),

 tryArrangeMeetings(MS,Participant)

 #=

 ==>([reqID,date,xlist],

 and(val(reqParticipant(reqID),Participant),

 and(val(reqDate(reqID),date),

 and(participantDateOccupied(Participant,date),

 and(val(participantDateInfo(Participant),xlist),

 not(occupyAcknowledged(Participant,date))

)))),

 occupyDate(Participant,date)

)

).

proc(tryArrangeMeetings(MS,Participant),

 findAgreeableDateUsingScheduler(MS,Participant)

).

proc(findAgreeableDateUsingScheduler(MS,Participant),

 /*if request for sending available dates*/

 ==>([reqID,xlist],

 and(obtainReqRcvd(reqID),

 and(not(obtainReqProc(reqID)),

 and(val(reqParticipant(reqID),Participant),

 val(availableDates(Participant),xlist)

))),

 sendAvailDates(Participant,MS,reqID,xlist)

)

 #=

 tryAgreeToDate(Participant,MS)

).

proc(tryAgreeToDate(Participant,MS),

 ==>([reqID,date,tlist],

 and(agreementReqRcvd(reqID),

 and(not(agreementReqProc(reqID)),

 and(val(participantDateInfo(Participant),tlist),

 and(val(reqDate(reqID),date),

 val(reqParticipant(reqID),Participant)

)))),

 replyAgreement(Participant,MS,reqID,date,tlist)

)

 A ! 27

 /* if request for cancel a meeting on a date*/

 #=

 ==>([reqID,date,tlist],

 and(cancelReqRcvd(reqID),

 and(val(reqParticipant(reqID),Participant),

 and(not(cancelReqProc(reqID)),

 and(val(participantDateInfo(Participant),tlist),

 val(reqDate(reqID),date)

)))),

 cancelAgreementOnDate(Participant,MS,reqID,date)

)

).

proc(cancelAgreementOnDate(Participant,MS,ReqID,Date),

 [rmvDateFromSchedule(Participant,Date),

 acceptCancel(Participant,MS,ReqID,Date)

]

).

proc(replyAgreement(Participant,MS,ReqID,Date,Datelist),

 /*if request for agreement a meeting*/

 [if(dateIsFree(Date,Datelist),

 rejectAgreement(Participant,MS,ReqID,Date),

 acceptAgreementOnDate(Participant,MS,ReqID,Date)

)

]

).

proc(acceptAgreementOnDate(Participant,MS,ReqID,Date),

 [addDateToSchedule(Participant,Date),

 acceptAgreement(Participant,MS,ReqID,Date)

]

).

proc(occupyDate(Participant,Date),

 /*pick up the exogeous action, occupy any date from the participant's date*/

 [

 addDateToSchedule(Participant,Date),

 acknowledgeOccupy(Participant,Date)

]

).

 A ! 28

A-7 The Initial ConGolog Model MeetingScheduler

proc(meetingScheduler_behavior(MS,Init),
 scheduleMeetings(MS,Init)
).

proc(scheduleMeetings(MS,Init),
 ==>([schedulerID,peoplelist],
 requestedScheduleAMeeting(Init,MS,peoplelist,schedulerID),
 achieve_MeetingBeScheduledIfPossible(MS,Init,schedulerID,peoplelist)
)
).

proc(achieve_MeetingBeScheduledIfPossible(MS,Init,SchedulerID,Peoplelist),
 [
 tryScheduleAMeeting(MS,Init,SchedulerID,Peoplelist),
 meetingBeScheduledIfPossible(SchedulerID)?
]
).

proc(tryScheduleMeeting(MS,Init,SchedulerID,Peoplelist),
 [requestEnterDateRange(MS,Init,SchedulerID),
 some(datelist,enteredDateRange(SchedulerID,datelist))?,
 for(participant,Peoplelist,[],
 obtainAvailDates(MS,participant,SchedulerID),
 true=true),
 waitForAllParticipantSendAvailDates(SchedulerID,Peoplelist)?,
 achieve_findAvailDateSlot(MS,SchedulerID,Peoplelist),
 pi(xlist,[
 val(allmergedlist(SchedulerID),xlist)?,
 tryObtainAgreement(MS,Init,SchedulerID,Peoplelist,xlist)
])
]
).
proc(tryObtainAgreement(MS,Init,SchedulerID,Peoplelist,Xlist),
[
 while(and(someDateNotTryAndNoAgreement(SchedulerID,Peoplelist,Xlist),
 not(Xlist=[])),
 tryARemainedDates(MS,Init,SchedulerID,Peoplelist,Xlist)
),
 if(or(allRejected(SchedulerID,Peoplelist,Xlist),Xlist=[]),
 notifyFailScheduleMeeting(MS,Init,SchedulerID,Peoplelist)
)
]
).

proc(tryARemainedDates(MS,Init,SchedulerID,Peoplelist,Xlist),
 pi([date], [
 and(member(date,Xlist),
 not(oneDateRequestAnswered(SchedulerID,Peoplelist,date))
)?,
 tryTheDate(MS,Init,SchedulerID,Peoplelist,date)
])
).

proc(tryTheProposedDate(MS,Init,SchedulerID,Peoplelist,Date),
 [
 for(participant,Peoplelist,[],
 requestAgreement(MS,participant,SchedulerID,Date),
 true=true),
 waitForAllAnswerRequest(SchedulerID,Peoplelist,Date)?,
 if(oneRejected(SchedulerID,Peoplelist,Date),
 cancelAgreementForTheDate(MS,SchedulerID,Peoplelist,Date)
),
 if(allAccepted(SchedulerID,Peoplelist,Date),

 A ! 29

 notifySuccessOnDate(MS,Init,SchedulerID,Peoplelist,Date)
)
]
).

proc(achieve_findAvailDateSlot(MS,SchedulerID,Peoplelist),
 [
 mergeAllAvailDates(MS,SchedulerID,Peoplelist),
 findAvailDateSlot(SchedulerID)?
]).

proc(mergeAllAvailDates(MS,SchedulerID,Peoplelist),
 pi([datelist],[
 enteredDateRange(SchedulerID,datelist)?,
 mergeAll(MS,SchedulerID,Peoplelist,datelist)
])
).

/*procedure to merge all the available dates from participants of a meeting*/

proc(mergeAll(MS,SCHEDULERID,PEOPLELIST,TLIST),
 if(PEOPLELIST=[],
 setAllMergedlist(MS,SCHEDULERID,TLIST),
 [pi([f,r],[
 PEOPLELIST=[f|r]?,
 pi([availdate,templist],
 [sentAvailDates(SCHEDULERID,f,availdate)?,
 interSectionlist(availdate,TLIST,templist)?,
 mergeAll(MS,SCHEDULERID,r,templist)
])
])
]
)
).

proc(cancelAgreementForTheDate(MS,SchedulerID,Peoplelist,Date),
 for(participant,Peoplelist,[],
 requestCancelIfNecessary(MS,participant,SchedulerID,Date),
 true)
).

proc(requestCancel(MS,Participant,SchedulerID,Date),
 if(agreementAccepted(SchedulerID,Participant,Date),
 cancelAgreement(MS,Participant,SchedulerID,Date)
)
).

proc(notifySuccessOnDate(MS,Init,SchedulerID,Peoplelist,Date),
 [
 notifySuccess(MS,Init,SchedulerID,Peoplelist,Date),
 for(participant,Peoplelist,[],
 NotifyAgreementToParticipant(MS,participant,SchedulerID,Date),
 true=true)
]).

proc(notifyFailScheduleMeeting(MS,Init,SchedulerID,Peoplelist),
 [
 notifyFail(MS,Init,SchedulerID,Peoplelist),
 for(participant,Peoplelist,[],
 notifyFail(MS,participant,SchedulerID,Peoplelist),true=true)
]).

 A ! 30

A-8 The Precondition Axioms for Actions

 poss(requestSchedulerScheduleAMeeting(_,_,_),_)

 poss(requestEnterDateRange(_,_,_),_). /* The action can be performed at any time * /

 poss(enterDateRange(_,_,_,_),_). /* The action can be performed at any time * /

 poss(obtainAvailDates(_,_,_),_). /* The action can be performed at any time * /

 poss(sendAvailDates(_,_,_,_),_). /* The action can be performed at any time * /

 poss(setAllMergedlist(_,_,_),_). /* The action can be performed at any time * /

 poss(requestAgreement(_,_,_,_),_). /* The action can be performed at any time * /

 poss(rejectAgreement(_,_,ReqID,_),S):- holds(agreementReqRcvd(ReqID),S).

/ * The action can be performed if the Participant received a request from the MS for an agreement to meet on the

Date*/.

 poss(cancelAgreement(_,_,_,_),_). / * The action can be performed at any time * /

 poss(acceptCancel(_,_,_,_),_). / * The action can be performed at any time * /

 poss(notifyAgreement(_,_,_,_),_). / * The action can be performed at any time * /

 poss(notifySuccess(_,_,_,_,_),_). / * The action can be performed at any time * /

 poss(notifyFail(_,_,_,_),_). / * The action can be performed at any time * /

 B ! 1

Appendix B:

Modeling the Mail Order Business Process

B-1 Obtaining Simulation Traces under Unix

tiger 148 % congolog mailorder.pl

% compiling file /cs/home/fac1/lesperan/cogrobo/ConGolog98/congolog.pl
Disabled further Prolog informational messages.

WARNING: The GDL compiler has not yet been hooked up to this version
 of the system.

ConGolog Interpreter and GDL compiler

* Singleton variables, clause 20 of poss/2: S
* Approximate line: 144, file: '/cs/home/grad2/xiyun/thesis/mailorder.pl'
* multifile declaration missing for predicate non_fluent/1
Loaded model from file /cs/home/grad2/xiyun/thesis/mailorder.pl
Use the 'viewer.' goal to launch the viewer.

Quintus Prolog Release 3.2 (Sun 4, SunOS 5.5.1)
Copyright (C) 1994, Quintus Corporation. All rights reserved.
301 East Evelyn Ave, Mountain View, California U.S.A. (415) 254-2800
Licensed to York Univerity, Canada

| ?- run.

$$$ >>>> startInterrupts in do([],s0)
$$$ >>>> mkOrder(cust1,item4,1111,company1) in do([startInterrupts],s0)
$$$ >>>> alarmCustomer(officeClerk1,company1,cust1,1,item4) in do([
mkOrder(cust1,item4,1111,company1) startInterrupts],s0)
$$$ >>>> rejectOrder(officeClerk1,company1,cust1,1,item4) in do([
alarmCustomer(officeClerk1,company1,cust1,1,item4) mkOrder(cust1,item4,1111,company1)
startInterrupts],s0)
$$$ >>>> stopInterrupts in do([rejectOrder(officeClerk1,company1,cust1,1,item4)
 alarmCustomer(officeClerk1,company1,cust1,1,item4) mkOrder(cust1,item4,1111,com
pany1) ...],s0)

Final situation:
do(stopInterrupts,do(rejectOrder(officeClerk1,company1,cust1,1,item4),do(alarmCu
stomer(officeClerk1,company1,cust1,1,item4),do(mkOrder(cust1,item4,1111,company1
),do(startInterrupts,s0)))))

yes
| ?-

 B ! 2

B-2 The Simulation Trace for Example 5 in Section 6.5

The sequence of actions performed is as follows:
• mkOrder(cust1,item2,1111,company1): order No. 1: cust1 makes an order for item2 to company1 and his card

number is 1111.

• mkOrder(cust1,item1,1111,company1): order No. 2: cust1 makes an order for item1 to company1 and his card

number is 1111.

• mkOrder(cust3,item3,3333,company2): order No. 3: cust3 makes an order for item3 to company2 and his card

number is 3333.

• mkOrder(cust2,item2,2222,company2): order No. 4: cust2 makes an order for item2 to company2 and his card

number is 2222.

• requestStock(officeClerk2,company2,stockClerk2,item2,4): officeClerk2 in company2 requests

the stockClerk2 to provide the stock for item2 of order No. 4.

• rejectStockRequest(stockClerk2,company2,officeClerk2,item2,4): stockClerk2 in company2

rejects the request for the stock for item2 of order No.4 from the officeClerk2.

• rejectOrder(officeClerk2,company2,cust2,4,item2): officeClerk2 rejects the order made by cust2 for

item2.

• requestStock(officeClerk2,company2,stockClerk2,item3,3): officeClerk2 in company2 requests

the stock for item3 of order No. 3 to stockClerk2.

• acceptStockRequest(stockClerk2,company2,officeClerk2,item3,3): stockClerk2 in company2

accepts officeClerks's request for the stock for item3 of order No. 3 from .

• putOnHold(stockClerk2,company2,item3,3): stockClerk2 in company2 puts an item3 into on-hold stock

for order No.3.

• requestDebit(officeClerk2,company2,3,cust3,3333,30): officeClerk2 requests the bank clerk to check

cust3’s account 3333 for debiting 30.

• rejectDebit(1,company2,cust3,3333,30): The bank clerk tells company2 that cust3 cannot pay 30 credits for

order No. 1.

• cancelStockRequest(officeClerk2,company2,stockClerk2,item3,3): officeClerk2 requests

stockClerk2 to cancel the reserved stock for item3 of order No.3.

• confirmCancelStock(stockClerk2,company2,officeClerk2,3,item3): stockClerk2 confirms officeClerk2 about canceling

the reserved stock for item3 of order No. 3.

• moveOnHoldBackToStock(stockClerk2,company2,item3,3): stockClerk2 move an item3 from the on-hold

stock for order No. 3 back to real stock.

• rejectOrder(officeClerk2,company2,cust3,3,item3): officeClerk2 rejects the order No. 3 for item3

made by cust3.

 B ! 3

• requestStock(officeClerk1,company1,stockClerk1,item1,2): officeClerk1 in company1 requests

stockClerk1 to provide the stock for item1 of order No.2.

• acceptStockRequest(stockClerk1,company1,officeClerk1,item1,2): stockClerk1 accepts

officeClerk1’s request for item1 of order No. 2.

• putOnHold(stockClerk1,company1,item1,2): stockClerk1 puts an item1 for order No. 2 into the on-hold

stock.

• requestDebit(officeClerk1,company1,2,cust1,1111,10): officeClerk1 requests the bank to check

cust1’s account 1111 for debiting 10 from this account for order No. 2.

• acceptDebit(2,company1,cust1,1111,10): The bank clerk tells company1 that cust1 has enough money pay

10 credits.

• transferMoneyForOrder(officeClerk1,company1,cust1,2,1111,10): officeClerk1 requests the bank

transfer 10 credits from cust1’s account 1111 to company1’s account for order No. 2.

• debitAcct(1111,10): The bank clerk debits 10 credits from the account 1111.

• creditAcct(c1,10): The bank clerk credits 10 into company1’s account c1.

• confirmTransferMoney(3,cust1,1111,company1,10): The bank clerk confirm s company1 that credits 10 has

been transferred from cust1’s account to company1’s account.

• mkInvoice(officeClerk1,company1,stockClerk1,item1,2): officeClerk1 tells stockClerk1 he

invoiced the order No. 2 for item1.

• shipOrder(stockClerk1,company1,cust1,2,item1): stockClerk1 ships item1 of order No. 2 to cust1.

• RmvFromHoldForShipment(stockClerk1,company1,item1,2): stockClerk1 remove the shipped item from

on hold stock.

• notifyShipment(officeClerk1,company1,cust1,item1,2): officeClerk1 notifies cust1 that item1

for order No. 2 shipped.

• requestStock(officeClerk1,company1,stockClerk1,item2,1): officeClerk1 request stockClerk1

to provide the stock for item2 of order No. 1.

• rejectStockRequest(stockClerk1,company1,officeClerk1,item2,1): stockClerk1 rejects the

officeClerk1' request for stock for item2 of order No 1.

• rejectOrder(officeClerk1,company1,cust1,1,item2): officeClerk1 rejects cust1’s order for item2

for order No. 1.

 B ! 4

B-3 The Simulation Trace for Example 6 in Section 6.6

The sequence of actions performed is as follows:
• mkOrder(cust2,item2,2222,company1): cust2 makes an order for item2 to company1 and his card number is

2222.

• mkOrder(cust1,item2,1111,company1):cust1 makes an order for item2 to the company1 and his card number

is 1111.

• requestStock(officeClerk1,company1,stockClerk1,item2,2): officeClerk1 requests stock for

item2 for order No.2.

• rejectStockRequest(stockClerk1,company1,officeClerk1,item2,2): stockClerk1 rejects stock

request for item2 for order No.2

• supply(item2,6): 6 item2 is supplied to the stock.

• supply(item2,6): 6 item2 is supplied to the stock.

• rejectOrder(officeClerk1,company1,cust1,2,item2): officeClerk1 rejects cust1's order No.2 for

item2 .

• requestStock(officeClerk1,company1,stockClerk1,item2,1): officeClerk1 requests stock for

item2 for order No.1.

• acceptStockRequest(stockClerk1,company1,officeClerk1,item2,1):stockClerk1 accepts the stock

request from stockClerk1 for item2 for order No. 1.

• putOnHold(stockClerk1,company1,item2,1): stockClerk1 puts item2 on hold for order No.1.

• supply(item2,6): 6 item2 is supplied to the stock.

• requestDebit(officeClerk1,company1,1,cust2,2222,20): officeClerk1 requests the bank to check

where it can debit 20 from the cust2's account 2222.

• acceptDebit(1,company1,cust2,2222,20): cust2's account 2222 has enough money to pay 20 debits.

• transferMoneyForOrder(officeClerk1,company1,cust2,1,2222,20): officeClker1 asks the bank

transfers money 20 credits from cust2's account 2222 to coompany1' account.

• debitAcct(2222,20): Account 2222 is debited 20.

• creditAcct(c1,20): Account c1 is credited 20.

• confirmTransferMoney(2,cust2,2222,company1,20): the bank confirms company1 that money was

transferred from cust2's account 2222 to company1 's account.

• mkInvoice(officeClerk1,company1,stockClerk1,item2,1): officeClerk1 makes an invoice for

item2 for order No.1.

• shipOrder(stockClerk1,company1,cust2,1,item2),do(supply(item2,6): stockClerk1 ships the

ordered item2 for order No.1 to cust2.

• RmvFromHoldForShipment(stockClerk1,company1,item2,1): stockClerk1 remove the shipped item from

on hold stock.

• notifyShipment(officeClerk1,company1,cust2,item2,1): officeClerk1 notifies cust2 that the

ordered item2 for order No. 1 was shipped.

 B ! 5

B-4 The ConGolog Model for OfficeClerk

 proc(officeClerk_behavior(OfficeClerk,CompanyName,StockClerk),
 efficientOrderProcessor(OfficeClerk,CompanyName,StockClerk)

).

proc(efficientOrderProcessor(OfficeClerk,Company,StockClerk),
 processOrders(OfficeClerk,Company,StockClerk)).

proc(processOrders(OfficeClerkName,CompanyName,StockClerk),
 ==>([orderID,custID,itemID],
 and(orderMade(orderID),
 and(val(orderCustomer(orderID),custID),
 and(val(orderItem(orderID),itemID),
 and(val(orderCompanyName(orderID),CompanyName),
 and(not(orderRejected(orderID)),
 not(requestedStock(itemID,orderID))
))))),
 process(OfficeClerkName,CompanyName,StockClerk,custID,orderID,itemID)
)
).

proc(process(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 if(not(isSoldItem(ItemID)),
 verifyOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 processStockAndPayment(OfficeClerkName,CompanyName,StockClerk,
 Customer,OrderID,ItemID)
)
).

proc(verifyOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 [alarmCustomer(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID)
]).

proc(processStockAndPayment(OfficeClerkName,CompanyName,StockClerk,Customer,
 OrderID,ItemID),
[achieve_AvailOfStock(OfficeClerkName,CompanyName,StockClerk,OrderID,ItemID),
 if(stockRequestRejected(OrderID),
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 processPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID)
)
]).

proc(achieve_AvailOfStock(OfficeClerkName,CompanyName,StockClerk,OrderID,ItemID),
 [requestStock(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 stockRequestAnswered(OrderID)?
]
).

proc(processPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 pi([cardNo,amt],[
 and(val(orderCustomer(OrderID),Customer),
 and(val(orderCardNo(OrderID),cardNo),
 and(val(orderCompanyName(OrderID),CompanyName),
 and(val(orderItem(OrderID),ItemID),
 val(price(ItemID),amt)
))))?,
 achieve_DetermineWhetherAccountOk(OfficeClerkName,CompanyName,OrderID,
 Customer,cardNo,amt),
 if(debitReqAccepted(OrderID),
 transferMoneyAndInvoice(OfficeClerkName,CompanyName,
 StockClerk,OrderID,ItemID,Customer,cardNo,amt),
 processCancel(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID)

 B ! 6

)
])
).

proc(achieve_DetermineWhetherAccountOk(OfficeClerkName,CompanyName,
 OrderID,Customer,CardNo,Amt),
[requestDebit(OfficeClerkName,CompanyName,OrderID,Customer,CardNo,Amt),
 debitReqAnswered(OrderID)?
]
).

proc(processCancel(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 [cancelStockRequest(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 stockRtndToInventory(OrderID)?,
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID)
]
).

proc(transferMoneyAndInvoice(OfficeClerkName,CompanyName,StockClerk,OrderID,
 ItemID,CustomerID,CardNo,Amount),
 [achieve_TransferMoney(OfficeClerkName,CompanyName,CustomerID,
 OrderID,CardNo,Amount),
 mkInvoice(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 orderShipped(OrderID)?,
 notifyShipment(OfficeClerkName,CompanyName,CustomerID,ItemID,OrderID)
]
).

proc(achieve_TransferMoney(OfficeClerkName,CompanyName,CustomerID,
 OrderID,CardNo,Amount),
 [transferMoneyForOrder(OfficeClerkName,CompanyName,CustomerID,
 OrderID,CardNo,Amount),
 transferMoneyAccepted(OrderID)?
]

).

B-5 The ConGolog Model for BankClerk

proc(bankClerk,
 processTransactions
).

proc(processTransactions,
 ==>([transID],
 and(debitReqTransRcvd(transID),
 not(debitReqTransProc(transID))),
 pi([cust,cardNo,companyName,amt],[
 and(val(transCustomer(transID),cust),
 and(val(transCardNo(transID),cardNo),
 and(val(transCompanyName(transID),companyName),
 val(transAmount(transID),amt)
)))?,
 replyDebitRequest(transID,companyName,cust,cardNo,amt)
])
)
 #=
 ==>([transID],
 and(transferMoneyTransRcvd(transID),
 not(transferMoneyTransProc(transID))),

 pi([cust,cardNo,companyName,amt],[

 B ! 7

 and(val(transCustomer(transID),cust),
 and(val(transCardNo(transID),cardNo),
 and(val(transCompanyName(transID),companyName),
 val(transAmount(transID),amt)
)))?,
 achieve_TransferredMoney(transID,cust,cardNo,companyName,amt)
])
)
).

proc(replyDebitRequest(TransID,CompanyName,Cust,CardNo,Amt),
 if(some(n,(some(m,and(and(val(acctBalance(CardNo),n),
 val(creditLimit,m)),n - Amt >= m)))),
 acceptDebit(TransID,CompanyName,Cust,CardNo,Amt),
 rejectDebit(TransID,CompanyName,Cust,CardNo,Amt)
)
).

proc(achieve_TransferredMoney(TransID,Cust,CardNo,CompanyName,Amt),
 [
 transferMoney(TransID,Cust,CardNo,CompanyName,Amt),
 transferMoneyTransProc(TransID)?
]
).

proc(transferMoney(TransID,Cust,CardNo,CompanyName,Amt),
 [
 debitAcct(CardNo,Amt),
 creditCompanyAccount(CompanyName,Amt),
 confirmTransferMoney(TransID,Cust,CardNo,CompanyName,Amt)
]
).

proc(creditCompanyAccount(CompanyName,Amt),
 pi([companyAccount], [
 val(companyAccountNo(CompanyName),companyAccount)?,
 creditAcct(companyAccount,Amt)

])
).

B-6 The ConGolog Model for Customer

proc(customer(CustID,ItemID,CardNo,CompanyName),
 obtainItem(CustID,ItemID,CardNo,CompanyName)
).

proc(obtainItem(CustID,ItemID,CardNo,CompanyName),
 mkOrder(CustID,ItemID,CardNo,CompanyName)
).

 B ! 8

B-7 The Whole ConGolog Model for the Mail-Order

Business Process

/* Primitive Action Used in the ConGolog Model */
/*

requestStock(OfficeClerk,Company,StockClerk,Item,OrderID)

 /* OfficeClerk in Company requests stock for Item for OrderID to StockClerk */

acceptStockRequest(StockClerk,Company,OfficeClerk,Item,OrderID)

 /* StockClerk in Company accepts the stock request for Item for OrderID from OfficeClerk */

rejectStockRequest(StockClerk,Company,OfficeClerk,Item,OrderID)

 /* StockClerk in Company rejects OfficeClerk’s stock request for Item for OrderID*/

cancelStockRequest(OfficeClerk,Company,StockClerk,Item,OrderID)

 /* OfficeClerk in Company cancel his request for stock for Item for OrderID to StockClerk */

confirmCancelStock(StockClerk,Company,OfficeClerk,OrderID,Item),

 /* StockClerk confirms canceling the stock for Item for OrderID to the OfficeClerk */

putOnHold(StockClerk,Company,Item,OrderID)

 /* StockClerk puts the ordered Item for OrderID on hold */

rmvFromHoldForShipment(StockClerk,Company,Item,OrderID)

 /* StockClerk removes Item for OderID from on hold stock for shipment */

 moveOnHoldBackToStock(StockClerk,Company,Item,OrderID)

 /* StockClerk moves Item reserved for OderID from on hold stock back to free stock*/

requestDebit(OfficeClerk,Company,OrderID,Customer,CardNo,Amount)

 /* OfficeClerk requests a bank to check whether Customer’s account CardNo has enough money Amount

 to pay for OrderID*/

confirmDebit(TransactionID,Customer,CardNo,Amount)

 /* The bank confirms that Customer has enough money to pay the Amount*/

rejectDebit(TransactionID,Company,Customer,CardNo,Amount)

 /* The bank rejects debits Amount of money from Customer’s account CardNo*/

transferMoneyForOrder(OfficeClerk,Company,Customer,Order,CardNo,Amount)

 /* OfficeClerk asks the bank to transfer Amount of money from Customer’s CardNo for Order */

 confirmTransferMoney(TransactionID,CustomerID,CardNo,Company,Amount)

 /* The bank confirms to transfer Amount of money from Customer’s CardNo for Order */

debitAcct(CardNo,Amount)

 /* The bank debits the Amount of money from CardNo */

creditAcct(CardNo,Amount)

 /* The bank credits the Amount of money into CardNo*/

mkInvoice(OfficeClerk,Company,StockClerk,Item,OrderID)

 /* OfficeClerk notifies StockClerk that he made a invoice for Item for the OrderID */

shipOrder(StockClerk,Company,Customer,OrderID,Item)

 /* StockClerk ships the Item for OrderID to Customer*/

notifyShipment(OfficeClerk,Company,Customer,ItemID,OrderID)

 /* OfficeClerk notifies Customer the Item for OrderID shipped*/

rejectOrder(OfficeClerk,Company,Customer,Order,Item)

 /* OfficeClerk rejects Customer’s Order reqest for Item */

 B ! 9

alarmCustomer(OfficeClerk,Company,Customer,OrderID,Item)

 /* OfficeClerk alarms Customer that Item for OrderID is not sold type */

mkOrder(CustomerID,Item,CardNo,Company)

 /* Customer makes an order for Item to Company and send his CardNo */

/* Exogenous Actions Used in the ConGolog Model */

supply(Item,Quantity

/* Predicate Fluents Defined in the ConGolog Model */

orderMade(OrderID)
requestedStock(Item,OrderID)
stockRequestAccepted(OrderID)
stockRequestRejected(OrderID)
stockRequestCancelled(OrderID,Item)
stockRtndToInventory(OrderID)
waitingForDebitAns(OrderID)
debitRequestSubmitted(OrderID)
debitRequestAccepted(OrderID)
debitRequestRejected(OrderID)
submittedTransferMoney(OrderID)
debitTransRcvd(TransactionID)
debitTransProc(TransactionID)
transferMoneyTransRcvd(TransactionID)
transferMoneyTransProc(TransactionID)
invoiceMade(OrderID)
orderShipped(OrderID)
orderRejected(OrderID)
Functional Fluents:
inStock(ItemType)
onHold(ItemType)
acctBalance(AcctNo)
orderCustomer(OrderID)
orderItem(OrderID)
orderCardNo(OrderID)
orderCompanyName(OrderID)
transCustomer(TransactionID)
transCardNo(TransactionID)
transAmount(TransactionID)
price(Item)
orderCtr
transCtr
*/

/* The Original ConGolog Model */

/* declaration for the primitive actions */

primAct(requestStock(_,_,_,_,_)).
primAct(acceptStockRequest(_,_,_,_,_)).
primAct(rejectStockRequest(_,_,_,_,_)).
primAct(cancelStockRequest(_,_,_,_,_)).
primAct(putOnHold(_,_,_,_)).
primAct(moveOnHoldBackToStock(_,_,_,_)).
PrimAct(rmvFromHoldForShipment(_,_,_,_)).
primAct(requestDebit(_,_,_,_,_,_)).
primAct(submitDebit(_,_,_,_)).
primAct(acceptDebit(_,_,_,_,_)).
primAct(confirmDebit(_,_,_,_)).
primAct(rejectDebit(_,_,_,_,_)).
primAct(transferMoneyForOrder(_,_,_,_,_,_)).

 B ! 10

primAct(confirmTransferMoney(_,_,_,_,_)).
primAct(debitAcct(_,_)).
primAct(creditAcct(_,_)).
primAct(mkInvoice(_,_,_,_,_)).
primAct(shipOrder(_,_,_,_,_)).
primAct(notifyShiment(_,_,_,_,_)).
primAct(rejectOrder(_,_,_,_,_)).
primAct(alarmCustomer(_,_,_,_,_)).
primAct(mkOrder(_,_,_,_)).
primAct(confirmCancelStock(_,_,_,_,_)).

/* declaration for the exogenous actions */
primAct(supply(_,_)).

/* precondition Axioms for primitive actions */
poss(alarmCustomer(_,_,_,_,_),_).
poss(requestStock(_,_,_,_,_),_).
poss(confirmCancelStock(_,_,_,_,_),_).
poss(acceptStockRequest(_,_,_,_,OrderID),S):- holds(requestedStock(_,OrderID),S).
poss(rejectStockRequest(_,_,_,_,OrderID),S):- holds(requestedStock(_,OrderID),S).
poss(cancelStockRequest(_,_,_,_,OrderID),S):- holds(stockRequestAccepted(OrderID),S).
poss(putOnHold(_,_,Item,_),S):- holds(val(inStock(Item),N),S), N > 0.
poss(moveOnHoldBackToStock(_,_,Item,_),S):- holds(and(val(onHold(Item),N),N>0),S).
poss(rmvFromHoldForShipment(_,_,Item,_),S):- holds(and(val(onHold(Item),N),N>0),S).
poss(submitDebit(_,_,_,Amt),_):- Amt > 0.
poss(requestDebit(_,_,_,_,_,Amt),_):- Amt > 0.
poss(acceptDebit(TransID,_,_,_,_),S):- holds(debitReqTransRcvd(TransID),S).
poss(confirmDebit(TransID,_,_,_),S):- holds(debitTransRcvd(TransID),S).
poss(rejectDebit(TransID,_,_,_,_),S):- holds(debitReqTransRcvd(TransID),S).
poss(transferMoneyForOrder(_,_,_,_,_,Amt),_):- Amt > 0.
poss(confirmTransferMoney(TransID,_,_,_,_),S):- holds(transferMoneyTransRcvd(TransID),S).
poss(debitAcct(_,Amt),_):- Amt > 0.
poss(creditAcct(_,Amt),_):- Amt > 0.
poss(mkInvoice(_,_,_,_,_),_).
poss(shipOrder(_,_,_,OrderID,ItemID),S):-
 holds(and(val(orderItem(OrderID),ItemID),and(val(onHold(ItemID),N), N > 0)),S).
poss(notifyShipment(_,_,_,_,_),S).
poss(rejectOrder(_,_,_,_,_),_).
poss(mkOrder(_,_,_,_),_).

/* precondition Axioms for exogenous actions */
poss(supply(_,_),_).

/* Successor State Axioms for all actions */

holds(orderMade(OrderID),do(A,S)):-
 (A = mkOrder(_,_,_,_),
 holds(val(orderCtr,OrderID),S));
 holds(orderMade(OrderID),S).

holds(requestedStock(Item,OrderID),do(A,S)):-
 A = requestStock(_,_,_,Item,OrderID);
 holds(requestedStock(Item,OrderID),S).

holds(stockRequestAccepted(OrderID),do(A,S)):-
 A = acceptStockRequest(_,_,_,_,OrderID);
 holds(stockRequestAccepted(OrderID),S).

holds(onHoldPut(OrderID),do(A,S)):-
 A=putOnHold(_,_,_,OrderID);
 holds(onHoldPut(OrderID),S).

holds(stockRequestRejected(OrderID),do(A,S)):-
 A = rejectStockRequest(_,_,_,_,OrderID);

 B ! 11

 holds(stockRequestRejected(OrderID),S).

holds(stockRequestCancelled(OrderID,Item),do(A,S)):-
 A = cancelStockRequest(_,_,_,Item,OrderID);
 holds(stockRequestCancelled(OrderID,Item),S).

holds(stockRtndToInventory(OrderID),do(A,S)):-
 A = moveOnHoldBackToStock(_,_,_,OrderID);
 holds(stockRtndToInventory(OrderID),S).

holds(itemRmvFromHoldForShipment(OrderID),do(A,S)):-
 A = rmvFromHoldForShipment(_,_,_,OrderID);
 holds(itemRmvFromHoldForShipment(OrderID),S).

holds(waitingForDebitAns(OrderID),do(A,S)):-
 A = submitDebit(OrderID,_,_,_);
 (holds(waitingForDebitAns(OrderID),S),
 A \= confirmDebit(_,_,_,_)).

holds(waitingForDebitReqAns(OrderID),do(A,S)):-
 A = requestDebit(_,_,OrderID,_,_,_);
 (holds(waitingForDebitReqAns(OrderID),S),
 A \= acceptDebit(_,_,_,_,_), A \= rejectDebit(_,_,_,_,_)).

holds(waitingForTransferMoneyAns(OrderID),do(A,S)):-
 A = transferMoneyForOrder(_,_,_,OrderID,_,_);
 (holds(waitingForTransferMoneyAns(OrderID),S),
 A \=confirmTransferMoney(_,_,_,_,_)).

holds(debitRequestSubmitted(OrderID),do(A,S)):-
 A = submitDebit(OrderID,_,_,_);
 holds(debitRequestSubmitted(OrderID),S).

holds(debitReqSubmitted(OrderID),do(A,S)):-
 A = requestDebit(_,_,OrderID,_,_,_);
 holds(debitReqSubmitted(OrderID),S).

holds(transferMoneyAccepted(OrderID),do(A,S)):-

 (A = confirmTransferMoney(_,_,_,_,_),
 holds(waitingForTransferMoneyAns(OrderID),S));
 holds(transferMoneyAccepted(OrderID),S).

holds(debitRequestAccepted(OrderID),do(A,S)):-
 (A = confirmDebit(_,_,_,_), holds(waitingForDebitAns(OrderID),S));
 holds(debitRequestAccepted(OrderID),S).

holds(debitReqAccepted(OrderID),do(A,S)):-
 (A = acceptDebit(_,_,_,_,_),holds(waitingForDebitReqAns(OrderID),S));
 holds(debitReqAccepted(OrderID),S).

holds(debitReqRejected(OrderID),do(A,S)):-
 (A = rejectDebit(_,_,_,_,_),holds(waitingForDebitReqAns(OrderID),S));
 holds(debitReqRejected(OrderID),S).

holds(debitRequestRejected(OrderID),do(A,S)):-
 (A = rejectDebit(_,_,_,_,_),holds(waitingForDebitAns(OrderID),S));
 holds(debitRequestRejected(OrderID),S).

holds(stockcancelled(OrderID),do(A,S)):-
 (A=confirmCancelStock(_,_,_,OrderID,_));
 holds(stockcancelled(OrderID),S).

holds(submittedTransferMoney(OrderID),do(A,S)):-
 A = transferMoneyForOrder(_,_,_,OrderID,_,_);
 holds(submittedTransferMoney(OrderID),S).

 B ! 12

holds(debitReqTransRcvd(TransID),do(A,S)):-
 (A = requestDebit(_,_,_,_,_,_), holds(val(transCtr,TransID),S));
 holds(debitReqTransRcvd(TransID),S).

holds(debitTransRcvd(TransID),do(A,S)):-
 (A = submitDebit(_,_,_,_), holds(val(transCtr,TransID),S));
 holds(debitTransRcvd(TransID),S).

holds(debitTransProc(TransID),do(A,S)):-
 A = confirmDebit(TransID,_,_,_);
 A = rejectDebit(TransID,_,_,_,_);
 holds(debitTransProc(TransID),S).

holds(debitReqTransProc(TransID),do(A,S)):-
 A = acceptDebit(TransID,_,_,_,_);
 A = rejectDebit(TransID,_,_,_,_);
 holds(debitReqTransProc(TransID),S).

holds(transferMoneyTransRcvd(TransID),do(A,S)):-
 (A = transferMoneyForOrder(_,_,_,_,_,_), holds(val(transCtr,TransID),S));
 holds(transferMoneyTransRcvd(TransID),S).

holds(transferMoneyTransProc(TransID),do(A,S)):-
 A = confirmTransferMoney(TransID,_,_,_,_);
 holds(transferMoneyTransProc(TransID),S).

holds(invoiceMade(OrderID),do(A,S)):-
 A = mkInvoice(_,_,_,_,OrderID);
 holds(invoiceMade(OrderID),S).

holds(orderShipped(OrderID),do(A,S)):-
 A = shipOrder(_,_,_,OrderID,_);
 holds(orderShipped(OrderID),S).

holds(orderRejected(OrderID),do(A,S)):-
 A = rejectOrder(_,_,_,OrderID,_);
 holds(orderRejected(OrderID),S).

holds(shipmentNotified(CustomerID,ItemID,OrderID),do(A,S)):-
 A = notifyShipment(_,_,CustomerID,ItemID,OrderID);
 holds(shipmentNotified(CustomerID,ItemID,OrderID),S).

holds(val(inStock(Item),N),do(A,S)):- /* assumes Item is ground */
 (A = moveOnHoldBackToStock(_,_,Item,_), holds(val(inStock(Item),M),S), N is M + 1);
 (A = supply(Item,Q), holds(val(inStock(Item),M),S), N is M + Q);
 (A = putOnHold(_,_,Item,_), holds(val(inStock(Item),M),S), N is M - 1);
 (holds(val(inStock(Item),N),S), ground(Item),
 A \= moveOnHoldBackToStock(_,_,Item,_),
 A \= supply(Item,Q), A \= putOnHold(_,_,Item,_)).

holds(val(onHold(Item),N),do(A,S)):- /* assumes Item is ground */
 (A = moveOnHoldBackToStock(_,_,Item,_), holds(val(onHold(Item),M),S), N is M - 1);
 (A = rmvFromHoldForShipment(_,_,Item,_),holds(val(onHold(Item),M),S), N is M – 1);
 (A = putOnHold(_,_,Item,_), holds(val(onHold(Item),M),S), N is M + 1);
 (holds(val(onHold(Item),N),S), ground(Item),
 A \= rmvFromHoldForShipment(_,_,Item,_)
 A \= moveOnHoldBackToStock(_,_,Item,_), A \= putOnHold(_,_,Item,_)).

holds(val(acctBalance(CardNo),N),do(A,S)):-
 (A = creditAcct(CardNo,Amt),
 holds(val(acctBalance(CardNo),M),S), N is M + Amt);
 (A = debitAcct(CardNo,Amt),
 holds(val(acctBalance(CardNo),M),S), N is M - Amt);
 (holds(val(acctBalance(CardNo),N),S),
 A \= creditAcct(CardNo,_), A \= debitAcct(CardNo,_)).

holds(val(orderCustomer(ID),Cust),do(A,S)):-

 B ! 13

 (A = mkOrder(Cust,_,_,_), holds(val(orderCtr,ID),S));
 holds(val(orderCustomer(ID),Cust),S).

holds(val(orderItem(ID),Item),do(A,S)):-
 (A = mkOrder(_,Item,_,_), holds(val(orderCtr,ID),S));
 holds(val(orderItem(ID),Item),S).

holds(val(orderCardNo(ID),CardNo),do(A,S)):-
 (A = mkOrder(_,_,CardNo,_), holds(val(orderCtr,ID),S));
 holds(val(orderCardNo(ID),CardNo),S).

holds(val(orderCompanyName(ID),CardNo),do(A,S)):-
 (A = mkOrder(_,_,_,CardNo), holds(val(orderCtr,ID),S));
 holds(val(orderCompanyName(ID),CardNo),S).

holds(val(transCustomer(ID),Cust),do(A,S)):-
 (A = requestDebit(_,_,_,Cust,_,_), holds(val(transCtr,ID),S));
 (A = submitDebit(_,Cust,_,_), holds(val(transCtr,ID),S));
 (A = transferMoneyForOrder(_,_,Cust,_,_,_), holds(val(transCtr,ID),S));
 holds(val(transCustomer(ID),Cust),S).

holds(val(transCardNo(ID),CardNo),do(A,S)):-
 (A = requestDebit(_,_,_,_,CardNo,_), holds(val(transCtr,ID),S));
 (A = submitDebit(_,_,CardNo,_), holds(val(transCtr,ID),S));
 (A = transferMoneyForOrder(_,_,_,_,CardNo,_), holds(val(transCtr,ID),S));
 holds(val(transCardNo(ID),CardNo),S).

holds(val(transCompanyName(ID),CompanyName),do(A,S)):-
 (A = requestDebit(_,CompanyName,_,_,_,_),
 holds(val(transCtr,ID),S));
 (A = transferMoneyForOrder(_,CompanyName,_,_,_,_),
 holds(val(transCtr,ID),S));
 holds(val(transCompanyName(ID),CompanyName),S).

holds(val(transAmount(ID),Amt),do(A,S)):-
 (A = requestDebit(_,_,_,_,_,Amt), holds(val(transCtr,ID),S));
 (A = submitDebit(_,_,_,Amt), holds(val(transCtr,ID),S));
 (A = transferMoneyForOrder(_,_,_,_,_,Amt), holds(val(transCtr,ID),S));
 holds(val(transAmount(ID),Amt),S).

holds(val(price(Item),Amt),do(_,S)):-
 holds(val(price(Item),Amt),S).

holds(val(orderCtr,N),do(A,S)):-
 (A = mkOrder(_,_,_,_), holds(val(orderCtr,M),S), N is M + 1);
 (holds(val(orderCtr,N),S), A \= mkOrder(_,_,_,_)).

holds(val(transCtr,N),do(A,S)):-
 (A = requestDebit(_,_,_,_,_,_),holds(val(transCtr,M),S), N is M + 1);
 (A = submitDebit(_,_,_,_), holds(val(transCtr,M),S), N is M + 1);
 (A = transferMoneyForOrder(_,_,_,_,_,_),
 holds(val(transCtr,M),S), N is M + 1);
 (holds(val(transCtr,N),S), A \= requestDebit(_,_,_,_,_,_),
 A \= submitDebit(_,_,_,_), A \= transferMoneyForOrder(_,_,_,_,_,_)).

/* Defined Fluents */
holds(stockRequestAnswered(OrderID),S):-
 holds(onHoldPut(OrderID),S); holds(stockRequestRejected(OrderID),S).

holds(debitRequestAnswered(OrderID),S):-
 holds(debitRequestAccepted(OrderID),S);
 holds(debitRequestRejected(OrderID),S).

holds(debitReqAnswered(OrderID),S):-
 holds(debitReqAccepted(OrderID),S);
 holds(debitReqRejected(OrderID),S).

 B ! 14

/* Initial State */

holds(val(creditLimit,-10),_).
holds(val(inStock(item1),10),s0).
holds(val(inStock(item2),0),s0).
holds(val(inStock(item3),3),s0).
holds(val(onHold(_),0),s0).
holds(val(acctBalance(1111),100),s0).
holds(val(acctBalance(2222),20),s0).
holds(val(acctBalance(3333),0),s0).
holds(val(companyAccountNo(company1),c1),_).
holds(val(acctBalance(c1),0),s0).
holds(val(companyAccountNo(company2),c2),_).
holds(val(acctBalance(c2),0),s0).
holds(val(price(item1),10),s0).
holds(val(price(item2),20),s0).
holds(val(price(item3),30),s0).
holds(val(orderCtr,1),s0).
holds(val(transCtr,1),s0).

/*non fulents*/
non_fluent(isSoldItem(_)).
isSoldItem(item1).
isSoldItem(item2).
isSoldItem(item3).

/* Exogenous actions, comments the following block to disable the exogenous action */

/* exoDensity(100).*/
/*exoAct(supply(item1,6),6,6). */
/*exoAct(supply(item2,6),5,5).*/
/*exoAct(supply(item3,6),7,7). */

/* tracingTest. */
tracingExec.

/* procedure definitions */

/* Main procedure to instantiated the whole mail order process */
proc(main,
 customer(cust1,item4,1111,company1) #>
 /* this can be adjusted to a real situation */
 mailOrderCompany_behavior(officeClerk2,stockClerk2,company2)#=
 mailOrderCompany_behavior(officeClerk1,stockClerk1,company1)#=
 bank_behavior
).

/* customer's behavior in the mail order process */

proc(customer(CustID,ItemID,CardNo,CompanyName),
 obtainItem(CustID,ItemID,CardNo,CompanyName)
).

proc(obtainItem(CustID,ItemID,CardNo,CompanyName),
 mkOrder(CustID,ItemID,CardNo,CompanyName)
).

/* mail order company's behavior in the mail order process */
proc(mailOrderCompany_behavior(OfficeClerk,StockClerk,CompanyName),
 officeClerk_behavior(OfficeClerk,CompanyName,StockClerk)#=
 stockClerk_behavior(StockClerk,CompanyName,OfficeClerk)
).

/* office clerk's behavior in the mail order process */

proc(officeClerk_behavior(OfficeClerk,CompanyName,StockClerk),
 efficientOrderProcessor(OfficeClerk,CompanyName,StockClerk)

 B ! 15

).

/* stock clerk's behavior in the mail order process */

proc(stockClerk_behavior(StockClerk,CompanyName,OfficeClerk),
 stockInformant(StockClerk,CompanyName,OfficeClerk)#=
 updateStockProcessor(StockClerk,CompanyName)#=
 shipmentProcessor(StockClerk,CompanyName)
).

/* bank's behavior in the mail order process */

proc(bank_behavior,
 bankClerk_behavior
).

/* bank clerk's behavior in the mail order process */

proc(bankClerk_behavior,
 processTransactions

).

/* ConGolog process model for the EffientOrderProcessor role */

proc(efficientOrderProcessor(OfficeClerk,Company,StockClerk),
 processOrders(OfficeClerk,Company,StockClerk)).

proc(processOrders(OfficeClerkName,CompanyName,StockClerk),
 ==>([orderID,custID,itemID],
 and(orderMade(orderID),
 and(val(orderCustomer(orderID),custID),
 and(val(orderItem(orderID),itemID),
 and(val(orderCompanyName(orderID),CompanyName),
 and(not(orderRejected(orderID)),
 not(requestedStock(itemID,orderID))
))))),
 process(OfficeClerkName,CompanyName,StockClerk,custID,orderID,itemID)
)
).

proc(process(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 if(not(isSoldItem(ItemID)),
 verifyOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),

processStockAndPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID)
)
).

proc(verifyOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 [alarmCustomer(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID)
]
).

proc(processStockAndPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemI
D),
 [
 achieve_AvailOfStock(OfficeClerkName,CompanyName,StockClerk,OrderID,ItemID),
 if(stockRequestRejected(OrderID),
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID),
 processPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID)
)
]
).

proc(achieve_AvailOfStock(OfficeClerkName,CompanyName,StockClerk,OrderID,ItemID),

 B ! 16

 [
 requestStock(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 stockRequestAnswered(OrderID)?
]
).

proc(processPayment(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 pi([cardNo,amt],[
 and(val(orderCustomer(OrderID),Customer),
 and(val(orderCardNo(OrderID),cardNo),
 and(val(orderCompanyName(OrderID),CompanyName),
 and(val(orderItem(OrderID),ItemID),
 val(price(ItemID),amt)
))))?,
 achieve_AccountOkOrNot(OfficeClerkName,CompanyName,OrderID,Customer,cardNo,amt),
 if(debitReqAccepted(OrderID),
 transferMoneyAndInvoice(OfficeClerkName,CompanyName,StockClerk,
 OrderID,ItemID,Customer,cardNo,amt),
 processCancel(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID)
)
])
).

proc(achieve_AccountOkOrNot(OfficeClerkName,CompanyName,OrderID,Customer,CardNo,Amt),
 [
 requestDebit(OfficeClerkName,CompanyName,OrderID,Customer,CardNo,Amt),
 debitReqAnswered(OrderID)?
]
).

proc(processCancel(OfficeClerkName,CompanyName,StockClerk,Customer,OrderID,ItemID),
 [
 cancelStockRequest(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 stockRtndToInventory(OrderID)?,
 rejectOrder(OfficeClerkName,CompanyName,Customer,OrderID,ItemID)
]
).

proc(transferMoneyAndInvoice(OfficeClerkName,CompanyName,StockClerk,OrderID,ItemID,
 CustomerID,CardNo,Amount),
 [achieve_TransferMoney(OfficeClerkName,CompanyName,CustomerID,
 OrderID,CardNo,Amount),
 mkInvoice(OfficeClerkName,CompanyName,StockClerk,ItemID,OrderID),
 orderShipped(OrderID)?,
 notifyShipment(OfficeClerkName,CompanyName,CustomerID,ItemID,OrderID)
]
).

proc(achieve_TransferMoney(OfficeClerkName,CompanyName,CustomerID,OrderID,CardNo,Amount),
 [
 transferMoneyForOrder(OfficeClerkName,CompanyName,CustomerID,
 OrderID,CardNo,Amount),
 transferMoneyAccepted(OrderID)?
]
).

/* process ConGolog model for the update-stock processor role */

proc(updateStockProcessor(StockClerk,Company),
 updateStock(StockClerk,Company)
).

proc(updateStock(StockClerkName,CompanyName),
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(val(orderCompanyName(orderID),CompanyName),
 and(stockRequestAccepted(orderID),

 B ! 17

 not(onHoldPut(orderID))
))),
 putOnHold(StockClerkName,CompanyName,item,orderID)
)
 #=
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(ordershipped(orderID),
 and(val(orderCompanyName(orderID),CompanyName),
 not(itemRmvFromHoldForShipment(orderID))
))),
 rmvFromHoldForShipment(StockName,CompanyName,item,orderID)
)
 #=
 ==>([orderID,item],
 and(val(orderItem(orderID),item),
 and(stockcancelled(orderID),
 and(val(orderCompanyName(orderID),CompanyName),
 not(stockRtndToInventory(orderID))
))),
 moveOnHoldBackToStock(StockClerkName,CompanyName,item,orderID)
)
).

/* process ConGolog model for the stock informant role */

proc(stockInformant(StockClerkName,CompanyName,OfficeClerk),
 processStockRequest(StockClerkName,CompanyName,OfficeClerk)
).

proc(processStockRequest(StockClerkName,CompanyName,OfficeClerk),
 ==>([orderID,itemID],
 and(requestedStock(itemID,orderID),
 not(stockRequestAnswered(orderID))
),
 replyStockRequest(StockClerkName,CompanyName,OfficeClerk,orderID,itemID)
)
 #=
 ==>([orderID,itemID],
 and(stockRequestCancelled(orderID,itemID),
 not(stockRtndToInventory(orderID))
),
 cancelStockRequestProcess(StockClerkName,CompanyName,OfficeClerk,
 orderID,itemID)
)
).

proc(replyStockRequest(StockClerkName,CompanyName,OfficeClerk,OrderID,ItemID),
 if(some(n,and(val(inStock(ItemID),n),n > 0)),
 acceptRequestStock(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),
 rejectStockRequest(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID)
)
).

proc(cancelStockRequestProcess(StockClerkName,CompanyName,OfficeClerk,OrderID,ItemID),
 [
 confirmCancelStock(StockClerkName,CompanyName,OfficeClerk,OrderID,ItemID),
 stockRtndToInventory(OrderID)?
]
).

proc(acceptRequestStock(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),
 [
 acceptStockRequest(StockClerkName,CompanyName,OfficeClerk,ItemID,OrderID),
 onHoldPut(OrderID)?
]
).

 B ! 18

/* process ConGolog model for the shipment processor role */

proc(shipmentProcessor(StockClerk,Company),
 processShipment(StockClerk,Company)).

proc(processShipment(StockClerk,Company),
 ==>([orderID,itemID,custID],
 and(val(orderItem(orderID),itemID),
 and(val(orderCustomer(orderID),custID),
 and(val(orderCompanyName(orderID),Company),
 and(invoiceMade(orderID),
 not(orderShipped(orderID))
)))),
 achieve_ItemShipped(StockClerk,Company,custID,orderID,itemID)
)
).

proc(achieve_ItemShipped(StockClerkName,CompanyName,Customer,OrderID,ItemID),
 [
 shipOrder(StockClerkName,CompanyName,Customer,OrderID,ItemID),
 orderShipped(OrderID)?
]).

/* process ConGolog model for the activities inside the bank clerk position */
proc(processTransactions,
 ==>([transID],
 and(debitReqTransRcvd(transID),
 not(debitReqTransProc(transID))
),
 pi([cust,cardNo,companyName,amt],[
 and(val(transCustomer(transID),cust),
 and(val(transCardNo(transID),cardNo),
 and(val(transCompanyName(transID),companyName),
 val(transAmount(transID),amt)
)))?,
 replyDebitRequest(transID,companyName,cust,cardNo,amt)
])
)
 #=
 ==>([transID],
 and(transferMoneyTransRcvd(transID),
 not(transferMoneyTransProc(transID))
),
 pi([cust,cardNo,companyName,amt],[
 and(val(transCustomer(transID),cust),
 and(val(transCardNo(transID),cardNo),
 and(val(transCompanyName(transID),companyName),
 val(transAmount(transID),amt)
)))?,
 achieve_TransferredMoney(transID,cust,cardNo,companyName,amt)
])
)
).

proc(replyDebitRequest(TransID,CompanyName,Cust,CardNo,Amt),
 if(some(n,(some(m,and(and(val(acctBalance(CardNo),n),val(creditLimit,m)),
 n - Amt >= m)))),
 acceptDebit(TransID,CompanyName,Cust,CardNo,Amt),
 rejectDebit(TransID,CompanyName,Cust,CardNo,Amt)
)
).

proc(achieve_TransferredMoney(TransID,Cust,CardNo,CompanyName,Amt),
 [
 transferMoney(TransID,Cust,CardNo,CompanyName,Amt),
 transferMoneyTransProc(TransID)?

 B ! 19

]
).

proc(transferMoney(TransID,Cust,CardNo,CompanyName,Amt),
 [
 debitAcct(CardNo,Amt),
 creditCompanyAccount(CompanyName,Amt),
 confirmTransferMoney(TransID,Cust,CardNo,CompanyName,Amt)
]
).

proc(creditCompanyAccount(CompanyName,Amt),
 pi([companyAccount], [
 val(companyAccountNo(CompanyName),companyAccount)?,
 creditAcct(companyAccount,Amt)
])
).

