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Abstract

In this paper, we propose a formal model of plan recognition
for inclusion in a cognitive agent programming framework.
The model is based on the Situation Calculus and the Con-
Golog agent programming language. This provides a very
rich plan specification language. Our account also supports
incremental recognition, where the set of matching plans is
progressively filtered as more actions are observed. This is
specified using a transition system account. The model also
supports hierarchically structured plans and recognizes sub-
plan relationships.

Introduction

The ability to recognize plans of others can be useful in a
wide variety of applications, from office assistance (where
a program might provide useful reminders, or give hints on
how to correct a faulty plan), to monitoring and aiding astro-

nauts, providing assistance to people with cognitive or mem-
ory problems to allow them to live independently, etc.

There has been a lot of work in the area of plan recog-
nition; see (Carberry 2001) for a recent survey. Some
of this work develops symbolic techniques for identifying
plans that match the observations. For instance, (Avrahami-
Zilberbrand & Kaminka 2005) uses a decision tree to

Agent Programming Framework

Yves Lesgerance
Dept. of Computer Science and Engineering
York University
Toronto, ON Canada M3J 1P3
lesperan@cse.yorku.ca

a number of benefits, including ease of use, and reuse of
domain specifications and reasoning methods. Our formal-
ization of plan recognition also handles cases where there
is only incomplete knowledge about the initial situation.
Probably the closest related work is (Demolombe & Hamon
2002), where plans are represented as Golmggrams,
with two additional constructso, which matches any se-
quence of actions, angy — a5, which matches an execution

of plan a; as long as it does not also match an execution
of as. a3 — ap is quite a useful and powerful construct,
which allows one to specify plans in terms of what must
not happen in addition to what can happen. In some sense,
the programs that we put in the plan library can be “plan
recognition templates”, rather than actual plans that an agent
would use. This cannot be done in most other plan recogni-
tion frameworks. It can also be useful for monitoring ap-
plications, where one wants to represent policies and detect
violations.

In this paper, we provide an alternative formalization and
implementation of the plan recognition framework of (De-
molombe & Hamon 2002). Plans are represented as pro-
cedures, which may include calls to other procedures. Be-
cause of this, the plan recognition framework provides addi-
tional information, such as the call hierarchy, which details
the procedures that are in progress or have completed, which

match observations to plan steps and graph traversal to procedure called which, and what remains to execute.

identify branches that represent consistent hypotheses. To

deal with uncertainty and identify most likely hypotheses,
some work uses probabilistic techniques; for instance (Bui
2003), uses an extension of Hidden Markov Models for
this. Other work combines symbolic and probabilistic ap-
proaches, e.g. (Avrahami-Zilberbrand & Kaminka 2006).
Many approaches (including the ones just cited) support
hierarchical task network-type plans, allowing methods to
have several alternative decompositions, as well as looping

tasks. However, these approaches do not support concur-

rently executing plans.

Our approach is based on the ConGolog agent program-

ming language (De Giacomo, Les@ance, & Levesque
2000), which supports very rich plans, including concur-
rent processes. We think that developing a unified agent
programming framework that supports plan recognition as
well as plan synthesis and behavior specification would have
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Another major difference between our approach and that
of (Demolombe & Hamon 2002) is that we supportre-
mental plan recognition Given a set of hypotheses about
what plans may be executing and a new observed action,
our formalization defines what the revised set of hypothe-
ses should be. Plan recognition is specified in terms of a
structural operational semantics (single-step transitions) in
the style of (Plotkin 1981) for the plan specification lan-
guage. (Demolombe & Hamon 2002) used a different se-
mantics where programs were mapped into complete execu-
tions.

We have implemented a plan recognition system based on
this formalization. It can be executed “on-line” and con-
stantly keeps track of what plans may be executing, without
having to recalculate them for each new observed action.
Focusing on procedures rather than complete plans allows

!Golog (Levesquet al. 1997a) is a precursor of ConGolog that
does not support concurrency.



plans to be hierarchical and modular, and the result of the Among these constructs, we notice the presence of nondeter-
recognition is more informative and meaningful. ministic constructs. These includé, | d2), which nonde-

In the rest of the paper, we first give an overview of the terministically chooses between prografasandds, = x. d,
Situation Calculus and ConGolog, and then present our for- which nondeterministically picks a binding for the variable
mal model of plan recognition. Then, we give some exam- 2 and performs the programfor this binding ofz, andd*,
ples to illustrate how the framework is used. Following this, which performs) zero or more times. Also notice that Con-
we briefly describe our implementation of the model. We Golog includes constructs for dealing with concurrency. In
conclude the paper with a discussion of the novel features particular(d; || d2) denotes the concurrent execution (inter-
and limitations of our account, and provide suggestions for preted as interleaving) of the programsandd..

future work. In (De Giacomo, Lesprance, & Levesque 2000), a sin-
_ _ gle step transition semantics in the style of (Plotkin 1981)
The Situation Calculus and ConGolog is defined for ConGolog programs. Two special predicates

The technical machinery that we use to define high-level 1'rans andFinal are introducedI'rans(d, s,d’, s’) means
program execution is based on that of (De Giacomo, thatby executing programstarting in situatiors, one can
Lesperance, & Levesque 2000). The starting point in the 9etto situatiors’ in one elementary step with the program
definition is the situation calculus (McCarthy & Hayes remaining to be executedrinal(d, s) means that program
1979). We will not go over the language here except to note  May successfully terminate in situatien .
the following components: there is a special constsnt Offline executionof programs, which are the kind of
used to denote thigitial situation; there is a distinguished ~ €xecutions originally proposed for Golog and ConGolog
binary function symbotlo wheredo(a, s) denotes the suc-  (Levesqueet al. 1997b; De Giacomo, Lespance, &
cessor situation te resulting from performing the action Levesque 2000), are characterized using he(d, s, s')
relations whose truth values vary from situation to situation, Predicate, which means that there is an execution of pro-
are called (relationalfiuents and are denoted by predicate 9ramd (a sequence of transitions) that starts in situation
symbols taking a situation term as their last argument. There and terminates in situatiosi:
is a special predicatfoss(a, s) used to state that actian Do(6, 5,5') def 36" Trans* (5, 5,8, s') A Final(8',s'),
is executable in situation

Within this language, we can formulate domain theories Where Trans* is the reflexive transitive closure of
which describe how the world changes as a result of the Trans.  An offline execution of§ from s is a se-

available actions. Here, we use action theories of the fol- quence of actionsa,...,a, such thatt D U C [
lowing form: Do(6, s,do(ay, . ..,do(a1,s)...)), where D is an action
o Axioms describing the initial situatiors. theory as mentioned above, afids a set of axioms defin-

ing the predicate§'rans and Final and the encoding of

e Action precondition axioms, one for each primitive action programs as first-order terms (De Giacomo, &apce, &

a, characterizingPoss(a, s). Levesque 2000).
e Successor state axioms, one for each flégnwhich char-
acterize the conditions under whi¢i(z, do(a, s)) holds Formalizing plan recognition

in terms of what holds in situatios these axioms may
be compiled from effects axioms, but provide a solution
to the frame problem (Reiter 1991).

Recognizing a plan means that given a sequence of observed
actions, the system must be able to determine which plan(s)
the user may be following. The framework described here

¢ Unigue names axioms for the primitive actions. relies on a plan library, which details the possible plans as
o A set of foundational, domain independent axioms for sit- Procedures in ConGolog. Given the sequence of actions per-
uationsY. as in (Reiter 2001). formed, the system should be able to provide the following

information: the plan that the user is currently following;
the stage in the plan that the user is following — what has
already been done and what remains to be done; and which
procedures that plan is part of — is the user doing it as part of
a larger plan?

Next we turn to programs. The programs we consider
here are based on the ConGolog language defined in (De Gi-
acomo, Lesprance, & Levesque 2000), providing a rich set
of programming constructs as follows:

oA primitive action The framework is specified in terms of ConGolog, to
¢?, wait for a condition which a few extensions are made. Note that what is de-
01; 02, . Sequence scribed below could have alternatively been done by mod-
o1 | 02, ‘nondeterministic branch ifying the semantics of the language. The following formal-
.0, nondeterministic choice of argument ization is designed to build on top of the existing framework
5, nondeterministic iteration as much as possible.

if ¢ then 4, elsed, endlf, conditional First, we introduce two special primitive actions:
while ¢ do § endWhile, _ while loop startProc(name(args)) and endProc(name(args)).

o1 || &2, concurrency with equal priority These areannotation actions present only in the plan
91 )) 92, concurrency withd; at a higher priority library, but never actually observed. The two actions
al, concurrent iteration are used to represent procedure invocation and com-
(¢—0), interrupt pletion. It is assumed that every procedure that we

p(6), procedure call want to distinguish in the plan library starts with the



action start Proc(name(args)) and ends with the action
endProc(name(args)), wherename is the name of the
procedure in which the actions occur, andgs are its

holds whend’ is the program remaining from after per-
forming any number of annotation actions or tests, followed
by an observable action. Situatian is the real situation

arguments. This markup can be generated automatically before performing those steps, atjds the real situation af-

given a plan library.
Our transition system semantics for plans fully supports
concurrency. Environments involving multiple agents can

also be dealt with if we assume that the agent of each ac-
tion is specified (say as a distinguished parameter of the ac-

tion). However, if there is concurrency over different proce-

dures run by the same agent, the annotated situation as cur-

rently defined is not generally sufficient to determine which
thread/procedure an observed action belongs to. Additional
annotations will need to be introduced to specify this. We
leave this for future work.

After the inclusion of the annotation actions, for each

sequence of actions there are two situations: the real (ob-

served) situation, and the annotated situation, which in-
cludes the actionstart Proc andendProc. Given the an-
notated situation, it is straightforward to obtain the state
of the execution stack (which procedures are currently ex-
ecuting), determine what actions were executed by which
procedures, and determine the remaining plan. An ac-
tion startProc(proc) means that the procedugeoc was
called, and should be added to the stack. The action
endProc(proc) signals that the last procedure has termi-
nated, and should be removed from the stack. Note that for
a given real situation, there may be multiple annotated situ-
ations that would match it. Each of those situations would
show a different possible execution path in the plan library.
For example, if the plan library contained the following pro-
cedures:
proc pl
proc p2

the real

startProc(pl); a; b; end Proc(pl) endProc
start Proc(p2); a; ¢; end Proc(p2) endProc

have
would

then situation do(a, Sp) would
two possible annotated situations that
match it do(a, do(startProc(pl),Sp))  and
do(a, do(startProc(p2), So)). In this context, the
plan recognition problem reduces to the following: given
the observed situation and a plan library, find the possible
annotated situations.

The first two predicates defined for the new formalism
areaTrans andrTrans. The predicateaTrans is a form
of Trans that allows only a transition step that cannot be
observed: either an annotation action or a test/wait action.
The predicateT'rans is a form of'rans which only allows
observable actions. The helper predicdte:t is true if and
only if the action passed to it is an annotation action:

Annt(a) €3n . a = startProc(n) V 3n . a = endProc(n)
aTrans(0,s,4',s") Y

Trans(d,s,d’,s") A

(Ja.(s" = do(a, s) N Annt(a)) V s’ = s)
rTrans(,s,d’,s") ot

Trans(d,s,d8',s') AJa.s" = do(a,s) AN ~Annt(a)

We also defineiTrans* as the reflexive transitive closure
of aTrans.

The transition predicateTrans(d, s,, Sq,9’, s, s,,) 1S
the main predicate in our plan recognition framework. It

ter. Situations, is the annotated situation (which reflects the

annotations as well as the real actions) before the program

steps, ands, is the annotated situation after. Effectively,

our definition below amounts taTrans being equivalent

to aTrans* composed with'T'rans:
nTrans(d, sy, Sq,0', .., s, 4y

(30", 82 a).aTrans* (9, sq,0", s2)

ArTrans(8”, s, ', do(a, s,))

A s =do(a,s;) A s, = do(a, sl)).

Just asnT'rans is the counterpart t@'rans which deals
with annotation actions, F'inal is the counterpart t'inal,
which allows any number of annotation actions or tests to be
performed:

nFinal (0, s) &t

(3¢, s")(aTrans*(8,s,6',s") A Final(d',s"))

As mentioned in (Demolombe & Hamon 2002), in many
cases it would be useful for the procedures to leave some
actions unspecified, or to place additional constraints on the
plans. So they introduced two new constructs. The first is
anyBut(actionList), which allows one to execute an arbi-
trary primitive action which is not in its argument list. For
example,anyBut([b, d]) would match actions or ¢, but
notb or d. It is a useful shorthand for writing general plans
which might involve unspecified steps. For example, a plan
might specify that a certain condition needs to hold for its
continuation, but leave unspecified what action(s) was per-
formed to achieve the condition. It is simply an abbrevi-
ation, included for convenience. Another shorthand con-
struct,any, can be defined to match any action without ex-
ceptions. We can define these as folldws:

def

anyBut([ay, ..., an))
wa.(if(a # a1 A ... A a # a,) then a elsefalse?endIf)

any = anyBut([])

The second construct isinus(d,d). This matches any
execution that would match, as long as it does not match
0. This construct allows the plan to place additional con-
straints on the sequences of actions that would be recog-
nized within a certain procedure. For example, the proce-
dure that corresponds to a task of cleaning the house could
include unspecified parts, and would match many differ-
ent sequences of actions, but not if they involve brushing
teeth. AssumingleanUp andbrushTeeth are procedures
in the plan library, then it is possible to specify the above as
minus(cleanUp, brushTeeth).

To define this construct, we need to define what a step
of execution for this construct is, and the remaining pro-
gram. Also, note that must match all observable actions
performed byd, but might do different annotation and test
actions; those differences should be ignored.

2Whenn = 0, by convention the condition is equivalent to
True.



An additional axiom is added to speciffrans for the
minus construct:

Trans(minus(8,0),s,8',s') =
36" .aTrans(d,s,8",s" YN = minus(é”, 5)
V(38" a.rTrans(d,s, 0", do(a,s)) A s’ = do(a,s)
(ﬂﬂé’s”sl nTrans' ((5 s,8,0' do(a,s"),s;) N&' = 6"
v 38's"s;.nTrans' (5,5,5,6 ,do(a,s"), s;)
A-nFinal’ (8, do(a, s")) A& = minus(8”,5")).

This says the following: if the next step of the plais not

an observable action, then the remaining program is what

remains of§ minusé; if & performs an observable action,
andé cannot match that action, then the remaining program
is what remains of; if 4 can match the observable action
performed by but it is not final, then the remaining program
is what remains of minus what remains af.

Note that whethef'rans holds forminus(d, d) depends

on whethemTrans holds ford and the latter depends on
aTrans* and ultimatelyT'rans, so the definition might not
appear to be well founded. We ensure that it is well founded
by imposing the restriction that neinus can appear in the
second argument of a minus. So in the axiom, we use
nTrans’ which is defined just likewTrans, except that it is
based on a version @frans, Trans’, that does not support
the minus construct and does not include thgans ax-
iom for theminus construct. S&@rans’ is just the existing
Trans from (De Giacomo, Leggrance, & Levesque 2000),
which is well defined, an&Trans’ is defined in terms of
it. Then we can define the neéfirans that supportsninus
in terms ofnTrans’ and we have a well founded definition.
The same approach is used to deflveal for minus. The
constructminus is considered finished whehis finished,
but is not:
Final(minus(8,9), s) = Final(d, s) A -nFinal’ (0, s).

We useC’ to denote the extended ConGolog axiorGsto-
gether with the above two. Note that recursive procedures
can be handled as in (De Giacomo, Lesspce, & Levesque
2000).

The above definition relies on a condition imposed on the

§ that may appear as second argument iniaus: for any

sequence of transitions involving the same actiorshould
have only one possible remaining program. More formally:

Trcms*(é, $,01, s1) A Tr(ms(é:l, s1,0', do(ay,s1)) A
Trans*(9,s, 09, s2) A Trans(da, s3,0”,do(as, $2)) A
do(ay, s1) = do(as, s2)

S

This restriction seems quite natural becadss a model

of what is not allowed. If there are many possibili-
ties about what is not allowed after a given sequence
of transitions, then the model seems ill formed or at
least hard to work with. An example of what is not
allowed as¢é would be the program(a;b)|(a;c), be-
cause after observing the actian there could be two
possible remaining programsb or ¢. Then we have

Trans(minus((a;c), (a;b)|(a; ¢)), s, minus(c, b), do(a, s))
which is wrong becauseg c is also ruled out. If rewritten as
a; (blc), this program is allowed?

Based on the above definition, to get the annotated situa-
tion from an observable one, we only need to applyrans
a number of times, until the observable situation is reached.
We definenTrans* as the reflexive transitive closure of
nT'rans. The predicatellTrans(s,, Sq, drem) Means that
s, denotes a possible annotated situation that matches the
observed situatios,., andJ,...,, is the remaining plan:

allTrans(sy, Sa, Orem) &

nTrans*(planLibrary, So, So, Orem, Srs Sa),

where S is the initial situation anghlan Library is a pro-
cedure that represents the plan library.

The set of all the remaining programsand their corre-
sponding annotated situatiolss that are consistent with a
given observed situatio and domain action theor® can
be defined as follows:

allConsistPlans(S) def{(é Sa)l
DUC" U{allTrans(S,S,,8)} is consistent.

Our transition system semantics defines program exe-
cutions incrementally. So we have that for any model
M, M & DucC'uU {allTrcms(do(A S),Sq,0)} if and
only if M = DucC U {3(5’ ! [allTrans(S, s,,6") A
nTrans(d’,S,s!,0,do(A,S),S )]} This can be used to
incrementally calculate the set of plans that the agent may be
executing under some conditions. Suppose that for every hy-
pothesiqd, S,) € allConsistPlans(S), we can compute a
condition~s, s on the initial situation such tha U C’ =
allTrans(S Sa,é) = vg,.6(5). Actually, vs, s can be
obtained in a stralghtforward way fromiiTrans(S, S, )
by using the ConGolog axioms to eliminate the ConGolog
operators and then computing the regression of the result.
Then, we have that

allConsistPlans(do(A, S)) = {(¢',S,,)]
(6,84) € allConsistPlans(S )andDuC’
{7s..5(S0) AnTrans(d,S,S,, 9, do(A,S),S,)}
is consistent.

Note that if there is complete information about the initial
situation, then computing hypotheses incrementally is even
simpler. In this case, there is a unique modlg] such that
M, E D. Then we have that

allConsistPlans(do(4, S)) = {(8',S,,)|
(0,S,) € allConsistPlans(S) and
My | nTrans(4, S, Sq,0',do(A, S), S,)}.

3We could try to drop this restriction and collect all the remain-
ing 6, butitis not clear that these can always be finitely represented,
e.g.mn.(PositiveInteger(n)?; a; b(n)).

“This also requires a domain closure assumptior®? il ¢’ U
{39, sq allTrans(S, sa,d)} is consistent, then there exist ground
termsé and S, such thatD U C’ U {allTrans(S, Sa,d)} is con-
sistent.



Examples

The main example described here is a simulation of activi-
ties in a home. There are four rooms: the bedroom, kitchen,
living room, and bathroom. There are also four objects: the

toothbrush, book, spoon, and cup. Each object has its own

was not deemed important enough to appear in the anno-
tations. Hence, it does not hayeurt Proc and endProc
actions. So, when the program is executed, the procedure
getTo will not appear in the stack.

The definition of most of the other procedures is straight-

place, where it should be located. The toothbrush should be forward:

in the bathroom, the book in the living room, and the spoon
and cup in the kitchen.

Initially, all objects are where they are supposed to be, ex-
cept for two: the book is in the kitchen, and the toothbrush
is in the living room. The location of the monitored agent
is originally in the bedroom. Note that in this case, we have
complete knowledge about the initial situation. This is re-
quired by our current implementation.

There are four possible primitive actions:

e goTo(room): changes the location of the agent to be
room,

e pickUp(object): only possible if the agent is in the same
room as the object; this causes the object to be held;

e putDown(object): only possible if the agent holds the
object; puts the object down;

e use(object): only possible if the agent holds the object.
We use the following fluents:

e loc: the room in which the agent is;

e loc(thing): the room in which the thing is;

e Hold(thing): true if the agent holds the thing, false oth-
erwise.

We also use the following non-fluent predicates:
e Room(r): r is a room;
e Object(t): tis an object;

e InPlace(thing,room): holds if thing is in its place
when it is inroom.

There are five procedures in the plan library:
e get(thing): go to the room where thing is, and pick it up;
e put Away(thing): go to the room where the thing should
be, and put it down;

e cleanUp: while there are objects that are not in their
places, get such an object, or put it away;

e brushTeeth: get the toothbrush, use the toothbrush, and
either put away the toothbrush, or put it down (where the
agentis);

e readBook: get the book, use the book, and either put
away the book, or put it down.

The procedures are defined below. We also use the fol-
lowing procedure:

proc getTo(r)
Room/(r)?;if loc # r then goT'o(r)endlf
endProc

getTo checks if the current location is already the destina-
tion roomr. If not, the actionyoT o is executed. Itis a helper
procedure, which was only introduced for convenience, and

proc get(t)
start Proc(get(t)); (mHold(t))?; getTo(loc(t));
pickUp(t); endProc(get(t))

endProc

proc put Away(t)
start Proc(put Away(t)); (Hold(t))?;
7 r.InPlace(t,r)?; getTo(r); put Down(t);
endProc(put Away(t))

endProg

proc brushTeeth
start Proc(brushTeeth); get(toothbrush);
use(toothbrush);
(put Away(toothbrush)|put Down(toothbrush));
endProc(brushTeeth)

endProc

proc readBook
start Proc(readBook); get(book); use(book),
(put Away(book) |put Down(book));
endProc(read Book)

endProg

ProceduresrushTeeth andread Book have options: ei-
ther the agent might put the thing away in its place, or it
might put the thing down wherever it happens to be. In prac-
tice, a person might do either, and both executions should be
recognized as part of the procedure.

Perhaps the most complex procedure in this example is
cleanUp. The main idea is that when executing this proce-
dure, the agent will, at each iteration, get a thing that is not
in its proper place, or put away something it already holds.

proc cleanUp
startProc(cleanUp);
while 3¢.Object(t) A ~InPlace(t,loc(t)) do
m t.0bject(t) A ~InPlace(t,loc(t))?;
(get(t)|put Away(t))
endWhile;
endProc(cleanUp)
endProc

The main plan library chooses some procedure to execute
nondeterministically and repeats this zero or more times:

proc planLibrary
(cleanUp|(brushTeeth|(read Book|(mt.get(t)))))*.
endProc

Let's look at an execution trace for the above example.
Suppose that the first action wasT'o(kitchen). The fol-
lowing possible scenarios are then output by the system:

proc get(book) -> goTo(kitchen)

proc get(cup) -> goTo(kitchen)

proc get(spoon) -> goTo(kitchen)

proc readBook -> proc get(book)
-> goTo(kitchen)

proc cleanUp -> proc get(book)
-> goTo(kitchen)



The system is trying to guess what the user is doing by go- wherek is either nothing, ok or m, depending on the ver-

ing to the kitchen. It lists the five plans from the library that sion of the program used.

might have this first action. Note that the possibilities of do- Now suppose that the next action dse(toothbrush).

ing cleanUp by getting a cup or a spoon are not listed. This The original version ofcleanUp does not match the ob-

is because both the spoon and cup are already in their placesserved action. The other two variantgleanUp, and

so if the agent picked them up, it would not be cleaning up. cleanUp,,, would still match the situation, because the new
Now suppose that the next actionpigkUp(book). Then, action matches the unspecified action at the end of the loop.

the system can discard some of the above possibilities, If the next action igjoT o(bathroom), then both remain-

namely those which involve taking something else. The new ing procedures match this as well;

possible scenarios are: proc cleanUp_k -> proc get(toothbrush)
proc get(book) -> goTo(livingRoom);

-> goTo(kitchen); pickUp(book) pickUp(toothbrush); use(toothbrush)
proc readBook -> get(book) proc putAway(toothbrush)

-> goTo(kitchen); pickUp(book) -> goTo(bathroom)

proc cleanUp -> proc get(book) wherek can only beu or m.

-> goTo(kitchen); pickUp(book) Now, if the next step iutDown(toothbrush), then
The next action isuse(book). The planget(book) is fin- cleanUp,, matches it. HoweverleanUp,, does not. That
ished, but there is no plan in the library that could start is becauseleanUp,, has the minus construct, and the ob-
with the actionuse(book). So, this possibility can be dis-  served actions matched the exception part of it. The ac-
carded. The next action of cleanUp cannot match the ob- tion putDown(toothbrush) can be considered the last ac-
served actions as well. Thus the only remaining possible tion of brushTeeth, which was ruled out by thevinus in

plan isread Book: cleanUp,y,. S0, cleanUp,, cannot match this sequence of

proc readBook -> proc get(book) actions.cleanUp,,, which is identical tacleanUp,, except
-> goTo(kitchen); pickUp(book); for the minus construct, does match the action, and pro-
use(book) duces the following scenario:

Now, let us consider a different scenario. In order to proc cleanUp_u -> proc get(toothbrush)

demonstrate the use of theinus andanyBut constructs, -> goTo(livingRoom), pickUp(toothbrush)

we can define two variants efeanUp. In the first one, use(toothbrush)

cleanUp,, an arbitrary action is allowed at the end of every proc putAway(toothbrush)

iteration of the loop. The second oné¢anUp,,, together -> goTo(bathroom), putDown(toothbrush)

with the optional arbitrary action, introduces a constraint: a
sequence of actions will not be matched if it involves the
execution of procedurérushTeeth. This is achieved by
using theminus construct.

Another example that the system was tested on is
that from (Demolombe & Hamon 2002) involving air-
craft flying procedures. There is a single procedure called
fireOnBoard. Itinvolves three actions, performed sequen-

proc cleanUp, tially, with possibly other actions interleaved. The three ac-
startProc(cleanUp,,); tions arefuelOf f, fullT hrottle, andmiztureOf f. The
while 3t.Object(t) A =InPlace(t,loc(t)) do only restriction is that while executing this procedure, the
m t.0bject(t) A =InPlace(t,loc(t))?; action fuelOn must not occur. In our framework, this ex-
(get(t)|put Away(t)); (any|nil) ample can be represented as follows:
endWhile; )
endProc(cleanUpy,) proc fireOnBoard

endProc stqrtProp(,fireOnBoard),
proc cleanUpm, minus([fuelOf f; any*; fullThrottle;

start Proc(cleanUpy, ); any®; miwtureOffl,
minus( [(anyBut'([fuelOn])) ; fuelOnl]);
while 3t.Object(t) A ~InPlace(t,loc(t)) do endProc(fireOnBoard)
m t.0bject(t) A =InPlace(t,loc(t))?; endProc
%qvevtk(flﬂputAway(t)); (any|nil); The above examples are kept simple to illustrate how the
engwnie, various constructs work. The system was tested on both of
Z’m‘s}ﬂieth])’ the above examples, and more complicated ones. All of the
endProc(cleanUpyn) above traces were generated by the implementation.
endProc
Suppose that the sequence of observed actions starts with Implementation and Experimentation
the two actiongoT'o(living Room) andtake(toothbrush). Our plan recognition system was implemented using a
All three variants ofcleanUp V\_/ould match those actions, Prolog-based version of IndiGolog, an extension of Con-
and produce the same scenario: Golog introduced in (De Giacomo & Levesque 1999). The
proc cleanUp_k -> proc get(toothbrush) implementation closely follows the definitions, without any

goTo(livingRoom); pickUp(toothbrush) optimization for performance. The implementation assumes



that the axioms specifying the initial situation are repre-

step; nor does it need to re-compute matching scenarios

sented as Prolog clauses and makes the closed world as-from scratch whenever a new action is made. It would be

sumption.

well-suited for real-time applications or continuous moni-

The system uses a user-defined domain specification andtoring.

plan library. All procedures in the library need to satisfy
some restrictions. Each proceduréhat is to be reflected in
the scenario has to start and end with actigiagt Proc(P)

The framework described here is easily extended with
new annotations to specify, for example, the goals and pre-
conditions of each plan and/or possible reactions to it by the

andendProc(P), respectively. The procedures can also use monitoring system. As mentioned earlier, to fully support

constructsiny But andminus. the recognition of concurrent executions of plans, additional
The implementation can be used in interactive mode. annotations to track which process performed each action

Then the user is expected to enter the observed actions oneshould be introduced. Another possible extension is to as-

by one. Also, at any point the user can issue one of the
following commandsyprompt - list all current hypotheses,
reset - forget the previous actions and start fresh, and -
finish execution.

We ran some preliminary experiments using the home
activities domain discussed above, with a slight mod-
ification: the last option in the plan library is now
(wt.[get(t), putDown(t)]) instead of(wt.get(t)). This was
done ensure that there are arbirarily long executions of the
plan library. For each, wheren is the length of an observed
action sequence, we randomly selected 200 sequenges of
actions that could be generated by the plan library. We then

sign probabilities to actions and plans, similarly to what was
done in (Demolombe & Fernandez 2005). This would make
it possible to rank the possible execution hypotheses, select
the most probable ones and use this to predict which actions
the agent is more likely to execute next. One could also
look at qualitative mechanisms for doing this. It would also
be very interesting to extend our implemented plan recogni-
tion system to support some forms of incomplete knowledge
about the initial situation (the implementation of IndiGolog
described in (Sardina & Vassos 2005) would be a good start-
ing point). More experimental evaluation of our system is
also needed.

ran the plan recognition system on all of those and averaged There has already been work on home care applications
the running time. The results appear in Figure 1. We can see for a plan recognition system. For example, (Lin & Hsu
that our system can identify matching plans for a sequence 2006) describes a plan recognition system that includes
of 80 observed actions in less than one second on average instrategies for monitoring and obtaining actions, as well as
this test domain. As well, for this domain the running time using learning to modify the plan libraries. Both of those

seems to grow linearly with the length of the observed action
sequence.

DI

IR IR

C0MD LT COR=0 LT
TT T T T 17T
L1111

running time

28 48 6@ 1] 1a8

length of the action sequence

128

Figure 1: Average runtime (seconds) versus the length of the
action sequence

Discussion

In this paper, we have described a framework for plan recog-
nition in the Situation Calculus. The ConGolog program-

techniques can potentially work with our system.
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