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Dept. of Computer Science and Engineering

York University
Toronto, ON Canada M3J 1P3

lesperan@cse.yorku.ca

Abstract

In this paper, we propose a formal model of plan recognition
for inclusion in a cognitive agent programming framework.
The model is based on the Situation Calculus and the Con-
Golog agent programming language. This provides a very
rich plan specification language. Our account also supports
incremental recognition, where the set of matching plans is
progressively filtered as more actions are observed. This is
specified using a transition system account. The model also
supports hierarchically structured plans and recognizes sub-
plan relationships.

Introduction
The ability to recognize plans of others can be useful in a
wide variety of applications, from office assistance (where
a program might provide useful reminders, or give hints on
how to correct a faulty plan), to monitoring and aiding astro-
nauts, providing assistance to people with cognitive or mem-
ory problems to allow them to live independently, etc.

There has been a lot of work in the area of plan recog-
nition; see (Carberry 2001) for a recent survey. Some
of this work develops symbolic techniques for identifying
plans that match the observations. For instance, (Avrahami-
Zilberbrand & Kaminka 2005) uses a decision tree to
match observations to plan steps and graph traversal to
identify branches that represent consistent hypotheses. To
deal with uncertainty and identify most likely hypotheses,
some work uses probabilistic techniques; for instance (Bui
2003), uses an extension of Hidden Markov Models for
this. Other work combines symbolic and probabilistic ap-
proaches, e.g. (Avrahami-Zilberbrand & Kaminka 2006).
Many approaches (including the ones just cited) support
hierarchical task network-type plans, allowing methods to
have several alternative decompositions, as well as looping
tasks. However, these approaches do not support concur-
rently executing plans.

Our approach is based on the ConGolog agent program-
ming language (De Giacomo, Lespérance, & Levesque
2000), which supports very rich plans, including concur-
rent processes. We think that developing a unified agent
programming framework that supports plan recognition as
well as plan synthesis and behavior specification would have
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a number of benefits, including ease of use, and reuse of
domain specifications and reasoning methods. Our formal-
ization of plan recognition also handles cases where there
is only incomplete knowledge about the initial situation.
Probably the closest related work is (Demolombe & Hamon
2002), where plans are represented as Golog1 programs,
with two additional constructs:σ, which matches any se-
quence of actions, andα1−α2, which matches an execution
of plan α1 as long as it does not also match an execution
of α2. α1 − α2 is quite a useful and powerful construct,
which allows one to specify plans in terms of what must
not happen in addition to what can happen. In some sense,
the programs that we put in the plan library can be “plan
recognition templates”, rather than actual plans that an agent
would use. This cannot be done in most other plan recogni-
tion frameworks. It can also be useful for monitoring ap-
plications, where one wants to represent policies and detect
violations.

In this paper, we provide an alternative formalization and
implementation of the plan recognition framework of (De-
molombe & Hamon 2002). Plans are represented as pro-
cedures, which may include calls to other procedures. Be-
cause of this, the plan recognition framework provides addi-
tional information, such as the call hierarchy, which details
the procedures that are in progress or have completed, which
procedure called which, and what remains to execute.

Another major difference between our approach and that
of (Demolombe & Hamon 2002) is that we supportincre-
mental plan recognition. Given a set of hypotheses about
what plans may be executing and a new observed action,
our formalization defines what the revised set of hypothe-
ses should be. Plan recognition is specified in terms of a
structural operational semantics (single-step transitions) in
the style of (Plotkin 1981) for the plan specification lan-
guage. (Demolombe & Hamon 2002) used a different se-
mantics where programs were mapped into complete execu-
tions.

We have implemented a plan recognition system based on
this formalization. It can be executed “on-line” and con-
stantly keeps track of what plans may be executing, without
having to recalculate them for each new observed action.
Focusing on procedures rather than complete plans allows

1Golog (Levesqueet al. 1997a) is a precursor of ConGolog that
does not support concurrency.



plans to be hierarchical and modular, and the result of the
recognition is more informative and meaningful.

In the rest of the paper, we first give an overview of the
Situation Calculus and ConGolog, and then present our for-
mal model of plan recognition. Then, we give some exam-
ples to illustrate how the framework is used. Following this,
we briefly describe our implementation of the model. We
conclude the paper with a discussion of the novel features
and limitations of our account, and provide suggestions for
future work.

The Situation Calculus and ConGolog
The technical machinery that we use to define high-level
program execution is based on that of (De Giacomo,
Lesṕerance, & Levesque 2000). The starting point in the
definition is the situation calculus (McCarthy & Hayes
1979). We will not go over the language here except to note
the following components: there is a special constantS0

used to denote theinitial situation; there is a distinguished
binary function symboldo wheredo(a, s) denotes the suc-
cessor situation tos resulting from performing the actiona;
relations whose truth values vary from situation to situation,
are called (relational)fluents, and are denoted by predicate
symbols taking a situation term as their last argument. There
is a special predicatePoss(a, s) used to state that actiona
is executable in situations.

Within this language, we can formulate domain theories
which describe how the world changes as a result of the
available actions. Here, we use action theories of the fol-
lowing form:
• Axioms describing the initial situation,S0.
• Action precondition axioms, one for each primitive action

a, characterizingPoss(a, s).
• Successor state axioms, one for each fluentF , which char-

acterize the conditions under whichF (~x, do(a, s)) holds
in terms of what holds in situations; these axioms may
be compiled from effects axioms, but provide a solution
to the frame problem (Reiter 1991).

• Unique names axioms for the primitive actions.
• A set of foundational, domain independent axioms for sit-

uationsΣ as in (Reiter 2001).
Next we turn to programs. The programs we consider

here are based on the ConGolog language defined in (De Gi-
acomo, Lesṕerance, & Levesque 2000), providing a rich set
of programming constructs as follows:

α, primitive action
φ?, wait for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 elseδ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency withδ1 at a higher priority
δ||, concurrent iteration
〈 φ → δ 〉, interrupt
p(~θ), procedure call

Among these constructs, we notice the presence of nondeter-
ministic constructs. These include(δ1 | δ2), which nonde-
terministically chooses between programsδ1 andδ2, π x. δ,
which nondeterministically picks a binding for the variable
x and performs the programδ for this binding ofx, andδ∗,
which performsδ zero or more times. Also notice that Con-
Golog includes constructs for dealing with concurrency. In
particular(δ1 ‖ δ2) denotes the concurrent execution (inter-
preted as interleaving) of the programsδ1 andδ2.

In (De Giacomo, Lesṕerance, & Levesque 2000), a sin-
gle step transition semantics in the style of (Plotkin 1981)
is defined for ConGolog programs. Two special predicates
Trans andFinal are introduced.Trans(δ, s, δ′, s′) means
that by executing programδ starting in situations, one can
get to situations′ in one elementary step with the programδ′

remaining to be executed.Final(δ, s) means that program
δ may successfully terminate in situations.

Offline executionsof programs, which are the kind of
executions originally proposed for Golog and ConGolog
(Levesqueet al. 1997b; De Giacomo, Lespérance, &
Levesque 2000), are characterized using theDo(δ, s, s′)
predicate, which means that there is an execution of pro-
gramδ (a sequence of transitions) that starts in situations
and terminates in situations′:

Do(δ, s, s′) def= ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′),

where Trans∗ is the reflexive transitive closure of
Trans. An offline execution of δ from s is a se-
quence of actionsa, . . . , an such that: D ∪ C |=
Do(δ, s, do(an, . . . , do(a1, s) . . .)), whereD is an action
theory as mentioned above, andC is a set of axioms defin-
ing the predicatesTrans and Final and the encoding of
programs as first-order terms (De Giacomo, Lespérance, &
Levesque 2000).

Formalizing plan recognition
Recognizing a plan means that given a sequence of observed
actions, the system must be able to determine which plan(s)
the user may be following. The framework described here
relies on a plan library, which details the possible plans as
procedures in ConGolog. Given the sequence of actions per-
formed, the system should be able to provide the following
information: the plan that the user is currently following;
the stage in the plan that the user is following – what has
already been done and what remains to be done; and which
procedures that plan is part of – is the user doing it as part of
a larger plan?

The framework is specified in terms of ConGolog, to
which a few extensions are made. Note that what is de-
scribed below could have alternatively been done by mod-
ifying the semantics of the language. The following formal-
ization is designed to build on top of the existing framework
as much as possible.

First, we introduce two special primitive actions:
startProc(name(args)) and endProc(name(args)).
These areannotation actions, present only in the plan
library, but never actually observed. The two actions
are used to represent procedure invocation and com-
pletion. It is assumed that every procedure that we
want to distinguish in the plan library starts with the



action startProc(name(args)) and ends with the action
endProc(name(args)), wherename is the name of the
procedure in which the actions occur, andargs are its
arguments. This markup can be generated automatically
given a plan library.

Our transition system semantics for plans fully supports
concurrency. Environments involving multiple agents can
also be dealt with if we assume that the agent of each ac-
tion is specified (say as a distinguished parameter of the ac-
tion). However, if there is concurrency over different proce-
dures run by the same agent, the annotated situation as cur-
rently defined is not generally sufficient to determine which
thread/procedure an observed action belongs to. Additional
annotations will need to be introduced to specify this. We
leave this for future work.

After the inclusion of the annotation actions, for each
sequence of actions there are two situations: the real (ob-
served) situation, and the annotated situation, which in-
cludes the actionsstartProc andendProc. Given the an-
notated situation, it is straightforward to obtain the state
of the execution stack (which procedures are currently ex-
ecuting), determine what actions were executed by which
procedures, and determine the remaining plan. An ac-
tion startProc(proc) means that the procedureproc was
called, and should be added to the stack. The action
endProc(proc) signals that the last procedure has termi-
nated, and should be removed from the stack. Note that for
a given real situation, there may be multiple annotated situ-
ations that would match it. Each of those situations would
show a different possible execution path in the plan library.
For example, if the plan library contained the following pro-
cedures:

proc p1 startProc(p1); a; b; endProc(p1) endProc
proc p2 startProc(p2); a; c; endProc(p2) endProc

then the real situation do(a, S0) would have
two possible annotated situations that would
match it: do(a, do(startProc(p1), S0)) and
do(a, do(startProc(p2), S0)). In this context, the
plan recognition problem reduces to the following: given
the observed situation and a plan library, find the possible
annotated situations.

The first two predicates defined for the new formalism
areaTrans andrTrans. The predicateaTrans is a form
of Trans that allows only a transition step that cannot be
observed: either an annotation action or a test/wait action.
The predicaterTrans is a form ofTrans which only allows
observable actions. The helper predicateAnnt is true if and
only if the action passed to it is an annotation action:

Annt(a) def= ∃n . a = startProc(n) ∨ ∃n . a = endProc(n)
aTrans(δ, s, δ′, s′) def=

Trans(δ, s, δ′, s′) ∧
(∃a . (s′ = do(a, s) ∧Annt(a)) ∨ s′ = s)

rTrans(δ, s, δ′, s′) def=
Trans(δ, s, δ′, s′) ∧ ∃a . s′ = do(a, s) ∧ ¬Annt(a)

We also defineaTrans∗ as the reflexive transitive closure
of aTrans.

The transition predicatenTrans(δ, sr, sa, δ′, s′
r, s

′
a) is

the main predicate in our plan recognition framework. It

holds whenδ′ is the program remaining fromδ after per-
forming any number of annotation actions or tests, followed
by an observable action. Situationsr is the real situation
before performing those steps, ands′

r is the real situation af-
ter. Situationsa is the annotated situation (which reflects the
annotations as well as the real actions) before the program
steps, ands′

a is the annotated situation after. Effectively,
our definition below amounts tonTrans being equivalent
to aTrans∗ composed withrTrans:

nTrans(δ, sr, sa, δ′, s′
r, s

′
a) def=

(∃δ′′, s′′
a, a).aTrans∗(δ, sa, δ′′, s′′

a)
∧ rTrans(δ′′, sr, δ

′, do(a, sr))
∧ s′

r = do(a, sr) ∧ s′
a = do(a, s′′

a).

Just asnTrans is the counterpart toTrans which deals
with annotation actions,nFinal is the counterpart toFinal,
which allows any number of annotation actions or tests to be
performed:

nFinal(δ, s) def=
(∃δ′, s′)(aTrans∗(δ, s, δ′, s′) ∧ Final(δ′, s′))

As mentioned in (Demolombe & Hamon 2002), in many
cases it would be useful for the procedures to leave some
actions unspecified, or to place additional constraints on the
plans. So they introduced two new constructs. The first is
anyBut(actionList), which allows one to execute an arbi-
trary primitive action which is not in its argument list. For
example,anyBut([b, d]) would match actionsa or c, but
not b or d. It is a useful shorthand for writing general plans
which might involve unspecified steps. For example, a plan
might specify that a certain condition needs to hold for its
continuation, but leave unspecified what action(s) was per-
formed to achieve the condition. It is simply an abbrevi-
ation, included for convenience. Another shorthand con-
struct,any, can be defined to match any action without ex-
ceptions. We can define these as follows:2

anyBut([a1, ..., an]) def=
πa.(if(a 6= a1 ∧ ... ∧ a 6= an) then a elsefalse?endIf)

any
def= anyBut([])

The second construct isminus(δ, δ̂). This matches any
execution that would matchδ, as long as it does not match
δ̂. This construct allows the plan to place additional con-
straints on the sequences of actions that would be recog-
nized within a certain procedure. For example, the proce-
dure that corresponds to a task of cleaning the house could
include unspecified parts, and would match many differ-
ent sequences of actions, but not if they involve brushing
teeth. AssumingcleanUp andbrushTeeth are procedures
in the plan library, then it is possible to specify the above as
minus(cleanUp, brushTeeth).

To define this construct, we need to define what a step
of execution for this construct is, and the remaining pro-
gram. Also, note that̂δ must match all observable actions
performed byδ, but might do different annotation and test
actions; those differences should be ignored.

2When n = 0, by convention the condition is equivalent to
True.



An additional axiom is added to specifyTrans for the
minus construct:

Trans(minus(δ, δ̂), s, δ′, s′) ≡
∃δ′′.aTrans(δ, s, δ′′, s′) ∧ δ′ = minus(δ′′, δ̂)
∨ (∃δ′′a.rTrans(δ, s, δ′′, do(a, s)) ∧ s′ = do(a, s)
∧ (¬∃δ̂′s′′si.nTrans′(δ̂, s, s, δ̂′, do(a, s′′), si) ∧ δ′ = δ′′

∨ ∃δ̂′s′′si.nTrans′(δ̂, s, s, δ̂′, do(a, s′′), si)
∧¬nFinal′(δ̂′, do(a, s′′)) ∧ δ′ = minus(δ′′, δ̂′)).

This says the following: if the next step of the planδ is not
an observable action, then the remaining program is what
remains ofδ minus δ̂; if δ performs an observable action,
andδ̂ cannot match that action, then the remaining program
is what remains ofδ; if δ̂ can match the observable action
performed byδ but it is not final, then the remaining program
is what remains ofδ minus what remains of̂δ.

Note that whetherTrans holds forminus(δ, δ̂) depends
on whethernTrans holds for δ̂ and the latter depends on
aTrans∗ and ultimatelyTrans, so the definition might not
appear to be well founded. We ensure that it is well founded
by imposing the restriction that nominus can appear in the
second argument̂δ of a minus. So in the axiom, we use
nTrans′ which is defined just likenTrans, except that it is
based on a version ofTrans, Trans′, that does not support
the minus construct and does not include theTrans ax-
iom for theminus construct. SoTrans′ is just the existing
Trans from (De Giacomo, Lesṕerance, & Levesque 2000),
which is well defined, andnTrans′ is defined in terms of
it. Then we can define the newTrans that supportsminus
in terms ofnTrans′ and we have a well founded definition.
The same approach is used to defineFinal for minus. The
constructminus is considered finished whenδ is finished,
but δ̂ is not:

Final(minus(δ, δ̂), s) ≡ Final(δ, s) ∧ ¬nFinal′(δ̂, s).

We useC′ to denote the extended ConGolog axioms:C to-
gether with the above two. Note that recursive procedures
can be handled as in (De Giacomo, Lespérance, & Levesque
2000).

The above definition relies on a condition imposed on the
δ̂ that may appear as second argument in aminus: for any
sequence of transitions involving the same actions,δ̂ should
have only one possible remaining program. More formally:

Trans∗(δ̂, s, δ̂1, s1) ∧ Trans(δ̂1, s1, δ̂
′, do(a1, s1)) ∧

Trans∗(δ̂, s, δ̂2, s2) ∧ Trans(δ̂2, s2, δ̂
′′, do(a2, s2)) ∧

do(a1, s1) = do(a2, s2)
⊃ δ̂′ = δ̂′′

This restriction seems quite natural becauseδ̂ is a model
of what is not allowed. If there are many possibili-
ties about what is not allowed after a given sequence
of transitions, then the model seems ill formed or at
least hard to work with. An example of what is not
allowed as δ̂ would be the program(a; b)|(a; c), be-
cause after observing the actiona, there could be two
possible remaining programs:b or c. Then we have

Trans(minus((a; c), (a; b)|(a; c)), s, minus(c, b), do(a, s))
which is wrong becausea; c is also ruled out. If rewritten as
a; (b|c), this program is allowed.3

Based on the above definition, to get the annotated situa-
tion from an observable one, we only need to applynTrans
a number of times, until the observable situation is reached.
We definenTrans∗ as the reflexive transitive closure of
nTrans. The predicateallT rans(sr, sa, δrem) means that
sa denotes a possible annotated situation that matches the
observed situationsr, andδrem is the remaining plan:

allT rans(sr, sa, δrem) def=
nTrans∗(planLibrary, S0, S0, δrem, sr, sa),

whereS0 is the initial situation andplanLibrary is a pro-
cedure that represents the plan library.

The set of all the remaining programsδ and their corre-
sponding annotated situationsSa that are consistent with a
given observed situationS and domain action theoryD can
be defined as follows:

allConsistP lans(S) def= {(δ, Sa)|
D ∪ C′ ∪ {allT rans(S, Sa, δ)} is consistent}.

Our transition system semantics defines program exe-
cutions incrementally. So we have that for any model
M , M |= D ∪ C′ ∪ {allT rans(do(A,S), Sa, δ)} if and
only if M |= D ∪ C′ ∪ {∃δ′, s′

a[allT rans(S, s′
a, δ′) ∧

nTrans(δ′, S, s′
a, δ, do(A,S), Sa)]}. This can be used to

incrementally calculate the set of plans that the agent may be
executing under some conditions. Suppose that for every hy-
pothesis(δ, Sa) ∈ allConsistP lans(S), we can compute a
conditionγSa,δ on the initial situation such thatD ∪ C′ |=
allT rans(S, Sa, δ) ≡ γSa,δ(S0). Actually, γSa,δ can be
obtained in a straightforward way fromallT rans(S, Sa, δ)
by using the ConGolog axioms to eliminate the ConGolog
operators and then computing the regression of the result.
Then, we have that4

allConsistP lans(do(A,S)) = {(δ′, S′
a)|

(δ, Sa) ∈ allConsistP lans(S) andD ∪ C′ ∪
{γSa,δ(S0) ∧ nTrans(δ, S, Sa, δ′, do(A,S), S′

a)}
is consistent}.

Note that if there is complete information about the initial
situation, then computing hypotheses incrementally is even
simpler. In this case, there is a unique modelM0 such that
M0 |= D. Then we have that

allConsistP lans(do(A,S)) = {(δ′, S′
a)|

(δ, Sa) ∈ allConsistP lans(S) and
M0 |= nTrans(δ, S, Sa, δ′, do(A,S), S′

a)}.

3We could try to drop this restriction and collect all the remain-
ing δ̂, but it is not clear that these can always be finitely represented,
e.g.πn.(PositiveInteger(n)?; a; b(n)).

4This also requires a domain closure assumption: ifD ∪ C′ ∪
{∃δ, sa allTrans(S, sa, δ)} is consistent, then there exist ground
termsδ andSa such thatD ∪ C′ ∪ {allTrans(S, Sa, δ)} is con-
sistent.



Examples
The main example described here is a simulation of activi-
ties in a home. There are four rooms: the bedroom, kitchen,
living room, and bathroom. There are also four objects: the
toothbrush, book, spoon, and cup. Each object has its own
place, where it should be located. The toothbrush should be
in the bathroom, the book in the living room, and the spoon
and cup in the kitchen.

Initially, all objects are where they are supposed to be, ex-
cept for two: the book is in the kitchen, and the toothbrush
is in the living room. The location of the monitored agent
is originally in the bedroom. Note that in this case, we have
complete knowledge about the initial situation. This is re-
quired by our current implementation.

There are four possible primitive actions:

• goTo(room): changes the location of the agent to be
room;

• pickUp(object): only possible if the agent is in the same
room as the object; this causes the object to be held;

• putDown(object): only possible if the agent holds the
object; puts the object down;

• use(object): only possible if the agent holds the object.

We use the following fluents:

• loc: the room in which the agent is;

• loc(thing): the room in which the thing is;

• Hold(thing): true if the agent holds the thing, false oth-
erwise.

We also use the following non-fluent predicates:

• Room(r): r is a room;

• Object(t): t is an object;

• InP lace(thing, room): holds if thing is in its place
when it is inroom.

There are five procedures in the plan library:

• get(thing): go to the room where thing is, and pick it up;

• putAway(thing): go to the room where the thing should
be, and put it down;

• cleanUp: while there are objects that are not in their
places, get such an object, or put it away;

• brushTeeth: get the toothbrush, use the toothbrush, and
either put away the toothbrush, or put it down (where the
agent is);

• readBook: get the book, use the book, and either put
away the book, or put it down.

The procedures are defined below. We also use the fol-
lowing procedure:

proc getTo(r)
Room(r)?; if loc 6= r then goTo(r)endIf

endProc

getTo checks if the current location is already the destina-
tion roomr. If not, the actiongoTo is executed. It is a helper
procedure, which was only introduced for convenience, and

was not deemed important enough to appear in the anno-
tations. Hence, it does not havestartProc andendProc
actions. So, when the program is executed, the procedure
getTo will not appear in the stack.

The definition of most of the other procedures is straight-
forward:

proc get(t)
startProc(get(t)); (¬Hold(t))?; getTo(loc(t));
pickUp(t); endProc(get(t))

endProc;
proc putAway(t)

startProc(putAway(t)); (Hold(t))?;
π r.InP lace(t, r)?; getTo(r); putDown(t);
endProc(putAway(t))

endProc;
proc brushTeeth

startProc(brushTeeth); get(toothbrush);
use(toothbrush);
(putAway(toothbrush)|putDown(toothbrush));
endProc(brushTeeth)

endProc;
proc readBook

startProc(readBook); get(book);use(book),
(putAway(book)|putDown(book));
endProc(readBook)

endProc;
ProceduresbrushTeeth andreadBook have options: ei-

ther the agent might put the thing away in its place, or it
might put the thing down wherever it happens to be. In prac-
tice, a person might do either, and both executions should be
recognized as part of the procedure.

Perhaps the most complex procedure in this example is
cleanUp. The main idea is that when executing this proce-
dure, the agent will, at each iteration, get a thing that is not
in its proper place, or put away something it already holds.

proc cleanUp
startProc(cleanUp);

while ∃t.Object(t) ∧ ¬InP lace(t, loc(t)) do
π t.Object(t) ∧ ¬InP lace(t, loc(t))?;

(get(t)|putAway(t))
endWhile;

endProc(cleanUp)
endProc

The main plan library chooses some procedure to execute
nondeterministically and repeats this zero or more times:

proc planLibrary
(cleanUp|(brushTeeth|(readBook|(πt.get(t)))))∗.

endProc

Let’s look at an execution trace for the above example.
Suppose that the first action wasgoTo(kitchen). The fol-
lowing possible scenarios are then output by the system:

proc get(book) -> goTo(kitchen)
proc get(cup) -> goTo(kitchen)
proc get(spoon) -> goTo(kitchen)
proc readBook -> proc get(book)

-> goTo(kitchen)
proc cleanUp -> proc get(book)

-> goTo(kitchen)



The system is trying to guess what the user is doing by go-
ing to the kitchen. It lists the five plans from the library that
might have this first action. Note that the possibilities of do-
ing cleanUp by getting a cup or a spoon are not listed. This
is because both the spoon and cup are already in their places,
so if the agent picked them up, it would not be cleaning up.

Now suppose that the next action ispickUp(book). Then,
the system can discard some of the above possibilities,
namely those which involve taking something else. The new
possible scenarios are:

proc get(book)
-> goTo(kitchen); pickUp(book)

proc readBook -> get(book)
-> goTo(kitchen); pickUp(book)

proc cleanUp -> proc get(book)
-> goTo(kitchen); pickUp(book)

The next action isuse(book). The planget(book) is fin-
ished, but there is no plan in the library that could start
with the actionuse(book). So, this possibility can be dis-
carded. The next action of cleanUp cannot match the ob-
served actions as well. Thus the only remaining possible
plan isreadBook:

proc readBook -> proc get(book)
-> goTo(kitchen); pickUp(book);
use(book)

Now, let us consider a different scenario. In order to
demonstrate the use of theminus andanyBut constructs,
we can define two variants ofcleanUp. In the first one,
cleanUpu, an arbitrary action is allowed at the end of every
iteration of the loop. The second one,cleanUpm, together
with the optional arbitrary action, introduces a constraint: a
sequence of actions will not be matched if it involves the
execution of procedurebrushTeeth. This is achieved by
using theminus construct.

proc cleanUpu

startProc(cleanUpu);
while ∃t.Object(t) ∧ ¬InP lace(t, loc(t)) do

π t.Object(t) ∧ ¬InP lace(t, loc(t))?;
(get(t)|putAway(t)); (any|nil)

endWhile;
endProc(cleanUpu)

endProc
proc cleanUpm

startProc(cleanUpm);
minus(

while ∃t.Object(t) ∧ ¬InP lace(t, loc(t)) do
π t.Object(t) ∧ ¬InP lace(t, loc(t))?;

(get(t)|putAway(t)); (any|nil);
endWhile,

[brushTeeth]);
endProc(cleanUpm)

endProc

Suppose that the sequence of observed actions starts with
the two actionsgoTo(livingRoom) andtake(toothbrush).
All three variants ofcleanUp would match those actions,
and produce the same scenario:

proc cleanUp_k -> proc get(toothbrush)
goTo(livingRoom); pickUp(toothbrush)

wherek is either nothing, oru or m, depending on the ver-
sion of the program used.

Now suppose that the next action isuse(toothbrush).
The original version ofcleanUp does not match the ob-
served action. The other two variants,cleanUpu and
cleanUpm, would still match the situation, because the new
action matches the unspecified action at the end of the loop.

If the next action isgoTo(bathroom), then both remain-
ing procedures match this as well:

proc cleanUp_k -> proc get(toothbrush)
-> goTo(livingRoom);
pickUp(toothbrush); use(toothbrush)
proc putAway(toothbrush)

-> goTo(bathroom)

wherek can only beu or m.
Now, if the next step isputDown(toothbrush), then

cleanUpu matches it. However,cleanUpm does not. That
is becausecleanUpm has the minus construct, and the ob-
served actions matched the exception part of it. The ac-
tion putDown(toothbrush) can be considered the last ac-
tion of brushTeeth, which was ruled out by theminus in
cleanUpm. So,cleanUpm cannot match this sequence of
actions.cleanUpu, which is identical tocleanUpm except
for the minus construct, does match the action, and pro-
duces the following scenario:

proc cleanUp_u -> proc get(toothbrush)
-> goTo(livingRoom), pickUp(toothbrush)
use(toothbrush)
proc putAway(toothbrush)
-> goTo(bathroom), putDown(toothbrush)

Another example that the system was tested on is
that from (Demolombe & Hamon 2002) involving air-
craft flying procedures. There is a single procedure called
fireOnBoard. It involves three actions, performed sequen-
tially, with possibly other actions interleaved. The three ac-
tions arefuelOff , fullThrottle, andmixtureOff . The
only restriction is that while executing this procedure, the
actionfuelOn must not occur. In our framework, this ex-
ample can be represented as follows:

proc fireOnBoard
startProc(fireOnBoard),
minus([fuelOff ; any∗; fullThrottle;

any∗;mixtureOff ],
[(anyBut([fuelOn]))∗; fuelOn]);

endProc(fireOnBoard)
endProc

The above examples are kept simple to illustrate how the
various constructs work. The system was tested on both of
the above examples, and more complicated ones. All of the
above traces were generated by the implementation.

Implementation and Experimentation
Our plan recognition system was implemented using a
Prolog-based version of IndiGolog, an extension of Con-
Golog introduced in (De Giacomo & Levesque 1999). The
implementation closely follows the definitions, without any
optimization for performance. The implementation assumes



that the axioms specifying the initial situation are repre-
sented as Prolog clauses and makes the closed world as-
sumption.

The system uses a user-defined domain specification and
plan library. All procedures in the library need to satisfy
some restrictions. Each procedureP that is to be reflected in
the scenario has to start and end with actionsstartProc(P )
andendProc(P ), respectively. The procedures can also use
constructsanyBut andminus.

The implementation can be used in interactive mode.
Then the user is expected to enter the observed actions one
by one. Also, at any point the user can issue one of the
following commands:prompt - list all current hypotheses,
reset - forget the previous actions and start fresh, andexit -
finish execution.

We ran some preliminary experiments using the home
activities domain discussed above, with a slight mod-
ification: the last option in the plan library is now
(πt.[get(t), putDown(t)]) instead of(πt.get(t)). This was
done ensure that there are arbirarily long executions of the
plan library. For eachn, wheren is the length of an observed
action sequence, we randomly selected 200 sequences ofn
actions that could be generated by the plan library. We then
ran the plan recognition system on all of those and averaged
the running time. The results appear in Figure 1. We can see
that our system can identify matching plans for a sequence
of 80 observed actions in less than one second on average in
this test domain. As well, for this domain the running time
seems to grow linearly with the length of the observed action
sequence.

Figure 1: Average runtime (seconds) versus the length of the
action sequence

Discussion
In this paper, we have described a framework for plan recog-
nition in the Situation Calculus. The ConGolog program-
ming language is used to specify plans. The system matches
the actions of the monitored agent against the plan library
and returns some scenarios, representing the execution paths
that the agent may have followed.

The main differences between our account of plan recog-
nition and the one described by (Demolombe & Hamon
2002) are that ours is able to model procedure calls within
plans and that it is incremental. Because our approach to
plan recognition concentrates on procedures, it is able to dis-
tinguish sub-procedures from each other as well as from top-
level plans. This allows the scenarios to be fairly detailed
both as to how and why a certain plan was being executed.

Because our formalism is incremental, it does not need
to know the whole sequence of actions to interpret the next

step; nor does it need to re-compute matching scenarios
from scratch whenever a new action is made. It would be
well-suited for real-time applications or continuous moni-
toring.

The framework described here is easily extended with
new annotations to specify, for example, the goals and pre-
conditions of each plan and/or possible reactions to it by the
monitoring system. As mentioned earlier, to fully support
the recognition of concurrent executions of plans, additional
annotations to track which process performed each action
should be introduced. Another possible extension is to as-
sign probabilities to actions and plans, similarly to what was
done in (Demolombe & Fernandez 2005). This would make
it possible to rank the possible execution hypotheses, select
the most probable ones and use this to predict which actions
the agent is more likely to execute next. One could also
look at qualitative mechanisms for doing this. It would also
be very interesting to extend our implemented plan recogni-
tion system to support some forms of incomplete knowledge
about the initial situation (the implementation of IndiGolog
described in (Sardina & Vassos 2005) would be a good start-
ing point). More experimental evaluation of our system is
also needed.

There has already been work on home care applications
for a plan recognition system. For example, (Lin & Hsu
2006) describes a plan recognition system that includes
strategies for monitoring and obtaining actions, as well as
using learning to modify the plan libraries. Both of those
techniques can potentially work with our system.
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