
Golog Speaks the BDI Language

Sebastian Sardina1 and Yves Lespérance2

1 RMIT University, Melbourne, Australia
2 York University, Toronto, Canada

Abstract. In this paper, we relate two of the most well developed approaches
to agent-oriented programming, namely, BDI (Belief-Desire-Intention) style pro-
gramming and “Golog-like” high-level programming. In particular, we show how
“Golog-like” programming languages can be used to develop BDI-style agent
systems. The contribution of this paper is twofold. First, it demonstrates how
practical agent systems can be developed using high-level languages like Golog
or IndiGolog. Second, it provides BDI languages a clear classical-logic-based
semantics and a powerful logical foundation for incorporating new reasoning ca-
pabilities not present in typical BDI systems.

1 Introduction

BDI (Belief-Desire-Intention) agent programming languages and platforms (e.g., PRS
[11], AgentSpeak and Jason [20, 2], Jack [4], and JAM [14]) and the situation calculus-
based Golog high-level programming language and its successors (e.g., ConGolog [6],
IndiGolog [7, 24], and FLUX [26]) are two of the most well developed approaches within
the agent-oriented programming paradigm. In this paper, we analyze the relationship be-
tween these two families of languages and show that BDI agent programming languages
are closely related to IndiGolog, a situation calculus based programming language where
programs are executed on-line in a dynamic environment, supporting sensing actions to
acquire information from the environment and exogenous events.

BDI agent programming languages were conceived as a simplified and operational-
ized version of the BDI (Belief, Desire, Intention) model of agency, which is rooted in
philosophical work such as Bratman’s [3] theory of practical reasoning and Dennett’s
theory of intentional systems [8]. Practical work in the area has sought to develop pro-
gramming languages that incorporate a simplified BDI semantics basis that has a com-
putational interpretation. An important feature of BDI-style programming languages
and platforms is their interleaved account of sensing, deliberation, and execution [19].
By executing as they reason, BDI agents reduce the likelihood that decisions will be
made on the basis of outdated beliefs and remain responsive to the environment by
making adjustments in the steps chosen as they proceed. Because of this, BDI agent
programming languages are well suited to implementing systems that need to operate
in “soft” real-time scenarios [16, 1]. Unlike in classical planning-based architectures,
execution happens at each step. The assumption is that the careful crafting of plans’
preconditions to ensure the selection of appropriate plans at execution time, together
with a built-in mechanism for retrying alternative options, will usually ensure that a
successful execution is found, even in the context of a changing environment.

In contrast to this, high-level programming languages in the Golog line aim for a
middle ground between classical planning and normal programming. The idea is that
the programmer may write a sketchy non-deterministic program involving domain spe-
cific actions and test conditions and that the interpreter will reason about these and
search for a valid execution. The semantics of these languages is defined on top of the
situation calculus, a popular predicate logic framework for reasoning about action [23].
The interpreter for the language uses an action theory representing the agent’s beliefs
about the state of the environment and the preconditions and effects of the actions to
find a provably correct execution of the program. By controlling the amount of nonde-
terminism in the program, the high-level program execution task can be made as hard
as classical planning or as easy as deterministic program execution. In IndiGolog, this
framework is generalized to allow the programmer to control planning/lookahead and
support on-line execution and sensing the environment.

In this paper, we show how a BDI agent can be built within the IndiGolog situation
calculus-based programming framework. More concretely, we describe how to trans-
late an agent programmed in a typical BDI programming language into a high-level
IndiGolog program with an associated situation calculus action theory, such that (i) their
ultimate behavior coincide; and (ii) the original structure of the propositional attitudes
(beliefs, intentions, goals, etc.) of the BDI agent and the model of execution are pre-
served in the IndiGolog translation. We first do this for what we call the core engine
of BDI systems, namely, the reactive context-sensitive expansion of events/goals. Af-
ter this, we show how to accommodate more sophisticated BDI reasoning mechanisms
such as goal failure recovery. In doing so, we highlight the potential additional advan-
tages of programming BDI agents in the situation calculus, by pointing out different
reasoning about action techniques that IndiGolog BDI agents may readily incorporate.

2 Preliminaries

2.1 BDI Programming

BDI agent systems were developed as a way of enabling abstract plans written by
programmers to be combined and used in real-time, in a way that is both flexible and
robust. A BDI system responds to events, the inputs to the system, by selecting a plan
from the plan library, and placing it into the intention base, thus committing to the plan
for responding to the event/goal in question. The execution of this plan-strategy may,
in turn, post new subgoal events to be achieved. The plan library stands for a collection
of pre-defined hierarchical plans indexed by goals (i.e., events) and representing the
standard operations in the domain. There are a number of agent programming languages
and development platforms in the BDI tradition, such as PRS [11], AgentSpeak and
Jason [20, 2], Jack [4], SPARK [17], Jack [4], and JADEX [18]. Our discussion is based
on the CAN (Conceptual Agent Notation) family of BDI languages [27, 25], which are
AgentSpeak-like languages with a semantics capturing the common essence of typical
BDI systems.

A BDI agent Υ is a configuration tuple 〈Π,B,A, Γ 〉, where B stands for the agent’s
current beliefs about the world, generally a set of atoms,Π is the (static) plan-library,A
is the sequence of actions executed so far, and Γ is the multi-set of intentions the agent

is currently pursuing. The plan library contains plan rules of the form e : ψ ← P ,
where e is an event/goal that triggers the plan, ψ is the context for which the plan may
be applied (i.e., the precondition of the rule), and P is the body of the plan rule—P is a
reasonable strategy in order to resolve the event/goal e when condition ψ is believed to
hold. The plan-body P is a program built from primitive actionsA that the agent can ex-
ecute directly (e.g., drive(loc1, loc3)), operations to add +b and delete−b beliefs, tests
for conditions ?φ, and (internal) subgoaling event posting !e (e.g., !Travel(mel, yyz)).
Complex plan bodies are built with the usual sequence ; and concurrency ‖ constructs.
There are also a number of auxiliary constructs internally used when assigning seman-
tics to programs: the empty (terminating) program nil; the construct P1 . P2, which
tries to execute P1, falling back to P2 if P1 is not possible; and Lψ1 : P1, . . . , ψn : PnM,
which encodes a set of guarded plans. Lastly, the intention base Γ contains the current,
partially instantiated, plan-body programs that the agent has already committed to for
handling some events—since Γ is a multi-set it may contain a program more than once.

As with most BDI agent programming languages, the Plotkin-style operational se-
mantics of CAN closely follows Rao and Georgeff’s abstract interpreter for intelligent
rational agents [22]: (i) incorporate any pending external events; (ii) select an intention
and execute a step; and (iii) update the set of goals and intentions. A transition relation
C −→ C ′, on so-called configurations is defined by a set of derivation rules and spec-
ifies that executing configuration C a single step yields configuration C ′. A derivation
rule consists of a, possibly empty, set of premises, typically involving the existence of
transitions together with some auxiliary conditions, and a single transition conclusion
derivable from these premises. Two transition systems are used to define the semantics
of the CAN language. The first transition relation −→ defines what it means to execute
a single intention and is defined in terms of intention-level configurations of the form
〈Π,B,A, P 〉 consisting of the agent’s plan-library Π and belief base B, the actions A
executed so far, and the program P being executed. The second transition relation =⇒
is defined in terms of the first and characterizes what it means to execute a whole agent.

So, the following are some of the intention-level derivation rules for the language:3

∆ = {ψ : P | e : ψ ← P ∈ Π}
〈Π,B,A, !e〉 −→ 〈Π,B,A, L∆M〉Ev

〈Π,B,A, P1〉 −→ 〈Π,B′,A′, P ′1〉
〈Π,B,A, P1 � P2〉 −→ 〈Π,B′,A′, P ′1 � P2〉

�

B |= φθ

〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?
ψ : P ∈ ∆ B |= ψθ

〈Π,B,A, L∆M〉−→〈Π,B,A, Pθ � L∆ \ {ψ : P}M〉 Sel

Derivation rule Ev captures the first stage in the plan selection process for a (pending)
event-goal e, in which the agent collects, from the plan library, the set L∆M of the so-
called “relevant” (guarded) plans that may be used to resolve the pending event. Such
set is later used by rules Sel and � to commit to and execute, respectively, an applicable
strategy/plan P (one whose condition ψ is believed true). Notice in rule Sel how the
remaining non-selected plans are kept as backup plans as the second program in the �

construct. Finally, rule ? accounts for transitions over a basic test program.

3 Configurations must also include a variable substitution θ for keeping track of all bindings
done so far during the execution of a plan-body. For legibility, we keep substitutions implicit
in places where they need to be carried across multiple rules (e.g., in rule ?).

On top of these intention-level derivation rules, the set of agent-level derivation rules
are defined. Basically, an agent transition involves either assimilating external events
from the environment or executing an active intention. Also, in the rules below, the
following auxiliary function is used to represent the set of achievement events caused
by belief changes: Ω(B,B′) = {!b− | B |= b, B′ 6|= b} ∪ {!b+ | B 6|= b, B′ |= b}.

E is a set of external events B′ = (B \ {b | −b ∈ E}) ∪ {b | +b ∈ E}
〈Π,B,A, Γ 〉 =⇒ 〈Π,B′,A, Γ] {!e | !e ∈ E}]Ω(B,B′)〉

Aext

P ∈ Γ 〈Π,B,A, P 〉 −→ 〈Π,B′,A′, P ′〉
〈Π,B,A, Γ 〉 =⇒ 〈Π,B′,A′, (Γ \ {P})] {P ′}]Ω(B,B′)〉

Aexec

Rule Aext assimilates a set of external events, both achievement ones, of the form !e,
as well as belief updates events, of the form +b or −b—both the belief and intention
bases of the agent may be updated. Note that, by means of auxiliary function Ω, a new
(achievement) event of the form !b+ or !b− is posted for each belief b that changes due
to an external belief update; such an event may in turn trigger some new behavior.

Rule Aexec states that the agent may evolve one step if an active intention P can be
advanced one step with remaining intention P ′ being left to execute. In such a case, the
intention base is updated by replacing P with P ′ and including the belief update events
produced by potential changes in the belief base. Observe that the intention base is a
multi-set, which means that it may contain several occurrences of the same intention.

Relative to the above derivation rules, one can formally define the meaning of an
agent as its possible execution traces. (See [27, 25] for the complete semantics.)

Definition 1 (BDI Execution). A BDI execution E of an agent Υ0 = 〈Π,B0,A0, Γ0〉
is a, possibly infinite, sequence of agent configurations Υ0 · Υ1 · . . . · Υn · . . . such that
Υi =⇒ Υi+1, for all i ≥ 0.

2.2 High-Level Programming in Golog

The situation calculus [23] is a logical language specifically designed for represent-
ing dynamically changing worlds in which all changes are the result of named actions.
The constant S0 is used to denote the initial situation where no actions have yet been
performed. Sequences of actions are built using the function symbol do: do(a, s) de-
notes the successor situation resulting from performing action a in situation s. Relations
whose truth values vary from situation to situation are called fluents, and are denoted by
predicate symbols taking a situation term as their last argument (e.g., Holding(x, s)). A
special predicate Poss(a, s) is used to state that action a is executable in s.

Within this language, we can formulate action theories describing how the world
changes as the result of the available actions. For example, a basic action theory [23]
includes domain-independent foundational axioms to describe the structure of situa-
tions, one successor state axiom per fluent (capturing the effects and non-effects of
actions), one precondition axiom per action, and initial state axioms describing what is
true initially (i.e., what is true in the initial situation S0).

On top of situation calculus action theories, logic-based programming languages
can be defined, which, in addition to the primitive actions, allow the definition of com-
plex actions. Golog [15], the first situation calculus agent language, provides all the

usual control structures (e.g., sequence, iteration, conditional, etc.) plus some nonde-
terministic constructs allowing the programmer to write “sketchy” plans. ConGolog [6]
extends Golog to support concurrency. To provide an intuitive overview of the language,
consider the following nondeterministic program for an agent that goes to work in the
morning (shamelessly taken from Ryan Kelly):

proc goToWork
ringAlarm; (hitSnooze; ringAlarm)∗; turnOffAlarm;
(πfood)[Edible(food)?; eat(food)];
(haveShower ‖ brushTeeth);
(driveToUni | trainToUni);
(Time < 11 : 00)?

endProc

While this high-level program provides a general strategy for getting up and going to
work, it is underspecified, and many details, such as what to eat and how to travel to
work, are left open. Program δ1 | δ2 nondeterministically chooses between programs
δ1 and δ2, πx. δ(x) executes program δ(x) for some legal binding for variable x, and
δ∗ performs δ zero or more times. Concurrency is supported by the following three
constructs: (δ1‖δ2) expresses the concurrent execution (interpreted as interleaving) of
programs δ1 and δ2; δ1〉〉δ2 expresses the concurrent execution of δ1 and δ2 with δ1
having higher priority; and δ‖ executes δ zero or more times concurrently. Note that
a concurrent process may become (temporarily) blocked when it reaches a test/wait
action φ? whose condition φ is false (or a primitive action whose precondition is false).
Test/wait actions can also be used to control which nondeterministic branches can be
executed, e.g. [(φ?; δ1) | (¬φ?; δ2)], and to constrain the value of a nondeterministically
bound variable, e.g., πx.[φ(x)?; δ(x)]. Finally, the language also accommodates the
standard if-then-elses, while loops, and recursive procedures.

Finding a legal execution of a high-level program is at the core of the whole ap-
proach. Originally, Golog and ConGolog programs were intended to be executed of-
fline, that is, a complete execution was obtained before committing even to the first ac-
tion. However, IndiGolog [7, 24], the latest language within the Golog family, provides
a formal logic-based account of interleaved planning, sensing, and action by executing
programs online and using a specialized new construct Σ(δ), the search operator, to
perform local offline planning when required.

Roughly speaking, an online execution of a program finds a next possible action, ex-
ecutes it in the real world, then obtains sensing information, and repeats the cycle until
the program is completed. Formally, an online execution is a sequence of so-called on-
line configuration of the form (δ, σ), where δ is a high-level program and σ is a history
(see [7] for its formal definition). A history contains the sequence of actions executed
so far as well as the sensing information obtained. Online executions are characterized
in terms of the following two predicates [6]: Final(δ, s) holds if program δ may legally
terminate in situation s; and Trans(δ, s, δ′, s′) holds if a single step of program δ in sit-
uation s may lead to situation s′ with δ′ remaining to be executed. In the next section,
we will generalize the notion of online execution to suit our purposes.

3 BDI Programming in IndiGolog

Programming a BDI agent in the situation calculus amounts to developing a special
basic action theory and a special IndiGolog high-level agent program to be executed
with it. From now on, let Υ = 〈Π,B,A, Γ 〉 be the BDI agent to program in IndiGolog.

3.1 The BDI Basic Action Theory

We start by showing how to obtain an action theory DΥ for our agent Υ . We assume
that Υ is stated over a first-order language LBDI containing finitely many belief and
event atomic relations, namely, b1(x1), . . . , bn(xn) and e1(x1), . . . , em(xn).

Let us then define what the fluents and actions available in the situation calculus
language LsitCalc are. First, for every belief atomic predicate b(x) in LBDI , the lan-
guage LsitCalc includes a relational fluent b(x, s) together with two primitive actions
addb(x) and delb(x) which are meant to change the fluent’s truth value. Second, for
each achievement event type e(x) in the domain, there is a corresponding action term
ache(x) in LsitCalc. Finally, for every action atom A(x) in LBDI , there is a corre-
sponding action function A(x) in LsitCalc.

In addition, the language LsitCalc shall include one auxiliary distinguished fluent
and two actions to model external event handling. Fluent PendingEv(s) stands for the
multi-set of events that are “pending” and need to be handled, either belief update or
achievement events. This fluent is affected by two actions. Whereas action post(e) in-
dicates the external posting of event e; action serve(e) indicates that (pending) event e
has been selected and is being handled. In both actions, argument e is of sort action.

Let us now construct the basic action theory DΥ corresponding to a BDI agent
Υ = 〈Π,B,A, Γ 〉, as follows:

1. The initial description in DΥ is defined in the following way:

DΥS0
=
⋃n
i=1{∀x.bi(x, S0) ≡ x = t1i ∨ . . . ∨ x = tki

i } ∪
{∀a.Exog(a) ≡ (∃a′)a = post(a′)},

where for every i ∈ {1, . . . , n}, B |= bi(x) ≡ [x = t1i ∨ . . . ∨ x = tki

i], for some
ki ≥ 0—bi(t1i), . . . , bi(tki

i) are all the true belief atoms in B with respect to belief
relation bi (each tj

i is a vector of ground terms).
2. The following precondition axioms, for every fluent b(x) and action type A(x):

Poss(serve(a), s) ≡ (a ∈ PendingEv(s)) Poss(A(x), s) ≡ True

Poss(addb(x), s) ≡ Poss(delb(x), s) ≡ True Poss(post(a), s) ≡ True

3. For every domain fluent b(x, s), DΥ includes the following successor state axiom:

b(x, do(a, s)) ≡
a = addb(x) ∨ a = post(addb(x)) ∨ b(x, s) ∧ (a 6= delb(x) ∧ a 6= post(delb(x)).

That is, the truth-value of fluent b is affected only by actions addb and delb, either
internally executed or externally sensed from the environment.

More importantly, action theory DΥ includes a successor state axiom for fluent
PendingEv(do(a, s)) specifying how the multi-set of pending events changes:

PendingEv(do(a, s)) = v ≡ [γ(a, v, s) ∨ PendingEv(s) = v ∧ ¬∃v′.γ(a, v′, s)];
where:
γ(a, v, s) def=

(∨n
i=1[γ

+
i (a, v, s) ∨ γ−i (a, v, s)] ∨

∨m
i=1[γ

e
i (a, v, s)] ∨

∃a′.a = serve(a′) ∧ v = PendingEv(s) \ {a′}
)
;

γ+
i (a, v, s) def=
∃x. a ∈ {addbi

(x), post(addbi
(x))} ∧ ¬bi(x) ∧ v = PendingEv(s)] {addbi

(x)};
γ−i (a, v, s) def=
∃x. a ∈ {delbi

(x), post(delbi
(x))} ∧ bi(x) ∧ v = PendingEv(s)] {delbi

(x)};
γei (a, v, s)

def= ∃x. a = post(achei(x)) ∧ v = PendingEv(s)] {achei(x)}.

That is, an actual change in the belief of an atom, either due to the execution of
some intention or an external event, automatically produces a corresponding pend-
ing belief update event. Moreover, an external achievement event ache(x) becomes
pending when sensed. On the other hand, an event e ceases to be pending when
action serve(e) is executed.

4. Theory DΥ includes unique name axioms for all actions in LsitCalc, as well as the
standard domain-independent foundational axioms for the situation calculus ([23]).

This concludes the construction of the BDI basic action theory DΥ .

3.2 The BDI Agent Program

Let us now construct the IndiGolog BDI agent program δΥ that is meant to execute
relative to the BDI action theoryDΥ . We start by showing how to inductively transform
a BDI plan-body program P into an IndiGolog program δP , namely (remember that
plan-bodies programs are used to build BDI plans in the plan library):

δP =

P if P = A | nil
φ? if P =?φ

addb(t) if P = +b(t)
delb(t) if P = −b(t)

handle(ache(t)) if P =!e(t)
(δP1 ; δP2) if P = (P1;P2)

δP1 if P = P1 � P2

achievee(t) if P = L∆M, for some event e(t)

Notice that achievement events !e occurring in a plan are handled via simple plan in-
vocation, by invoking procedure handle. Also, for now, the translation just ignores the
second program in P1 � P2, as the version of CAN we consider in this section does not
try P2 when P1 happens fail. We shall revisit this later in Section 4.

Next, we describe how to transform the BDI plans in the agent’s plan library. To that
end, suppose that e(x) is an event in the BDI language LBDI such with the following
n ≥ 0 plans in Π (vt denotes all the distinct free variables in the terms t):

e(ti) : ψi(vti
,yi)← Pi(vti

,yi, zi), where i ∈ {1, . . . , n}.

Then, we build the following high-level Golog procedure with n non-deterministic
choices (i.e., as many as plan-rules for the event):

proc achievee(x)
|i∈{1,...,n} [(πvti

,yi, zi).(x = ti ∧ ψi(vti
,yi))?; δPi

(vti
,yi, zi)]

endProc

Roughly speaking, executing achievee(x) involves nondeterministically choosing among
the n available options in the plan library for event e. See that the first test statement
in each option amounts to checking the relevance and applicability of the option. Thus,
the execution of achievee(x) is bound to block if no option is relevant or applicable. In
particular, the procedure will always block if the agent Υ has no plan to handle the event
in question—that is, if n = 0, the corresponding Golog procedure is simply ?(False).

Let ∆Π denote the set of Golog procedures as above, one per event in the BDI
language, together with the following procedure:

proc handle(a)
|ni=1 [(∃xi.a = addbi

(xi))?; achieveb+i (xi)] |
|ni=1 [(∃xi.a = delbi

(xi))?; achieveb−i (xi)] |
|mi=1 [(∃xi.a = achei

(xi))?; achieveei
(xi)]

endProc

That is, when a is a legal event (belief update or achievement goal), procedure handle(a)
calls the appropriate procedure that is meant to resolve the event. Observe that this pro-
gram contains two nondeterministic programs per belief atom in the domain (one to
handle its addition and one to handle its deletion from the belief base), plus one nonde-
terministic program per achievement event in the domain.

Finally, we define the top-level IndiGolog BDI agent program as follows:

δΥ
def= ∆Π ; [δenv‖ (δΓ ‖ δBDI)]; (¬∃e PendingEv(e))?, (1)

where (assuming that Γ = {P1, . . . , Pn}):

δΓ
def= δP1‖ · · · ‖ δPn

; δenv
def= (πa.Exog(a)?; a)∗; δBDI

def= [πa.serve(a); handle(a)]‖.

The set of programs ∆Π provides the environment encoding the BDI plan library.
Program δΓ accounts for all current intentions in Υ ; if Γ = ∅, then δΓ = nil. In
turn, program δenv models the external environment, which can perform zero, one,
or more actions of the form post(a), representing an external achievement event goal
(a = ache(t)) or a belief update event (a = addb(t) or a = delb(t)).

The most interesting part of δΥ is indeed the ConGolog program δBDI , which im-
plements (part of) the BDI execution cycle. More concretely, δBDI is responsible for
selecting an external event and spawning a new “intention” concurrent thread for han-
dling it. To that end, δBDI picks an event a (e.g., addAt(23, 32) or achievemoveTo(0, 0))
to be served and executes action serve(a). Observe that an event can be served only if
it is currently pending (see action precondition for action serve(a) in Subsection 3.1).
After the action serve(a) has been successfully executed, the selected event a is actually
handled, by calling procedure handle(a) defined in ∆Π . More importantly, this is done

in a “new” concurrent thread, so that program δBDI is still able to serve and handle
other pending events. The use of concurrent iteration to spawn a new intention from the
“main BDI thread” is inspired from the server example application in [6].

Note that ∆Π and δΓ are domain dependent, i.e., they are built relative to a partic-
ular BDI agent Υ , whereas programs δBDI and δenv are independent of the BDI agent
being encoded. Observe also that the whole high-level program δΥ may terminate only
when no more events are pending.

From now on, let GΥ = 〈DΥ , δΥ ,A〉 denote the IndiGolog agent for BDI agent Υ .

3.3 LC-Online Executions

Once we have a BDI IndiGolog program GΥ on hand, we should be able to execute it
and obtain the same behavior and outputs as with the original BDI agent. Unfortunately,
we cannot execute GΥ online, as defined in [7], as such executions may commit too
early to free variables in a program—online executions are sequences of ground online
configurations. For example, program πx.True?; (x = A)? can do a transition where it
instantiates x to B to produce the remaining program B = A?, which then fails.

What we need, instead, is an account of execution that commits to free variables
only when necessary. To that end, we generalize the online execution notion from [7]
to what we call least-committed online executions. We first define two meta-theoretic
versions of relations Trans and Final as follows:

mTrans(δ(x,y), σ, δ′(x, z), σ′) def=
Axioms[D, σ] |= ∃y∀x, z.Trans(δ(x,y), end[σ], δ′(x, z), end[σ′]);

mFinal(δ(x,y), σ) def= Axioms[D, σ] |= ∃x.Final(δ(x), end[σ]).

(Here, in δ(x) the vector of variables x contains all the free variables mentioned in
the program, and different variables vectors are assumed disjoint; end[σ] denotes the
situation term corresponding to the history σ; and Axioms[D, σ] denotes the complete
set of axioms in the IndiGolog theory, which includes the action theoryD for the domain
and all the axioms for Trans and Final.)

We can then define least-committed executions as follows.

Definition 2 (LC-Online Execution). A least-committed online (lc-online) execution
of an IndiGolog program δ starting from a history σ is a, possibly infinite, sequence of
configurations (δ0 = δ, σ0 = σ), (δ1, σ1), . . . such that for every i ≥ 0:

1. mTrans(δi, σi, δi+1, σi+1) holds; and
2. for all δ′ such that mTrans(δi, σi, δ′, σi+1) and δi+1 = δ′θ for some substitution
θ, there exists θ′ such that δ′ = δi+1θ

′.

A finite lc-online execution (δ0, σ0), . . . , (δn, σn) is terminating iff mFinal(δn, σn)
or for all δ′, σ′ mTrans(δn, σn, δ′, σ′) does not hold.

We notice that, as expected, it can be shown that an lc-online execution stands for
all its ground online instances as defined in [7]. However, by executing programs in
a least committed way, we avoid premature binding of variables and eliminate some
executions where the program is bound to fail.

3.4 BDI/IndiGolog Bisimulation

We are now ready to provide the main results of the paper. Namely, we show that given
any BDI execution of an agent, there exists a matching execution of the corresponding
IndiGolog agent, and vice-versa. In addition, the correspondence in the internal structure
of the agents is always maintained throughout the executions.

We start by characterizing when a BDI agent and an IndiGolog agent configuration
“match.” To that end, we shall use relation Υ ≈ G, which, intuitively, holds if a BDI
agent Υ and an IndiGolog agent G represent the same (BDI) agent system. Formally,
relation 〈Π,B,A, Γ 〉 ≈ 〈D, δ, σ〉 holds iff

1. δ = ∆Π ; [δenv‖ (δΓ ′ ‖ δBDI)]; ?(¬∃e PendingEv(e)), for some Γ ′ ⊆ Γ such that
Γ = Γ ′] {a | Axioms[D, σ] |= a ∈ PendingEv(end[σ])};

2. A and σ contain the same sequence of domain actions;
3. for every ground belief atom b: B |= b iff Axioms[D, σ] |= b[end[σ]];
4. D = DΥ ′ , for some Υ ′ = 〈Π,B′,A, Γ 〉.

The first condition states that the IndiGolog program is of the form shown in equation
(1) above (see Section 3.2), but where some active intentions may still be “pending.”
In other words, some intentions in Γ that have not yet started execution may not show
up yet as concurrent processes in δ, but they are implicitly represented as “pending” in
fluent PendingEv(s). The second requirement states that both agents have performed the
same sequence of domain primitive actions, that is, actions other than the internal ones
serve(a), post(a), addb(x), and delb(x). The third condition requires both agents to
coincide on what they currently believe. Observe that the initial beliefs of the IndiGolog
agent do not necessarily need to coincide with those of the BDI agent, as long as the
current beliefs do (i.e., the beliefs that hold after history σ); in fact the BDI agent
configuration does not specify what it believed initially, while the IndiGolog agent’s
action theory does. Lastly, the IndiGolog agent executes relative to a basic action theory
whose dynamics are as described in Section 3.1.

First of all, it is possible to show that the encoding of initial BDI agents, that is
agents that have not yet performed any action, into IndiGolog agents described above is
in the ≈ relation with the original BDI agent.

Theorem 1. Let Υ be an initial BDI agent (that is, A = ε). Then, Υ ≈ 〈DΥ , δΥ ,A〉.

The importance of a BDI agent and an IndiGolog agent being in the ≈ relation is
that their respective transitions can then always be simulated by the other type of agent
To demonstrate that, we first show that any BDI transition can be replicated by the
corresponding IndiGolog agent. Observe that IndiGolog may need several transitions to
replicate the BDI transition when it comes to assimilating external events; whereas BDI
agents incorporate sets of external events in a single transition, the IndiGolog agent in-
corporates one event per transition. Also, IndiGolog agents ought to execute the special
action serve(a) to start handling external achievement events.

Theorem 2. Let Υ be a BDI agent and 〈D, δ, σ〉 an IndiGolog agent such that Υ ≈
〈D, δ, σ〉. If Υ =⇒ Υ ′, then there exists a program δ′ and a history σ′ such that
mTrans∗(δ, σ, δ′, σ′) holds relative to action theory D, and Υ ′ ≈ 〈D, δ′, σ′〉.

Furthermore, in the other direction, any step in a BDI IndiGolog execution can al-
ways be “mimicked” by the corresponding BDI agent.

Theorem 3. Let Υ and 〈D, δ, σ〉 be a BDI and an IndiGolog agents, respectively, such
that Υ ≈ 〈D, δ, σ〉. Suppose that mTrans(δ, σ, δ′, σ′) holds relative to action theory
D, for some IndiGolog program δ′ and history σ′. Then, either Υ ≈ 〈D, δ′, σ′〉 or there
exists a BDI agent Υ ′ such that Υ =⇒ Υ ′ and Υ ′ ≈ 〈D, δ′, σ′〉.
So, when the IndiGolog agent performs a transition it remains “equivalent” to the BDI
agent or to some evolution of the BDI agent. The former case applies only when the
transition in question involved the execution of a serve(a) action to translate a pending
event into a concurrent process.

Putting both theorems together, our encoding allows IndiGolog to bisimulate BDI
agents.

4 BDI Failure Handling

Since BDI systems are meant to operate in dynamic settings, plans that were supposed
to work may fail due to changes in the environment. Indeed, a plan may fail because a
test condition ?φ is not believed true, an action cannot be executed, or a sub-goal event
does not have any applicable plans. The BDI language we have discussed so far has no
strategy towards failed plans or intentions, once an intention cannot evolve, it simply
remains in the intention base blocked. In this section, we discuss how BDI programming
languages typically address plan/intention failure and show how the above IndiGolog
encoding can be extended accordingly. In particular, we show how agents can abandon
failed intentions and recover from problematic plans by trying alternative options.

Before getting into technical details, we shall first introduce a new construct into the
IndiGolog language. In “Golog-like” languages, a program that is blocked may not be
dropped for the sake of another program. To overcome this, we introduce the construct
δ1 � δ2 with the intending meaning that δ1 should be executed, falling back to δ2 if δ1
becomes blocked:4

Trans(δ1 � δ2, s, δ
′, s′) ≡ (∃γ.Trans(δ1, s, γ, s′) ∧ δ′ = γ � δ2) ∨

¬∃γ, s′′.Trans(δ1, s, γ, s′′) ∧ Trans(δ2, s, δ′, s′);

Final(δ1 � δ2, s, δ
′, s′) ≡ Final(δ1, s) ∨ ¬∃γ, s′′.Trans(δ1, s, γ, s′′) ∧ Final(δ2, s).

4.1 Dropping Impossible Intentions

It is generally accepted that intentions that cannot execute further may simply be dropped
by the agent — rational agents should not pursue intentions/goals that are deemed im-
possible [21, 5]. This is indeed the behavior of AgentSpeak agents.5

The BDI language of Section 2.1 can be easily extended to provide such an intention-
dropping facility, by just adding the following agent-level operational rule:

P ∈ Γ 〈Π,B,A, P 〉 6−→
〈Π,B,A, Γ 〉 =⇒ 〈Π,B,A, Γ \ {P}〉

Aclean

4 One could easily extend these definitions to only allow dropping a blocked δ1 under given
conditions; this could be used to implement “time outs” or allow blocking for synchronization.

5 There has been work on more sophisticated treatments of plan failure in AgentSpeak [2].

That is, an agent may choose to just drop an intention from its intention base if it cannot
execute further in the current mental state. To mimic this behavior in our BDI IndiGolog
formalization, we slightly modify the domain-independent program δBDI as follows:

δBDI
def= [πa.serve(a); (handle(a) � (True)?)]‖.

Here, a pending event is handled within the scope of a �, which basically allows the
intention thread to simply terminate if it becomes blocked. Notice that, as with BDI
languages, for procedure handle(a) to be blocked, every sub-goal event triggered by the
handling of a (represented in the IndiGolog program as simple procedure calls) ought to
be blocked. Observe also that in this approach, only the main program corresponding
to a top-level event may be dropped, not lower-level instrumental subgoals.

4.2 BDI Goal Failure Recovery

Merely dropping a whole intention when it becomes blocked provides a rather weak
level of commitment to goals. The failure of a plan should not be equated to the failure
of its parent goal, as there could be alternative ways to achieve the latter. For example,
suppose an agent has the goal to quench her thirst, and in the service of this goal, she
adopts the subgoal of buying a can of soda [25]. However, upon arrival at the store, she
realizes that all the cans of soda are sold out. Fortunately though, the shop has bottles of
water. In this situation, it is irrational for the agent to drop the whole goal of quenching
her thirst just because soda is not available. An AgentSpeak agent may do so. Similarly,
we do not expect the agent to fanatically insist on her subgoal and just wait indefinitely
for soda to be delivered. What we expect is the agent to merely drop her commitment
to buy soda and adopt the alternative (sub)goal of buying a bottle of water, thereby
achieving the main goal.

As a matter of fact, one of the typical features of implemented BDI languages is
that of plan-goal failure recovery: if a plan happens to fail for a goal, usually due to
unexpected changes in the environment, another plan is tried to achieve the goal. If
no alternative strategy is available, then the goal is deemed failed and failure is prop-
agated to higher-level motivating goals, and so on. This mechanism thus provides a
stronger level of commitment to goals, by decoupling plan failure from goal failure. To
accommodate failure handling, we further extend the BDI language of Section 2.1, by
providing the following additional derivation rule for construct �:

〈Π,B,A, P1〉 6−→ 〈Π,B′,A′, P ′2〉 −→ 〈Π,B′,A′, P ′2〉
〈Π,B,A, P1 � P2〉 −→ 〈Π,B′,A′, P ′2〉

�f

That is, if the current strategy P1 is blocked but the alternative backup program P2

is able to evolve, then it is legal to drop P1 and switch to P2. Observe that due to
derivation rules Ev and Sel, P2 = L∆M will encode the set of relevant plans that have
not yet been tried for the event being addressed. From now on, let the CAN language
refer to our extended BDI language, with both new derivation rules Aclean and �f for
failure included.

Hence, due to the interaction between derivation rules Ev, Sel and �f , a CAN BDI
agent executes a program P1 � L∆M in order to resolve an goal event !e. When the

current strategy P1 being pursued is not able to make a step, the agent may check the
set of alternatives L∆M in the hope of finding another option P2 for addressing e. If one
is found, the agent may opt to abandon its strategy P1 and continue with P2. (Details
can be found in [27, 25].)

Let us now describe how to replicate this failure recovery behavior within our
IndiGolog framework of Section 3. For simplicity, we shall assume that, as with ac-
tions, only ground posting of subgoal events are allowed in the BDI language. This
means that all variables x in an event posting !e(x) are considered inputs to the event.
If an event is meant to return data, it must do so by using of the belief base. To sup-
port failure recovery, we slightly modify how plans in the plan library Π are converted
into ConGolog procedures. Specifically, for each event e(x), we define the following
procedure (and make procedure achievee(x) simply call achieve′e(x, [1, . . . , 1]):

proc achieve′e(x,w) // w is an n-long vector
|i∈{1,...,n} [(πvti

,yi, zi).(x = t ∧ ψi(vt,y) ∧ w = 1)?; δPi
(vti

,yi, zi) � Φi(x,w)]
endProc

where Φi(x,w) def= achieve′e(x, [w1, . . . , wi−1, 0, wi+1, . . . , wn]).

Vector w has one component per plan rule in the library for the event in question; its i-
th component wi states whether the i-th plan in Π is available for selection. Condition
(x = t ∧ ψi(vt,y) ∧ w = 1) checks whether event e(x) is relevant, applicable, and
available. Program Φi determines the recovery strategy, in this case, recursively calling
the procedure to achieve the event, but removing the current plan from consideration
(by setting its component in w to 0). Due to the semantics of �, recovery would only
be triggered if procedure achieve′e(x,w) may execute one step, which implies that
there is indeed an available plan that is relevant and applicable for the event.

It turns out that these are the only modifications to the encoding of Section 3 re-
quired to mimic the behavior of CAN agents with failure handling in the IndiGolog
high-level language.

Theorem 4. Theorems 2 and 3 hold for CAN agents under the extended translation to
IndiGolog agents.

More interestingly, the proposed translation can be adapted to accommodate several
alternative accounts of execution and failure-recovery. For example, goal failure recov-
ery can be disallowed for an event by just takingΦi(x,w) def= ?(False) above. Similarly,
a framework under which any plan may be (re)tried for achieving a goal event, regard-
less of previous (failed) executions, is obtained by taking Φi(x,w) def= achievee(x). In
this case, the event is “fully” re-posted within the intention.

The key point here is that, due to the fact that the BDI execution and recovery model
is represented in our BDI IndiGolog at the object level, one can even go further and
design more sophisticated accounts of execution and failure recovery for BDI agents.
It is straightforward, for instance, to model the kind of goal failure recovery originally
proposed for AgentSpeak, in which the system would automatically post a distinguished
failure goal (denoted !−g); the programmer may then choose to provide plans to handle
such failure events. A failure handling plan could, for example, carry out some clean-
up tasks and even re-post the failed event [20, 2]. This type of behavior can be easily

achieved by taking Φi(x,w) def= achfail e(x); ?(False), and allowing the programmer
to provide plan rules in the library for handling the special event fail e(x). Notice that
the event is posted so it would eventually create a new intention all-together; the current
plan would then immediately be blocked/failed.

5 Discussion

In this paper, we have shown how one can effectively program BDI-style agent sys-
tems in the situation calculus-based IndiGolog high-level programming language. The
benefits of this are many. First, we gain a better understanding of the common fea-
tures of BDI agent programming languages and “Golog-like” high-level programming
languages, as well as of what is specific to each type of language, and what is re-
quired to reproduce BDI languages in the latter. We also get a new classical-logic sit-
uation calculus-based semantics for BDI agent programming languages. This opens
many avenues for enhancing the BDI programming paradigm with reasoning capabili-
ties, for instance, model-based belief update capabilities, lookahead planning capabil-
ities, plan/goal achievement monitoring capabilities, etc. Our account also shows how
one can essentially compile the BDI execution engine of a BDI agent into an object-
level IndiGolog program, about which we can reason in the situation calculus. From
the perspective of situation calculus-based high-level programming languages, we have
enhanced IndiGolog with a more general semantic account of program execution, i.e.
least-committed online executions, and we have also introduced a novel language con-
struct that is useful for failure handling. Moreover, our work opens up new perspectives
for developing logic-based agent programming languages with BDI features.

There has only been limited work on relating “Golog-like” and BDI programming
languages. Hindriks et al. [13] show that ConGolog can be bisimulated by the agent lan-
guage 3APL under some conditions, which include the agent having complete knowl-
edge. In [12], it is also shown that AgentSpeak can be encoded into 3APL. Our results,
thus, are complementary, in showing the inverse relationship.

Also related is the work of Gabaldon [10] on encoding Hierarchical Task Network
(HTN) libraries in ConGolog. There are similarities between our work and his in the
way procedural knowledge is encoded in ConGolog. This is is not surprising, as HTN
planning systems and BDI agents have many similarities [9]. But note that in HTNs, and
hence in Gabaldon’s translation, the objective is planning and not reactive execution.
We on the other hand, focus on capturing the typical execution regime of BDI agent
systems, rather than on performing lookahead planning to synthesize a solution. As a
result, we address issues such as external events and plan failure that do not arise in
HTN planning.

Acknowledgments We thank the reviewers for their interesting comments. This work was sup-
ported by the Agent Oriented Software and the Australian Research Council (grant LP0882234)
and the National Science and Engineering Research Council of Canada.

References

1. S. S. Benfield, J. Hendrickson, and D. Galanti. Making a strong business case for multiagent
technology. In Proc. of AAMAS, pages 10–15, New York, NY, USA, 2006. ACM Press.

2. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley, 2007. Series in Agent Technology.

3. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, 1987.
4. P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK intelligent agents: Components

for intelligent agents in Java. AgentLink Newsletter, 2,1999. Agent Oriented Soft. Pty. Ltd.
5. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelligence

Journal, 42:213–261, 1990.
6. G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a concurrent programming

language based on the situation calculus. Art. Intelligence Journal, 121(1–2):109–169, 2000.
7. G. De Giacomo and H. J. Levesque. An incremental interpreter for high-level programs with

sensing. In H. J. Levesque and F. Pirri, editors, Logical Foundations for Cognitive Agents:
Contributions in Honor of Ray Reiter, pages 86–102. Springer, Berlin, 1999.

8. D. Dennett. The Intentional Stance. The MIT Press, 1987.
9. J. Dix, H. Muñoz-Avila, D. S. Nau, and L. Zhang. IMPACTing SHOP: Putting an AI

planner into a multi-agent environment. Annals of Mathematics and Artificial Intelligence,
37(4):381–407, 2003.

10. A. Gabaldon. Programming hierarchical task networks in the situation calculus. In Proc. of
AIPS’02 Workshop on On-line Planning and Scheduling, Toulouse, France, April 2002.

11. M. P. Georgeff and F. F. Ingrand. Decision making in an embedded reasoning system. In
Proc. of IJCAI’89, pages 972–978, Detroit, USA, 1989.

12. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Meyer. A formal semantics for an
abstract agent programming language. In Proc. of ATAL’98, pages 215–229, 1998.

13. K. V. Hindriks, Y. Lespérance, and H. J. Levesque. An embedding of ConGolog in 3APL.
Technical Report UU-CS-2000-13, Dept. of Computer Science, University Utrecht, 2000.

14. M. J. Huber. JAM: A BDI-theoretic mobile agent architecture. In Proceedings of the Annual
Conference on Autonomous Agents (AGENTS), pages 236–243, New York, USA, 1999.

15. H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59–84, 1997.

16. M. Ljungberg and A. Lucas. The OASIS air-traffic management system. In Proceedings of
the Pacific Rim International Conference on Artificial Intelligence (PRICAI), 1992.

17. D. Morley and K. L. Myers. The SPARK agent framework. In Proceedings of Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 712–719, New York, USA, 2004.

18. A. Pokahr, L. Braubach, and W. Lamersdorf. JADEX: Implementing a BDI-infrastructure
for JADE agents. EXP-In search of innovation (Special Issue on JADE), 3(3):76–85, 9 2003.

19. M. E. Pollack. The uses of plans. Artificial Intelligence Journal, 57(1):43–68, 1992.
20. A. S. Rao. Agentspeak(L): BDI agents speak out in a logical computable language. In LNCS,

vol. 1038, p. 42–55. Springer, 1996.
21. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In Proc.

of KR’91, pages 473–484, 1991.
22. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In Proc. of KR’92,

pages 438–449, 1992.
23. R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-

namical Systems. The MIT Press, 2001.
24. S. Sardina, G. De Giacomo, Y. Lespérance, and H. J. Levesque. On the semantics of deliber-

ation in IndiGolog – From theory to implementation. Annals of Mathematics and Artificial
Intelligence, 41(2–4):259–299, Aug. 2004.

25. S. Sardina and L. Padgham. Goals in the context of BDI plan failure and planning. In Proc.
of AAMAS, pages 16–23, Hawaii, USA, May 2007. ACM Press.

26. M. Thielscher. FLUX: A logic programming method for reasoning agents. Theory and
Practice of Logic Programming, 5(4–5):533–565, 2005.

27. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & procedural goals
in intelligent agent systems. In Pro. of KR, pages 470–481, Toulouse, France, April 2002.

