On-line Adaptation of Sequential Mobile Processes
Running Concurrently

Massimiliano de Leoni!

Giuseppe De Giacomo!

Yves Lespérance?

Massimo Mecella!

!Dipartimento di Informatica e Sistemistica, SAPIENZA - Universita’ di Roma, Rome, Italy
{degiacomo,deleoni,mecella}@dis.uniromal.it

“Department of Computer Science and Engineering, York University, Toronto, Canada
lesperan@cse.yorku.ca

ABSTRACT

Process Management Systems (PMSs) are nowadays more
and more used as a supporting tool for cooperative processes
in pervasive and highly dynamic situations, such as emer-
gency situations, pervasive healthcare or domotics/home au-
tomation. But in all such situations, designed processes can
be easily invalidated since the execution environment may
change continuously due to frequent unforeseeable events. In
this work we deal with process adaptability, i.e., the ability
of the PMS to automatically cope with deviations, and we
devise a sound and complete technique suitable for sequen-
tial processes running concurrently. The technique is based
on a general framework which adopts the Situation Calcu-
lus, CONGOLOG and regression planning as basic elements.
The applicability to the challenging scenario of emergency
management is also shown.

Categories and Subject Descriptors

1.6.7 [Software Engineering]: Software/Program Verifi-
cation— Validation; H.4.1 [Information Systems Appli-
cations]: Office Automation— Workflow management

General Terms

Verification

Keywords

Situation Calculus, GOLOG, Process Management, Perva-
sive Scenarios, Smart Devices

1. INTRODUCTION

Process Managements Systems (PMSs) are currently used
mainly for handling the performance of traditional business
scenarios, such as banks or insurance companies. Besides

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

SAC' 09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

these settings, which present mainly static characteristics,
PMSs can be used also in pervasive and highly dynamic sit-
uations, such as emergency situations, pervasive healthcare
or domotics/home automation.

Let us consider, for example, a scenario for emergency
management as introduced in [5]. There, a PMS can be used
to coordinate the activities of emergency operators within
teams. The members of a team are equipped with PDAs
and are coordinated through the PMS residing on a leader
device (usually an ultra-mobile laptop). In such a PMS, pro-
cess schemas (in the form of Activity Diagrams) are defined,
describing different aspects, such as tasks/activities, control
and data flow, tasks assignment to services, etc. Every task
is associated to a set of conditions which ought to be true
for the task to be performed; conditions are defined on con-
trol and data flow (e.g., a previous task has to be completed
or a variable needs to be assigned a specific range of val-
ues). Devices communicate among themselves through ad
hoc networks [9]; and in order to carry on the whole pro-
cess, such devices need to be continually connected to the
PMS. However, this cannot be guaranteed: the environment
is highly dynamic and the movement of nodes (that is, de-
vices and related operators) within the affected area, while
carrying out assigned tasks, can cause disconnections and,
thus, unavailability of nodes. This means that in highly dy-
namic scenarios, processes can be easily invalidated since the
execution environment may change continuously because of
frequent unforeseeable events. In such cases, the process can
no longer proceed. Therefore, some type of process adapt-
ability is desirable in such scenarios. But what does “adapt-
ability” mean? Adaptability can be seen as the ability of the
PMS to reduce the gap from the wvirtual reality, the (ideal-
ized) model of reality that is used by the PMS to deliberate,
and the physical reality, the real world with the actual val-
ues of conditions and outcomes [3]. For instance in scenarios
of emergency management, in virtual reality PMS assumes
nodes to be always connected. But in physical reality when
nodes are moving, they can lose a wireless connection and,
hence, may be unable to communicate.

The reduction of this gap requires sufficient knowledge of
both kinds of realities (virtual and physical). Such knowl-
edge, harvested by the services performing the process’s
tasks, would allow the PMS to sense deviations and mod-
ify the process to ensure that its final goal is achieved. For
instance, in order to handle the disconnection of a node X,

the PMS might assign a task “Follow X” to another node Y
in order to maintain the connection.

In classical PMSs applied to business scenarios, the proce-
dure for handling possible run-time exceptions is generally
subject to acknowledgement by the person responsible for
the process. This authorization may be provided at run-
time for handling deviations caused by a single exceptional
event. Or, conversely, it is possible that the person gives
the “go-ahead” for all exceptions in a certain class, defining
how they should be handled. In any case, the adaptation is
manual and requires human intervention. Conversely, here
we are dealing with “mobile processes” in which participants
are equipped with “mobile” devices and “move” in the envi-
ronment to perform the tasks assigned. In these highly dy-
namic and pervasive scenarios, the execution environment
changes continuously during the whole execution in unex-
pected ways. Deviations are frequent events and often, due
to deadline constraints, they must often be handled very
quickly. Such a requirement rules out waiting for a per-
son’s acknowledgement: adaptation must be as automatic
and autonomic as possible.

The aims of this work are to improve upon what was pro-
posed in [5], an approach based on planning techniques in
AL That approach synthesizes, if this is possible, a linear
process (i.e., a process constituted only by a sequence of
actions) which can recover the situation. This process is in-
serted at a given point of the original process — exactly the
point in which the deviation was identified. In more details,
let’s assume that the current process is § = (41;d2) in which
41 is the part of the process already executed and ds is the
part of the process which remain to be executed where a
deviation is identified. Then the technique aims to synthe-
size a linear process h that deals with the deviation. The
adapted process is 8’ = (61;h;62) and achieves every goal
achieved also by §

In this paper, we propose a novel adaptation tech-
nique that is more efficient, being able to exploit concur-
rent branches. In [5], whenever a process needs to be
adapted, the different concurrently running branches are
all interrupted. And a “repair” sequence of actions h =
[a1,a2,...,ays]is placed before them. Thus, all the branches
can only resume execution after the “repair” sequence has
been executed. This was done because one cannot adapt the
branches individually without knowing whether the different
branches act upon the same variables/conditions. Adapting
branches one by one could cause other branches to be unable
to progress.

Here we refine that approach by automatically identify-
ing whether concurrent branches are independent (i.e., nei-
ther working on the same variables nor affecting some con-
ditions). If independent, we can automatically synthesize
a recovery process such that it affects only the interested
branch, without having to block the other branches.

The rest of the paper is organized as follows: Section 2 in-
troduces Situation Calculus and CoNGOLOG which are the
basis of our approach. Section 3 gives an overall idea of the
adaptation approach, pointing out the general framework,
whereas Section 4 presents the sound and complete tech-
nique for adapting “broken” processes. Section 5 outlines
an example stemming from emergency management scenar-
ios, showing the use of the proposed technique. Finally, Sec-
tion 6 concludes the paper by highlighting the novelty wrt.
the other research work and outlines future developments.

For the sake of brevity, we omit proofs; these can be found
in [4].

2. PRELIMINARIES

In this paper, we use the situation calculus (SitCalc) to
formalize adaptation in PMSs. The SitCalc is a logic for-
malism designed for representing and reasoning about dy-
namic domains [12]. In the SitCalc, a dynamic world is
modeled as progressing through a series of situations as
a result of various actions being performed. A situation
represents a history of actions occurred so far. The con-
stant So denotes the initial situation, and a special bi-
nary function symbol do(a,s) denotes the next situation
resulting from the performance of action a in situation
s. We abbreviate with do([a1,...,an—1,an],s) the term
do(an,do(an-1, ...,do(a1, s))), which denotes the situation
obtained from s by performing the sequence of actions
QA1y...,0n.

Conditions whose truth value may change are modeled by
means of fluents, which are predicates that take a situation
as their final argument. Fluents may be thought of as “prop-
erties” of the world whose values may vary across situations.
We can write first order formulas using fluents. A formula
is uniform in situation s if s is the only situation term that
appears in it. Sometimes, we use situation-suppressed for-
mulas; these are uniform formulas with all situation argu-
ments suppressed (e.g. G denotes the situation-suppressed
expression for G(s)).

Within the SitCalc, one can formulate action theories that
formulate how the world changes as the result of the avail-
able actions. For example, basic action theories [12] include
domain-independent foundational axioms that describe the
structure of the situations, (i) initial state axioms that de-
scribe what is true initially and (73) successor state axioms
(one per fluent) specifying how fluents change as results of
actions.!

The successor state axiom for a particular fluent F' cap-
tures the effects and non-effect of actions on F' and has the
following form:

F(£7d0(a75)) = CPF(faa:S) (1)

where ®r (%, a, s) is a formula fully capturing the truth-value
of fluent F' on objects £ when action a is performed in situ-
ation s (Z, a, and s are all the free variables in ®r).

On top of these theories of action, one can define complex
control behaviors by means of high-level programs expressed
in GoLoa-like programming languages [12]. In particular we
focus on CoNGoLoOG [2], which is equipped with primitives
for expressing concurrency. Table 1 summarizes the con-
structs of CONGOLOG used in this work. These constructs
are sufficient for defining every well-structured process as
defined in [7].

From a formal point of view, CONGOLOG programs are
terms. The execution of CONGOLOG programs is expressed
through the predicate Do(d, s, s’), which given the starting
situation s and a program J holds for all possible situa-
tions s' that result from executing § starting from s. Notice
that there may be more than one resulting situation since
CoNGOLOG programs can be non-deterministic (e.g., due to
concurrency).

!For simplicity, we do not consider precondition axioms
here; we assume that all actions are always possible.

Construct Meaning

a A primitive action

wZ.0[T] Nondeterministic choice of arguments Z

¢? Wait while the ¢ condition is false

(61;02) Sequence of two sub-programs 0; and
2

proc P(V) & Invocation of a procedure passing a vec-

tor ¥ of parameters

Exclusive choice between §; and 02 ac-
cording to the condition ¢

Tterative invocation of §

Concurrent execution

tf ¢ then 01 else o2

while ¢ do &
(31][62)

Table 1: ConGolog constructs

Finally, our adaptation procedure will make use of regres-
sion (see [1] and [12]). Let ¢(do([a1,...,ax], s)) be a SitCalc
formula with situation argument do([a1,...,ax],s). Then,
R%(p(do([ar,--.,an],s))) is the formula with situation s
which denotes the facts/properties that must hold before
executing ai,...,a, in situation s for ¢(do([ai,...,an],s))
to hold (aka the weakest preconditions for obtaining).
To compute the regressed formula R°(p(do([a1, .. ., axs], s)))
from ¢(do([a1, ..., axn],s)), one iteratively replaces every oc-
currence of a fluent with the right-hand side of its successor
state axiom 1 until every atomic formula has a situation
argument that is simply s.

3. GENERAL FRAMEWORK

The general framework which we introduce in this paper
is based on execution monitoring formally represented in the
SitCalc [8, 3]. After each action, the PMS has to align the
internal world representation (i.e., the virtual reality) with
the external one (i.e., the physical reality), since they could
differ due to unforeseen events.

In this framework, every process is considered as a CON-
GoLoG program and every task ¢ as a predefined sequence
of two actions, which are executed atomically by the PMS:

Start(w,t(z)) task t is started by service w on input z

Stop(w, t(y)) task t is completed by service w returning out-
put y.

In addition, there are two sets of actions setPicked(w) and
unset Picked(w) to update proper fluents to state that ser-
vice w is assigned to a task t and, hence, it cannot be as-
signed to any other.

Finally, we define the concept of capability, which is used
in binding tasks to services which are qualified to execute
them. In order to do that, we assume that the process
designers define the following situation-independent predi-
cates:

provide(w, c) service w provides capability ¢
require(z,b) task z requires the capability ¢

Before a process starts execution, the PMS takes a set of
facts denoting the initial context in the real environment
as initial situation Sp, together with program (i.e., the pro-
cess) do to be carried on, which the process designers devise
in a phase preceding the actual execution. For each execu-
tion step, the PMS, which has a complete knowledge of the
internal world (i.e., its virtual reality), assigns a task to a
service.

At each step, the PMS advances the process ¢ in the situ-
ation s by executing an action, resulting in a new situation
s’ with the process ¢’ remaining to be executed. The state
is represented as fluents that are defined on situations. The
current state corresponds to the boolean values of these flu-
ents evaluated on the current situation.

The process execution is continuously monitored to detect
any deviation between physical reality and virtual reality.
The PMS collects data from the environment through sen-
sors (here sensor is any software or hardware component
enabling to retrieve contextual information). If a deviation
is sensed between the virtual reality as represented by s’
and the physical reality as s,, the PMS internally generates
a discrepancy € = (e1,e2,...,€en), which is a sequence of
actions called exogenous events such that s, = do(¢&, s').”

Let us consider the case in which the remaining program-
process to be executed § is composed by n parallel sub-
processes running concurrently: d = [p1 || ... || Pn] where
every sub-process p; = [a1,i, ..., am,;] IS a sequence of simple
actions.®

The process designers are assumed to have associated ev-
ery sub-process p; with the goal G; that p; is meant to
achieve before the process enactment. In addition, the con-
current sub-processes are also annotated with an invariant
condition C, expressed in the SitCalc. Independence of
these sub-processes is maintained assuming this condition
C, which must hold in the actual situation. Checking for
independence is a key point of the adaptation technique pro-
posed in this work (see next section).

After the divergence between the virtual and physical re-
ality because of exogenous events, one or more concurrent
processes can become broken (i.e, they no longer achieve
the associated goals). For each broken branch p;, the re-
covery procedure generates a handler h;, which is an action
sequence that, when placed before p;, allows p; = (hi;pi)
to reach goal GG; and, while remaining independent of every
parallel branch p; (with j # 4) with respect to invariant C'.

4. ADAPTATION OF |INDEPENDENT
CONCURRENT PROCESSES

This section describes the approach we use to adapt a pro-
cess composed of concurrent sequential sub-processes. We
first give the formal foundations of our adaptation technique,
presenting the results that the “monitor and repair” cycle
relies upon. Then, we describe the “monitor and repair”
cycle, and discuss the conditions under which the technique
is sound and complete.

4.1 Formalization

In order to capture formally the concept of independence
among processes, we introduce some preliminary definitions.

Definition 1. A ground action a preserves the achieve-

ment of goal G by a sequence of ground actions [a1,...,an]
under condition C if executing a at any point during
[a1,...,an] does not affect any of the conditions that are

required for the goal G to be achieved by [a1, ..., as]. More-

2Note that the action sequence & might not be the one that
really occurred.

3If thsi assumption does not hold, the approach in [5] is still
usable and we do not propose any improvement.

over, executing a preserves C' in any situation. Formally:

PreserveAch(a, G, a1, ..., am], O)E Vs.C(s) =
C(do(a, s)) A
(G(do([ax, - ..

(G(do([az, - .-

7am]7 5)) = G(do([aaah s 7am]7 S))) A
7am]a S)) = G(do([aaa% s ,am], S))) A
(G(do(am, 5)) = G(do([a, am], 5))) A

(G(s) = G(do(a, s))).

We then extend the notion above to the case of action se-
quences:

Definition 2. A sequence of ground actions [a,...,am]
preserves the achievement of goal G by a sequence of ground
actions p under condition C' if every action in [a1,...,am]

preserves the achievement of goal G by p under condition
C. Formally:

PreserveAch([ay, . .., am], G, F,C)=
Ni.1<i<cn PreserveAch(ai, G,p,C).

Given this, we can then define a notion of independence of
processes.

Definition 8. A set of (sequential) processes pi,...,Dn
where each p; achieves goal G; are independent with re-
spect to goals G1 to G, under condition C if for all ¢ and all
j # i, p; preserves the achievement of goal G; by p; under
condition C. Formally:

IndepProcess([p1, . . ., pa), [G1,Gu], O)=
/\i:lgign /\j:lgjgn/\j;éi PreserveAch(p;, Gi, pi, C).

Basically, Definition 3 looks at the independence of each
and every pair of concurrent (sub-)processes. If we assume
that every process is composed by m actions, checking this
independence is polynomial in the number of actions and
concurrent processes. Specifically it requires

(Z) x m? = O(m? x n?) (2)

checks of PreserveAch(-) as in Definition 1 (one for each pair
of actions in the concurrent processes).

The following theorem shows that if n processes pi, ..., Pn
achieve their respective goals G1,...,G, and are indepen-
dent according to Definition 3 with respect to a certain con-
dition C, then any interleaving of the execution of the pro-
cesses’ actions will achieve each process’s goal, and condition
C will continue to hold. Let D the current domain theory.
Then:

THEOREM 1.

D k= IndepProcess([p1, - - - ,Pnl, [G1, - - - .Gr],C) =
Vs.G1(do([p1], 8)) A - .. A Gn(do([pn], 8)) A C(s) =
' Do((f I - |l 5, ') =
Gi(8YA...ANGL(s) ANC(5)].

Next we show that if the concurrent sub-processes are in-
dependent and some of them progress, then the parts of
them that remain to be executed will always remain inde-
pendent:

THEOREM 2. For each i < n and for all suffizes p; of P

D k= IndepProcess([p1, - - . ,Pn), [G1,Grn],C) =
IndepProcess ([Pl - .., Pn], [G1,Gyr], C).

The theorem follows from the fact that the conditions re-
quired for independence of a set of processes include those
required for independence of a set of suffixes of the processes.
Now we show that adding an action sequence h for han-
dling a discrepancy €, breaking a process, namely p;, will
preserve process independence, provided that h is built as
independent of every sub-process different from p; with re-
spect to condition C. Let R(G;,do(p;)) be the situation-
suppressed expression for regression R*(G;(do(pi, s)).

THEOREM 3. Let P, be the process broken by a discrep-

ancy €.

D k= IndepProcess ([ﬁ’l, P13 Py Digty -« D]
[G1,...,Gi—1,Gi,Git, ..., Gy, C) A
/\j:lgjgn/\j# (PreserveAch(@, G;,p;,0)
APreserveAch (5, R(Gs,ps), h, C) =

IndepProcess([Ph, - ., i1, [0 D), Disty - - Dol
[Gy,...,Gi—1,Gi,Git1,...,Gr],C).

)

The theorem stems from the application of Definition 3 con-
cerning independence of processes. Finally, building on the
previous results, we show that such an “independent han-
dler” 7 can be used for handling a discrepancy € breaking
a process p;, while allowing all other processes to execute
concurrently and achieve their respective goals:

THEOREM 4. Let P, be the process broken by a discrep-
ancy €.

-

D | Vs, & IndepProcess ([P, - - -, Pi_1, [N D], Pitty - - > Pl
G1,...,Gi1,Gi, Gy, ... ,Gu],C) A
G (do([p1], do(€,8))) A ... A Gi—1(do([pi—1], do(€, 8))) A
Gi+1(d0_§[ﬁ+1], do(€,8))) A ... A Gr(do([Pr],do(€,s))) A
Gi(do([h, p7], do(€, 5))) A C(do(€, 5)) =
vs".Do([py I - | Bica | [B3] 1| Piga I - -+ 1] D],
do(€,8),8") = Gi(s') A ... ANGi—1(s') AGi(s")
AGig1 (YN ... AGr(s) ANC(5")].

4.2 Monitoring-Repairing Technique

On the basis of the results in the previous section, we
propose in Figure 1 an algorithm for adaptation. This al-
gorithm, which is meant to run inside the PMS, relies on
2 arrays giving information about the status of the n pro-
cesses concurrently running: whether each is completed or
not and, in case of completion, whether successfully or un-
successfully. Initially every element of both arrays is set to
false.

Routine MONITOR relies on every process p; sending a mes-
sage to the PMS when it either terminates successfully (mes-
sage successfullycompleted(i)) or an exception is sensed
such that such p; can no longer terminate successfully® (mes-
sage exception(ic, Se) where i, is the “broken” process and

4That is D ¥ R°mow (Gi(do(pi, Snow))) where Spow is the
current situation after sensing a discrepancy.

completed([]: array of n elements
succeeded([]: array of n elements
INITIALLY()

1 fori< 1ton

2 do completed|[i] + false
3 succeeded[i] < false

SUB MONITOR([p1, . . -

s (G, .., G, O s6)

1 if (~IndepProcess([p1,...,pnl,[G1,...,GN],C))
2 then throw exception
3 while (3i.—completed[i])
4 do m < WAITFORMESSAGE()
5 if m = successfullyCompleted(i)
6 then completed[i] < true
7 succeeded[i] + true
8 if m = exception(ie, se)
9 then h < BUILDHANDLER(ic, Se, [P1, s Pn]s [G1,y...,Gr], C)
10 if h = fail
11 then completed[ic] + true
12 throw exception
13 else
14 Pie < [h;pic]
15 START(p;,)
FUNCTION BUILDHANDLER(%e, Se, [P1, .- -3 Pn], [G1,---,Gn],C)
1 fori+ 1ton
2 do p; < remains(p;, Se)
3 h < PLANBYREGRES(R(G;,, do(Ps.))),
4 Se; [Py .- Pn]/Pic, [G1, ..., Gn]/Gi., C)
FUNCTION PLANBYREGRES(Goaln, i, [P1y--+yPn—1],[G1y...,Gn-1],C)
1 if D = Goaly(s;)
2 then return nil
3 else a + CHOOSEACTION(Goaly, si,[p1,.-.,Pn—1],
4 [G1,...,Gn-1],C)
5 if @ = nil
6 then
7 return fail
8 else
9 h' + PLANBYREGRES(R®(Goaly(do(a, s))),
10 siy[P1s vy Pu—1],[G1y. oo, Gro1], C
11 if h = fail
12 then return fail
13 else return [h;a]
FUNCTION cHOOSEACTION(Goaly, si, [P1y ..., Pn—1],[G1,...,GN],C)

1 choose an action a s.t. {Is(=Goaly(s) A Goalp(do(a,s)))}A
2 Vil < i< (n—1) = PreserveAch(a,G;,pi,C)

3 A PreserveAch(p;,Goalp,a,C)

4 return o //even nil if there exists no selectable action

Figure 1: Pseudo-Code for the adaptation tech-

nique.

Se is the resulting situation after the discrepancy occur-
rence). We assume that the situation representing the cur-
rent state in the real word is known and that we have com-
plete knowledge of the fluents in that situation. Moreover
we assume that in every situation we can get access to the
fluent values in every past situation.’

The routine is applicable if all processes are independent
of each other. Therefore, before starting its monitoring and
repairing, it checks whether the process independence as-
sumption holds (lines 1,2). If not, it throws an exception,
assuming that in this case an alternative and more intrusive
approach would be used [5].

Later on, in the “monitor and repair” cycle, we listen
for arriving messages (line 4). If the message concerns the
successful completion of a sub-process, then the arrays are
updated accordingly (lines 5-7). Otherwise, the message is

This could be done by logging and storing them in a repos-
itory.

about a sub-process p;_ that has been broken by a discrep-
ancy. p;. is implicitly halted and we call function BUILD-
HANDLER to search for an adaptation handler h. If such
a handler h is found, it is prefixed to the broken process
pi., which becomes (h;p;.) (line 14). Finally, the adapted
process is started again (line 15).

How does the BUILDHANDLER function synthesize this
handler? Lines 1-2 update all processes p; so that they repre-
sent the subparts that remain to execute. Then, the function
invokes a regression planner (line 3) [11, 6], which searches
for a plan backwards from the goal description. Specifically,
the regression planner tries to generate a sequential plan
that, starting from the current situation s., arrives at some
situation sp such that p;, can be executed again and achieve
Gi., i.e. R°*"(Gi(do(p., s1)))-

The regression planning procedure PLANBYREGRESSION
recursively and incrementally builds a plan® checking that
every selected action is independent of each p; (with j # ic)
with respect to invariant condition C. Indeed, Theorems 3
and 4 ensure that if the handler only includes actions that
are independent of each p; (with j # 4.), then, for all possi-
ble interleavings, process (h; p;.) will achieve its goal G; and
every other process p; with j # i. will continue to achieve
its goals Gj.

Observe that Theorem 2 ensures if processes were orig-
inally independent regarding their respective goals and no
exceptions are raised, as they evolve, they remain indepen-
dent.

Next we focus on the soundness and completeness of the
algorithm proposed.

Let € be a discrepancy which breaks one process, namely
pi, and let § be the situation before the discrepancy occur-
rence. Then:

THEOREM 5 (SOUNDNESS). Ifthe algorithm in Figure 1
produces an handler:

hy = BUILDHANDLER(%, do(€, 5), [p1, - - -, Pn],
[G1,...,Gx],C)

and

IndepProcess([p1, ..., pn], [G1,-..,Gn], C)A
G1(do(p1,3)) A ... A Gyp(do(pn,3))

then

Vs'.Do([1 || - || Fia || (Bs; 7) | Bigr || - || B,
do(€,5),5') = G1(s') A Gr(s") A C(s")]

and

IndepProcess([py || - .. || Pi-1 || (hi; 5i) || Pigr || - - || Puls
[G1,...,Gn],C

THEOREM 6
3h. (V8" Do([|| ... | Bier || (Bs 5 1] Biga || - || ol
do(,5),5') = G1(s') A ... AGn(s') AC(s"))

A IndepProcess([p1, . . . i1 (B i)y s i1, - » Puls
[G1,...,Gx],0)

then BUILDHANDLER returns a repairing handler:

(COMPLETENESS). If

h= BUILDHANDLER(%, do(€, 3), [p1, - - - , Pn],
[Gy,...,G,],C)

SHere we assume that plans are returned in form of CON-
GOLOG programs.

Go 1o destination A

at(a4, A)

Compile Questionnaire Y
about destination A CD

Go lo destination A
Q1Compiled(A)

al{wa. A) Find a pwxylde'\f'ice

for communicating

3y proxy(a4.y)

Go to destination A

at(w1, A)

Take photos of
destinafion A

photosTaken()

Send information
about Injured
at desination A

infoSent(A)

First assistance of injured
about destination A

assisted()

Ga to destination A

at(a5, A)

Compile a questionnaire
about injured people

Q2Compiled({A)

Evaluates phatos
& questionnaire

evaluationOK()

Send questionnaires, photos and
the number of injured pecple to the head-quarter

Allsent(})

.

Figure 2: A possible process to be carried on in
disaster management scenarios

such that
Vs Do([p1 || .- || Fior | (Bs) || Fiea I --- || B,
do(€,5),8") = Gi(s') A ... ANGr(s") AN C(s)

A IndepProcess([p1, ..., (h;pi),pn], [G1,- .-, Giy...,Gr],C)

Note that the above procedure becomes easily realizable
in practice if the PMS works in a finite domain (e.g., using
discretized positions based on actual GPS positions) and
propositional logic is sufficient. In fact, one can use an off-
the-shelf regression planner such those mentioned in [11, 6].

5. AN EXAMPLE FROM EMERGENCY
MANAGEMENT

In this section, we discuss an example of adaptation in-
volving emergency management. A Mobile Ad hoc Network
(MANET) is a P2P network of mobile nodes capable of com-
municating with each other without an underlying infras-
tructure. Nodes can communicate with their own neighbors
(i.e., nodes in radio-range) directly by wireless links. Non-
neighbor nodes can communicate as well, by using other
intermediate nodes as relays that forward packets toward
destinations. The lack of a fixed infrastructure makes this
kind of network suitable for all scenarios where one needs to
deploy quickly a network, but the presence of access points
is not guaranteed, as in emergency management.

Coordination and data exchange requires MANET nodes to
be continually connected each other. But this is not guar-
anteed in a MANET. The environment is highly dynamic,
since nodes move in the affected area to carry out assigned
tasks. Movements may cause possible disconnections and,
so, unavailability of nodes, and, consequently, unavailability
of provided services. Therefore processes should be adapted,
not simply by assigning tasks in progress to other services,
but also considering possible recovery of the services.

Figure 2 shows a (slightly simplified) example of a possible
scenario for the aftermath of an earthquake. Some actors are
assessing the area for dangerous partially-collapsed build-
ings. Meanwhile others are giving first aid to the injured
people and sending information about required ambulances
and filling in a questionnaire about the injured people, which
are required by the headquarter. The corresponding CON-
GoLOG program is depicted in Figure 3.

In order to formalize the scenario in Figure 2 we rely on
two fluents independent of any specific domain:

started(w,t, s) is true in situation s, if task ¢ has been
started by service w and not yet stopped. For all task
t in starting situation Sp, we have started(t,So) =
false

busy(w,s) is true in situation s, if service w has been
assigned to a task. For all service w we have
busy(w, So) = false.

Their successor-state axioms are:

busy(w, do(z, s)) < —busy(w, s) A x = setPicked(w)V
busy(w, s) A x # unset Picked(w)

started(w,t, do(z, s)) & Vz.mstarted(z,t, s)A
Jdo.z = Start(w,t(0)) V started(w,t, s)
AVi.x # Stop(w,t(7)).

In addition, we use some domain-specific fluents. In the
activity diagram in Figure 2, we have labeled every task with
the fluents (in situation-suppressed form) that become true
after the task’s execution. For these fluents to become true
(i.e., the respective tasks to achieve their post-conditions),
it is ncessary that the respective tasks be correctly started
and stopped through the proper actions. For sake of brevity,
we discuss only those fluents that we are going to use in
the example (see later in this section for the successor state
axioms):

proxy(w,y, s) is true if in situation s, service y can work
as proxy for service w. In the starting situation Sp for
every pair of services w,y we have prozy(w,y, So) =
false, denoting that no proxy has yet been chosen for
w.

at(w,p, s) is true if service w is located at coordinate p =
(pz,py,p-) In situation s. In the starting situation
Sop, for each service w;, we have at(w;,p;, So) where
location p; is obtained through GPS sensors.

infoSent(d, s) is true in situation s if the information con-
cerning injured people at destination d has been suc-
cessfully forwarded to the headquarter. For all desti-
nations d infoSent(d, So) = false.

evaluationOK (s) is true if the photos taken are judged
as having a good quality, with evaluationOK(Sp) =
false.

MAIN()
1 m.wolavailable(wo) A Ve.require(c, QuestBuildings)
2 = provide(wo, ¢)];
3 set Picked(wo);
4 m.wi[available(wy) A Ve.require(c, TakePhoto)
5 = provide(wi, ¢)];
6 set Picked (w1);
7 mw.walavailable(ws) A Ve.require(c, EvalPhoto)
8 = provide(ws, ¢)];
9 setPicked(w2);
10 w.wslavailable(ws) A Ve.require(c, FirstAid)
11 = provide(ws, ¢)];
12 set Picked(ws);
13 m.walavailable(ws) A Ve.require(c, InformInjured)
14 = provide(wa, ¢)];
15 setPicked(ws);
16 m.wsl[available(ws) A Ve.require(c, InjuredQuest)
17 = provide(ws, ¢)];

18 setPicked(ws);
19 (EVALTAKE(wo, w1, w2, Loc,Q1, F) || AssISTINJURED(ws, Loc) ||
20 REPORTASSISTANCEINJURED (w4, ws, Loc, Q2));

21 wunsetPicked(wp); unset Picked(w); unset Picked(ws);
22 wunsetPicked(ws); unset Picked(wa); unset Picked(ws);
23 w.we[available(ws) A Ve.require(c, SendByGPRS)

24 = provide(ws, ¢)];

25 setPicked(we);

26 Start(ws, SendByGPRS({Q1, F, Q2}));

27 Stop(we, SendByGPRS({}));

EVALTAKE(wo, w1, w2, Loc,Q1, F)
Start(wo, QuestBuildings({Loc}));
Stop(wo, QuestBuildings({Q1}));
Start(wi,Go({Loc}));

Stop(w1, Go({LocGone}));
Start(w1, TakePhoto({Loc}));
Stop(w,, TakePhoto({F'}));
Start(ws,Evaluate({Loc, Q1, F}));
Stop(ws, Evaluate({o}));

WU W

AssISTINJURED (w3, Loc)

1 Start(ws,Go({Loc}));

2 Stop(ws, Go({LocGone}));
3 Start(ws,FirstAid({Loc}));
4 Stop(ws,Firsthid());

5

REPORTASSISTANCEINJURED (w4, ws, Loc, Q2)
Start(wa, Go({Loc}));

Stop(wa, Go({LocGone}));
Start(wa, FindProxy({Loc}));
Stop(wa, FindProxy());

Start(wa, InformInjured({Loc}));
Stop(wa, InformInjured());
Start(ws,Go({Loc}));

Stop(ws, Go({LocGone}));
Start(ws, InjuredQuest({Loc}));
Stop(ws, InjuredQuest({Q=21}));

O O WD W

=

Figure 3: The ConGolog program corresponding to
the process in Figure 2

assisted(z,s) is true if the injured people in area z have
been supported through a first-aid medical assistance.
We have assisted(Sp) = false.

For this example, we assume that the process designers
have defined the goals of the three concurrent sub-processes
as follow:

Gi1(s) = Q1Compiled(A, s) A EvaluationOK (s)
G2(s) = assisted(A, s)
Ga(s) = Q2Compiled(A, s) A infoSent(A, s)

[

In addition, we are using in this example the invariant con-
dition C(s) = true for all situations s, meaning that we are
not using any assumption to show process independence.

Before formally specifying the aforementioned fluents, we
define some abbreviations:

available(w, s): which states a service w is available if it
is connected to the coordinator device (denoted by
Coord) and is free.

connected(w, z, s): which is true if in situation s the ser-
vices w and z are connected through possibly multi-
hop paths.

neigh(w, z, s): which holds if the services w and z are in
radio-range in the situation s.

Their definitions are as follows:

neigh(wo, wi, s)=at(wo, po,) A at(wi, p1, s)
Al po = p1 [I< rrange
connected(wo, wi, s)dzefneigh(wo, wi, 8)
VAws.neigh(wo, we, s)
Aneigh(wz, w1, s)
VAws, wz.neigh(wo, w2, s)
Aneigh(wz,ws, s) A neigh(ws, w1, s)
VIws, ws, w4 . . .
V...V 3wz, ws, ..., wyneigh(wo, w2, s)
Aneigh(wz,ws, s) A neigh(ws, w1, s) A ...
available(w, s)=-busy(w, s) A connected(w, Coord, s))

In the above, n is the actual number of services.
The successor state axioms for the aforementioned fluents
are as follows:
at(w, p,do(z, s)) &
((V p,q. ¢ # Stop(w, Go(q))) A at(w,p, s))V
x = Stop(w,Go(p)) A started(w, Go, s)
prozy(w,y,do(z, s)) &
Jw. (z = Stop(w,FindProxy())A
started(w,FindProxy, s) A isClosest Avail(w, y, s))
V(prozy(w,y,s) A Vw. z # Stop(w, FindProxy()))
infoSent(d,do(z,s)) &
infoSent(w, s) V minfoSent(w, s)A
Jw.(z = Stop(w, InformInjured()) A at(w,d, s)A
started(w, InformInjured, s)A
Jy.(prozy(w,y, z) A neigh(w, y, s)))
evaluationOK (do(z, s)) <
evaluationOK (s) V (mevaluationOK (s)A
Jw.(z = Stop(w,EvalPhoto(0)) A o = isOk A
photosTaken(s) A started(w,EvalPhoto, s)))
assisted(z,do(z, s)) <
assisted(z,s) V big(—assisted(z,s)A
Jw.(z = Stop(w, FirstAid()) A at(w, z, s)A
started(w,FirstAid, s)))

In the above, we use the abbreviation
1sClosest Avail(w,y, s), which holds if y is the geo-
graphically closest service to w that is able to act as proxy;
if there is no available proxy in w’s radio range, y = nil:

isClosest Avail(w, y, s) = (available(y) A at(w, pw, $)A
at(y,py, s) A\ provide(y, proxy) A neigh(w,y, s)
AVz.(z # y A available(z) A provide(z, proxy) =
P2 = pw >l py = pw 1))
V(y = nil A =3z.(available(z) A provide(z, proxy)
Aneigh(w, z, s)))

Note that we have not defined any rule to handle discrep-
ancies. To show how our automatic adaptation technique is

meant to work, let us consider an example of discrepancy
and a handler plan to cope with it.

Firstly, let us consider the case where the process exe-
cution reaches line 6 of procedure REPORTASSISTANCEIN-
JURED. At this stage, a proxy has been found, namely wy,
and the information about injured people is about to be
sent to the headquarter to request a sufficient number of
ambulances to take them to a hospital. Let 5§ be the current
situation. Of course, wy, is selected to be in radio range of
actor wa: neigh(wa, wpr, 5).

Let’s assume now that w,. moves away for any rea-
son to a position p’. This corresponds to a dis-
crepancy € = [ei;ez2] with e; = Start(wp,,Go(p')) and
e2 = Stop(wpr,Go(p')). So the new current situation is
se = do(€,5) where neigh(was,wp,, s¢) = false. Conse-
quently, action Stop(wp,,InformInjured()) does not make
infoSent(A) become true as it was supposed to.

Since sub-processes EVALTAKE, ASSISTINJURED and RE-
PORTASSISTANCEINJURED are independent, the latter, which
is affected by the discrepancy, can be repaired without hav-
ing to stop the other processes.

The goal given to the regression planner is
Goaly, = photoTaken() A infoSent(A) A Q1Compiled(A)
in situation-suppressed form. The following plan achieves
this goal while preserving independence:

Start(wpr, Go({A}));
Stop(wyr,Go({A}));

Start(ws, InformInjured({A}));
Stop(ws, InformInjured());

Adaptation can be performed by inserting it after line 5
of procedure REPORTASSISTANCEINJURED, ensuring that it
can achieve its goal without interfering with the other sub-
processes.

6. CONCLUDING REMARKS

In this paper we have proposed a sound and complete
technique for adapting sequential processes running concur-
rently. Such a technique improves, under the assumption
of independence of the different processes, the one proposed
by de Leoni et al. in [5], while adopting the same general
framework based on planning techniques in Al

In [5], whenever a process needs to be adapted, the differ-
ent concurrently running branches are all interrupted. And
a sequence of actions h = [a1,as,...,a,] is placed before
them. Therefore, all of the branches could only resume
after the execution of the whole sequence. The adaption
technique proposed here works on identifying whether con-
current branches are independent (i.e., neither working on
the same variables nor affecting some conditions). And, if
independent, it can synthesize a recovery process that af-
fects only the branch of interest, without having to block
the other branches.

As in [5, 10], the approach proposed is not based on the
idea of capturing expected exceptions, as most current ap-
proaches do, defining the behaviors triggered when special
events occur. Conversely, our technique models (a subset
of) the running environment and the actions’ effects, with-
out considering possible special exceptional events.

Note that the proposed technique is made possible by an-
notating processes in a “declarative” way. We assume that
the process designer can annotate actions/sequences with
the goals they are intended to achieve, and on the basis of

such declared goals, independence among branches can be
verified, and then a recovery process which affects only the
branch of interest, without side-effects on the others, is syn-
thesized.

We are currently developing a running prototype that ex-
ploits the technique proposed here by using the INDIGOLOG
module developed by the Cognitive Robotics Group of the
University of Toronto and state-of-the-art planners in the
AT literature.

7. REFERENCES

[1] J. Baier and S. MclIlraith. On planning with programs
that sense. In Proceedings of the 10th International
Conference on Principles of Knowledge Representation
and Reasoning (KR06), pages 492-502, Lake District,
UK, June 2006.

[2] G. De Giacomo, Y. Lespérance, and H. J. Levesque.
ConGolog, A Concurrent Programming Language
based on the Situation Calculus. Artificial
Intelligence, 121(1-2):109-169, 2000.

[3] G. De Giacomo, R. Reiter, and M. Soutchanski.
Execution Monitoring of High-Level Robot Programs.
In Proceedings of the Sizth International Conference
on Principles of Knowledge Representation and
Reasoning (KR’98, pages 453-465, 1998.

[4] M. de Leoni. Adaptive Process Management in
Pervasive and Highly Dynamic Scenarios. PhD thesis,
SAPIENZA - University of Rome, 2009.

[6] M. de Leoni, M. Mecella, and G. De Giacomo. Highly
Dynamic Adaptation in Process Management Systems
Through Execution Monitoring. In In Proceedings of
Business Process Management, 5th International
Conference, BPM 2007, pages 182-197, 2007.

[6] M. Ghallab, D. Nau, and P. Traverso. Automated
Planning: Theory and Practice. Morgan Kaufmann,
2004.

[7] B. Kiepuszewski, A. H. ter Hofstede, and C. Bussler.
On structured workflow modelling. In Proceedings of
Advanced Information Systems Engineering, 12th
International Conference CAiSE 2000, pages 431-445,
2000.

[8] Y. Lesperance and H.-K. Ng. Integrating Planning
into Reactive High-level Robot Programs. In
Proceedings of the 2nd International Cognitive
Robotics Workshop, 2000.

[9] B. S. Manoj and A. Hubenko Baker. Communication
Challenges in Emergency Response. Communincation
of ACM, 50(3):51-53, 2007.

[10] M. Mecella. Adaptive Process Management. Issues
and (Some) Solutions. In Proceedings of the Third
IEEE Workshop on Agile Cooperative Process-Aware
Information Systems (ProGility 2008) @ IEEE
WETICE’08, 2008.

[11] J. L. Pollock. The logical foundations of
goal-regression planning in autonomous agents.
Artificial Intelligence, 106(2):267-334, 1998.

[12] R. Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

