
Agent Supervision in Situation-Determined ConGolog

Giuseppe De Giacomo
Sapienza – Università di Roma

Rome, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Christian Muise
University of Toronto

Toronto, Canada
cjmuise@cstoronto.edu

Abstract
We investigate agent supervision, a form of cus-
tomization, which constrains the actions of an agent
so as to enforce certain desired behavioral speci-
fications. This is done in a setting based on the
Situation Calculus and a variant of the ConGolog
programming language which allows for nondeter-
minism, but requires the remainder of a program
after the execution of an action to be determined
by the resulting situation. Such programs can be
fully characterized by the set of action sequences
that they generate. The main results are a charac-
terization of the maximally permissive supervisor
that minimally constrains the agent so as to enforce
the desired behavioral constraints when some agent
actions are uncontrollable, and a sound and com-
plete technique to execute the agent as constrained
by such a supervisor.

1 Introduction
There has been much work on process customization, where
a generic process for performing a task or achieving a goal
is customized to satisfy a client’s constraints or preferences
[Fritz and McIlraith, 2006; Lin et al., 2008; Sohrabi et al.,
2009]. This approach was originally proposed in [McIl-
raith and Son, 2002] in the context of web service com-
position [Su, 2008]. The idea is that the generic process
provides a wide range of alternative ways to perform the
task. During customization, alternatives that violate the con-
straints are eliminated. Some parameters in the remaining
alternatives may be restricted or instantiated so as to en-
sure that any execution of the customized process will sat-
isfy the client’s constraints. Another approach to service
composition synthesizes an orchestrator that controls the ex-
ecution of a set of available services to ensure that they
realize a desired service [Sardiña and De Giacomo, 2009;
Bertoli et al., 2010].

In this paper, we develop a framework for a similar type
of process refinement that we call supervised execution. We
assume that we have a nondeterministic process that speci-
fies the possible behaviors of an agent, and a second process
that specifies the possible behaviors that a supervisor wants
to allow (or alternatively, of the behaviors that it wants to rule

out). For example, we could have an agent process represent-
ing a child and its possible behaviors, and a second process
representing a babysitter that specifies the behaviors by the
child that can be allowed. If the supervisor can control all
the actions of the supervised agent, then it is straightforward
to specify the behaviors that may result as a kind of syn-
chronized concurrent execution of the agent and supervisor
processes. A more interesting case arises when some agent
actions are uncontrollable. For example, it may be impos-
sible to prevent the child from getting muddy once he/she
is allowed outside. In such circumstances, the supervisor
may have to block some agent actions, not because they are
undesirable in themselves (e.g. going outside), but because
if they are allowed, the supervisor cannot prevent the agent
from performing some undesirable actions later on (e.g. get-
ting muddy).

We follow previous work [McIlraith and Son, 2002; Fritz
and McIlraith, 2006] in assuming that processes are spec-
ified in a high level agent programming language defined
in the Situation Calculus [Reiter, 2001].1 In fact, we de-
fine and use a restricted version of the ConGolog agent pro-
gramming language [De Giacomo et al., 2000] that we call
Situation-Determined ConGolog (SDConGolog). In this ver-
sion, following [De Giacomo et al., 2010] all transitions in-
volve performing an action (i.e. there are no transitions that
merely perform a test). Moreover, nondeterminism is re-
stricted so that the remaining program is a function of the
action performed, i.e. there is a unique remaining program
δ′ such that a given program δ can perform a transition
(δ, s)→a (δ′, do(a, s)) involving action a in situation s. This
means that a run of such a program starting in a given situ-
ation can be taken to be simply a sequence of actions, as all
the intermediate programs one goes through are functionally
determined by the starting program and situation and the ac-
tions performed. Thus we can see a program and a starting
situation as specifying a language, that of all the sequences
of actions that are runs of the program in the situation. This
allows us to define language theoretic notions such as union,
intersection, and difference/complementation in terms of op-

1Clearly, there are applications where a declarative formalism is
preferable, e.g. linear temporal logic (LTL), regular expressions over
actions, or some type of business rules. However, there has been pre-
vious work on compiling such declarative specification languages
into ConGolog, for instance [Fritz and McIlraith, 2006], which han-
dles an extended version of LTL interpreted over a finite horizon.

erations on the corresponding programs, which has applica-
tions in many areas (e.g. programming by demonstration and
programming by instruction [Fritz and Gil, 2010], and plan
recognition [Demolombe and Hamon, 2002]).Working with
situation-determined programs also greatly facilitates the for-
malization of supervision/customization. In [De Giacomo et
al., 2010], it is in fact shown that any ConGolog program can
be made situation-determined by recording nondeterministic
choices made in the situation.

Besides a detailed characterization of SDConGolog,2 the
main contributions of the paper are as follows: first, based
on previous work in discrete event control [Wonham and Ra-
madge, 1987], we provide a characterization of the maximally
permissive supervisor that minimally constrains the actions
of the agent so as to enforce the desired behavioral spec-
ifications, showing its existence and uniqueness; secondly,
we define a program construct for supervised execution that
takes the agent program and supervisor program, and exe-
cutes them to obtain only runs allowed by the maximally per-
missive supervisor, showing its soundness and completeness.

The rest of the paper proceeds as follows. In the next
section, we briefly review the Situation Calculus and the
ConGolog agent programming language. In Section 3, we de-
fine SDConGolog, discuss its properties, and introduce some
useful programming constructs and terminology. Then in
Section 4, we develop our account of agent supervision, and
define the maximal permissive supervisor and supervised ex-
ecution. Finally in Section 5, we review our contributions and
discuss related and future work.

2 Preliminaries
The situation calculus is a logical language specifically de-
signed for representing and reasoning about dynamically
changing worlds [Reiter, 2001]. All changes to the world are
the result of actions, which are terms in the language. We
denote action variables by lower case letters a, action types
by capital lettersA, and action terms by α, possibly with sub-
scripts. A possible world history is represented by a term
called a situation. The constant S0 is used to denote the ini-
tial situation where no actions have yet been performed. Se-
quences of actions are built using the function symbol do,
such that do(a, s) denotes the successor situation resulting
from performing action a in situation s. Predicates and func-
tions whose value varies from situation to situation are called
fluents, and are denoted by symbols taking a situation term
as their last argument (e.g., Holding(x, s)). Within the lan-
guage, one can formulate action theories that describe how
the world changes as the result of actions [Reiter, 2001].

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, various
so-called high-level programming languages have been de-
fined. Here we concentrate on (a fragment of) ConGolog that
includes the following constructs:

α atomic action
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional

2In [De Giacomo et al., 2010], situation-determined programs
were only dealt with incidentally.

while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, that is, a formula in the
language with all situation arguments in fluents suppressed.
As usual, we denote by ϕ[s] the situation calculus formula
obtained from ϕ by restoring the situation argument s into
all fluents in ϕ. Program δ1|δ2 allows for the nondeterminis-
tic choice between programs δ1 and δ2, while πx.δ executes
program δ for some nondeterministic choice of a legal bind-
ing for variable x (observe that such a choice is, in general,
unbounded). δ∗ performs δ zero or more times. Program
δ1‖δ2 expresses the concurrent execution (interpreted as in-
terleaving) of programs δ1 and δ2.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predicates
[De Giacomo et al., 2000]: (i) Trans(δ, s, δ′, s′), which
holds if one step of program δ in situation smay lead to situa-
tion s′ with δ′ remaining to be executed; and (ii) Final(δ, s),
which holds if program δ may legally terminate in situation
s. The definitions of Trans and Final we use are as in [De
Giacomo et al., 2010]; these are in fact the usual ones [De
Giacomo et al., 2000], except that the test construct ϕ? does
not yield any transition, but is final when satisfied. Thus, it
is a synchronous version of the original test construct (it does
not allow interleaving). A consequence of this is that in the
version of ConGolog that we use, every transition involves the
execution an action (tests do not make transitions), i.e.,

Σ ∪ C |= Trans(δ, s, δ′, s′) ⊃ ∃a.s′ = do(a, s).

Here and in the remainder, we use Σ to denote the founda-
tional axioms of the situation calculus from [Reiter, 2001]
and C to denote the axioms defining the ConGolog language.

3 Situation-Determined Programs
As mentioned earlier, we are interested in process customiza-
tion. For technical reasons, we will focus on a restricted
class of ConGolog programs for describing processes, namely
“situation-determined programs”. A program δ is situation-
determined in a situation s if for every sequence of transi-
tions, the remaining program is determined by the resulting
situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

where Trans∗ denotes the reflexive transitive closure of Trans.
Thus, a (partial) execution of a situation-determined program
is uniquely determined by the sequence of actions it has pro-
duced. This is a key point. In general, the possible execu-
tions of a ConGolog program are characterized by sequences
of configurations formed by the remaining program and the
current situation. In contrast, the execution of situation-
determined programs can be characterized in terms of se-
quences of actions only, those sequences that correspond to
the situations reached from where the program started.

For example, the ConGolog program (a; b) | (a; c) is not
situation-determined in situation S0 as it can make a tran-
sition to a configuration (b, do(a, S0)), where the situation
is do(a, S0) and the remaining program is b, and it can also
make a transition to a configuration (c, do(a, S0)), where the
situation is also do(a, S0) and the remaining program is in-
stead c. It is impossible to determine what the remaining pro-
gram is given only a situation, e.g. do(a, S0), reached along
an execution. In contrast, the program a; (b | c) is situation-
determined in situation S0. There is a unique remaining pro-
gram (b | c) in situation do(a, S0) (and similarly for the other
reachable situations).

When we restrict our attention to situation-determined pro-
grams, we can use a simpler semantic specification for the
language; instead of Trans we can use a next (partial) func-
tion, where next(δ, a, s) returns the program that remains af-
ter δ does a transition involving action a in situation s (if δ
is situation determined, such a remaining program must be
unique). We will axiomatize the next function so that it sat-
isfies the following properties:

next(δ, a, s) = δ′ ∧ δ′ 6= ⊥ ⊃ Trans(δ, s, δ′, do(a, s)) (N1)

∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃
∀δ′.(Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = δ′) (N2)

¬∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = ⊥ (N3)

Here ∃!x.φ(x) means that there exists a unique x such that
φ(x); this is defined in the usual way. ⊥ is a special value
that stands for “undefined”. The function next(δ, a, s) is only
defined when there is a unique remaining program after pro-
gram δ does a transition involving the action a; if there is such
a unique remaining program, then next(δ, a, s) denotes it.

We define the function next inductively on the structure of
programs using the following axioms:
Atomic action:

next(α, a, s) =

{
nil if Poss(a, s) and α = a
⊥ otherwise

Sequence: next(δ1; δ2, a, s) =
next(δ1, a, s); δ2 if next(δ1, a, s) 6= ⊥ and

(¬Final(δ1, s) or next(δ2, a, s) = ⊥)

next(δ2, a, s) if Final(δ1, s) and next(δ1, a, s) = ⊥
⊥ otherwise

Conditional:

next(ifϕ then δ1 else δ2, a, s) =

{
next(δ1, a, s) if ϕ[s]

next(δ2, a, s) if ¬ϕ[s]

Loop:

next(whileϕ do δ, a, s) =


next(δ, a, s); while ϕ do δ

if ϕ[s] and next(δ, a, s) 6= ⊥
⊥ otherwise

Nondeterministic branch:

next(δ1|δ2, a, s) =


next(δ1, a, s) if next(δ2, a, s) = ⊥ or
next(δ2, a, s) = next(δ1, a, s)

next(δ2, a, s) if next(δ1, a, s) = ⊥
⊥ otherwise

Nondeterministic choice of argument:

next(πx.δ, a, s) =

{
next(δxd , a, s) if ∃!d.next(δxd , a, s) 6= ⊥
⊥ otherwise

Nondeterministic iteration:

next(δ∗, a, s) =

{
next(δ, a, s); δ∗ if next(δ, a, s) 6= ⊥
⊥ otherwise

Interleaving concurrency: next(δ1‖δ2, a, s) =
next(δ1, a, s)‖δ2

if next(δ1, a, s) 6= ⊥ and next(δ2, a, s) = ⊥
δ1‖next(δ2, a, s)

if next(δ2, a, s) 6= ⊥ and next(δ1, a, s) = ⊥
⊥ otherwise

Test, empty program, undefined:
next(ϕ?, a, s) = ⊥ next(nil, a, s) = ⊥ next(⊥, a, s) = ⊥

Moreover the undefined program is never Final:
Final(⊥, s) ≡ false.

Let Cn be the set of ConGolog axioms extended with the
above axioms specifying next and Final(⊥, s). It is easy to
show that:
Proposition 1 Properties N1, N2, and N3 are entailed by Σ∪
Cn.
Note in particular that as per N3, if the remaining program
is not uniquely determined, then next(δ, a, s) is undefined.
Notice that for situation-determined programs this will never
happen, and if next(δ, a, s) returns ⊥ it is because δ cannot
make any transition using a in s:
Corollary 2

Σ ∪ Cn |= ∀δ, s.SituationDetermined(δ, s) ⊃
∀a [(next(δ, a, s) = ⊥) ≡ (¬∃δ′.Trans(δ, s, δ′, do(a, s)))].

Let’s look at an example. Imagine an agent specified by
δB1 below that can repeatedly pick an available object and
repeatedly use it and then discard it, with the proviso that if
during use the object breaks, the agent must repair it:

δB1 = [π x.Available(x)?;
[use(x); (nil | [break(x); repair(x)])]∗;
discard(x)]∗

We assume that there is a countably infinite number of avail-
able unbroken objects initially, that objects remain available
until they are discarded, that available objects can be used if
they are unbroken, and that objects are unbroken unless they
break and are not repaired (this is straightforwardly axiom-
atized in the situation calculus). Notice that this program is
situation-determined, though very nondeterministic.

Language theoretic operations on programs. We can ex-
tend the SDConGolog language so as to close it with respect
to language theoretic operations, such as union, intersection
and difference/complementation. We can already see the non-
deterministic branch construct as a union operator, and inter-
section and difference can be defined as follows:
Intersection/synchronous concurrency:

next(δ1 & δ2, a, s) =


next(δ1, a, s) & next(δ2, a, s)

if both are different from ⊥
⊥ otherwise

Difference: next(δ1 − δ2, a, s) =
next(δ1, a, s)− next(δ2, a, s) if both are different from ⊥
next(δ1, a, s) if next(δ2, a, s) = ⊥
⊥ if next(δ1, a, s) = ⊥

For these new constructs, Final is defined as follows:

Final(δ1 & δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ1 − δ2, s) ≡ Final(δ1, s) ∧ ¬Final(δ2, s)

We can express the complement of a program δ using differ-
ence as follows: (πa.a)∗ − δ.

It is easy to check that Proposition 1 and Corollary 2 also
hold for programs involving these new constructs.

As we will see later, synchronous concurrency can be used
to constrain/customize a process. Difference can be used to
prohibit certain process behaviors: δ1 − δ2 is the process
where δ1 is executed but δ2 is not.

To illustrate, consider an agent specified by program δS1
that repeatedly picks an available object and does anything to
it provided it is broken at most once before it is discarded:

δS1 = [π x.Available(x)?;
[π a.(a−(break(x) | discard(x)))]∗;
(nil | (break(x)); [π a.(a−(break(x) | discard(x)))]∗);
discard(x)]∗

Sequences of actions generated by programs. We can ex-
tend the function next to the function next∗(δ,~a, s) that takes
a program δ, a finite sequence of actions ~a,3 and a situation
s, and returns the remaining program δ′ after executing δ in s
producing the sequence of actions ~a, defined by induction on
the length of the sequence of actions as follows:

next∗(δ, ε, s) = δ
next∗(δ, a~a, s) = next∗(next(δ, a, s),~a, do(a, s))

where ε denotes the empty sequence. Note that if along ~a the
program becomes ⊥ then next∗ returns ⊥ as well.
We define the setRR(δ, s) of (partial) runs of a program δ in
a situation s as the sequences of actions that can be produced
by executing δ from s:4

RR(δ, s) = {~a | next∗(δ,~a, s) 6= ⊥}
Note that if ~a ∈ RR(δ, s), then all prefixes of ~a are in
RR(δ, s) as well.
We define the set CR(δ, s) of complete runs of a program δ in
a situation s as the sequences of actions that can be produced
by executing δ from s until a Final configuration is reached:

CR(δ, s) = {~a | Final(next∗(δ,~a, s), do(~a, s))}

We define the set GR(δ, s) of good runs of a program δ in a
situation s as the sequences of actions that can be produced

3Notice that such sequences of actions have to be axiomatized in
second-order logic, similarly to situations (with UNA and domain
closure). As a short cut they could also be characterized directly in
terms of “difference” between situations.

4Here and in what follows, we use set notation for readability; if
we wanted to be very formal, we could introduce RR as a defined
predicate, and similarly for CR, etc.

by executing δ from s which can be extended until a Final
configuration is reached:

GR(δ, s) = {~a | ∃~b.Final(next∗(δ,~a~b, s), do(~a~b, s))}

It is easy to see that CR(δ, s) ⊆ GR(δ, s) ⊆ RR(δ, s),
i.e., complete runs are good runs, and good runs are indeed
runs. Moreover, CR(δ, s) = CR(δ′, s) implies GR(δ, s) =
GR(δ′, s), i.e., if two programs in a situation have the same
complete runs, then they also have the same good runs; how-
ever they may still differ in their sets of non-good runs,
since CR(δ, s) = CR(δ′, s) does not imply RR(δ, s) =
RR(δ′, s). We say that a program δ in s is non-blocking iff
RR(δ, s) = GR(δ, s), i.e., if all runs of the program δ in s
can be extended to runs that reach a Final configuration.

The search construct. We can add to the language a search
construct Σ, as in [De Giacomo et al., 1998]:

next(Σ(δ), a, s) =


Σ(next(δ, a, s)) if there exists ~a s.t.

Final(next∗(δ, a~a, s))

⊥ otherwise

Final(Σ(δ), s) ≡ Final(δ, s).

Intuitively, next(Σ(δ), a, s) does lookahead to ensure that ac-
tion a is in a good run of δ in s, otherwise it returns ⊥.

Notice that: (i) RR(Σ(δ), s) = GR(Σ(δ), s), i.e., un-
der the search construct all programs are non-blocking; (ii)
RR(Σ(δ), s) = GR(δ, s), i.e., Σ(δ) produces exactly the
good runs of δ; (iii) CR(Σ(δ), s) = CR(δ, s), i.e., Σ(δ) and
δ produce exactly the same set of complete runs. Thus Σ(δ)
trims the behavior of δ by eliminating all those runs that do
not lead to a Final configuration.

Note also that if a program is non-blocking in s, then
RR(Σ(δ), s) = RR(δ, s), in which case there is no point in
using the search construct. Finally, we have that: CR(δ, s) =
CR(δ′, s) impliesRR(Σ(δ), s) = RR(Σ(δ′), s), i.e., if two
programs have the same complete runs, then under the search
construct they have exactly the same runs.

4 Supervision
Let us assume that we have two agents: an agent B with be-
havior represented by the program δB and a supervisor S with
behavior represented by δS . While both are represented by
programs, the roles of the two agents are quite distinct. The
first is an agent B that acts freely within its space of delib-
eration represented by δB . The second, S, is supervising B
so that as B acts, it remains within the behavior permitted by
S. This role makes the program δS act as a specification of
allowed behaviors for agent B.

Note that, because of these different roles, one may want to
assume that all configurations generated by (δS , s) are Final,
so that we leave B unconstrained on when it may terminate.
This amounts to requiring the following property to hold:
CR(δS , s) = GR(δS , s) = RR(δS , s). While reasonable,
for the technical development below, we do not need to rely
on this assumption.

The behavior of B under the supervision of S is con-
strained so that at any point B can execute an action in its
original behavior, only if such an action is also permitted in

S’s behavior. Using the synchronous concurrency operator,
this can be expressed simply as:

δB & δS .

Note that unless δB & δS happens to be non-blocking, it may
get stuck in dead end configurations. To avoid this, we need to
apply the search construct, getting Σ(δB & δS). In general,
the use of the search construct to avoid blocking, is always
needed in the development below.

We can use the example programs presented earlier to il-
lustrate. The execution of δB1 under the supervision of δS1
is simply δB1 & δS1 (assuming all actions are controllable).
It is straightforward to show that the resulting behavior is to
repeatedly pick an available object and use it as long as one
likes, breaking it at most once, and repairing it whenever it
breaks, before discarding it. It can be shown that the set of
partial/complete runs of δB1 & δS1 is exactly that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x);use(x)∗)];
discard(x)]∗

Uncontrollable actions. In the above, we implicitly assumed
that all actions of agent B could be controlled by the super-
visor S. This is often too strong an assumption, e.g. once we
let a child out in a garden after rain, there is nothing we can
do to prevent her/him from getting muddy. We now want to
deal with such cases.

Following [Wonham and Ramadge, 1987], we distinguish
between actions that are uncontrollable by the supervisor and
actions that are controllable. The supervisor can block the
execution of the controllable actions but cannot prevent the
supervised agent from executing the uncontrollable ones.

To characterize the uncontrollable actions in the situation
calculus, we use a special fluent Au(au, s), which we call an
action filter, that expresses that action au is uncontrollable in
situation s. Notice that, differently from the Wonham and Ra-
madge work, we allow controllability to be context dependent
by allowing an arbitrary specification of the fluent Au(au, s)
in the situation calculus.

While we would like the supervisor S to constrain agent B
so that δB & δS is executed, in reality, since S cannot pre-
vent uncontrollable actions, S can only constrain B on the
controllable actions. When this is sufficient, we say that the
supervisor is “effective”. Technically, following again Won-
ham and Ramadge’s ideas, this can be captured by saying that
the supervision by δS is effective for δB in situation s iff:

∀~aau.~a ∈ GR(δB & δS , s) and Au(au, do(~a, s)) implies
if ~aau ∈ GR(δB , s) then ~aau ∈ GR(δS , s).

What this says is that if we postfix a good run ~a for both
B and S with an uncontrollable action au that is good for B,
then this uncontrollable action au must also be good for S. By
the way, notice that ~aau ∈ GR(δB , s) and ~aau ∈ GR(δS , s)
together imply that ~aau ∈ GR(δB & δS , s).

What about if such a property does not hold? We can take
two orthogonal approaches: (i) relax δS so that it places no
constraints on the uncontrollable actions; (ii) require that δS
be indeed enforced, but disallow all those runs that prevent
δS from being effective. We look at both approaches below.

Relaxed supervision. To define relaxed supervision we first
need to introduce two operations on programs: projection
and, based on it, relaxation. The projection operation takes a
program and an action filter Au, and projects all the actions
that satisfy the action filter (e.g., are uncontrollable), out of
the execution. To do this, projection substitutes each occur-
rence of an atomic action term αi by a conditional statement
that replaces it with the trivial test true? when Au(αi) holds
in the current situation, that is:

pj (δ, Au) = δαi

if Au(αi) then true? else αi

for every occurrence of an action term αi in δ.

(Recall that such a test does not perform any transition in our
variant of ConGolog.)

The relaxation operation on δ wrt Au(a, s) is as follows:

rl(δ, Au) = pj (δ, Au)‖(πa.Au(a)?; a)∗.

In other words, we project out the actions in Au from δ and
run the resulting program concurrently with one that picks
(uncontrollable) actions filtered by Au and executes them.
The resulting program no longer constrains the occurrence
of actions from Au in any way. In fact, notice that the re-
maining program of (πa.Au(a)?; a)∗ after the execution of
an (uncontrollable) filtered action is (πa.Au(a)?; a)∗ itself,
and that such a program is always Final.

Now we are ready to define relaxed supervision. Let us
consider a supervisor S with behavior δS for agent B with
behavior δB . Let the action filter Au(au, s) specify the un-
controllable actions. Then the relaxed supervision of S (for
Au(au, s)) in s is the relaxation of δS so as that it allows
every uncontrollable action, namely: rl(δS , Au). So we can
characterize the behavior of B under the relaxed supervision
of S as:

δB & rl(δS , Au).

The following properties are immediate consequences of
the definitions:

Proposition 3 The relaxed supervision rl(δS , Au) is effec-
tive for δB in situation s.

Proposition 4 CR(δB & δS , s) ⊆ CR(δB & rl(δS , Au), s).

Proposition 5 If CR(δB & rl(δS , Au), s) ⊆ CR(δB &
δS , s), then δS is effective for δB in situation s.

Notice that, the first one is what we wanted. But the sec-
ond one says that rl(δS , Au) may indeed by more permis-
sive than δS : some complete runs that are disallowed in δS
may be permitted by its relaxation rl(δS , Au). This is not al-
ways acceptable. The last one, says that when the converse
of Proposition 4 holds, we have that the original supervision
δS is indeed effective for δB in situation s. Notice however
that even if δS effective for δB in situation s, it may still be
the case that CR(δB & rl(δS , Au), s) ⊂ CR(δB & δS , s).

Maximal permissive supervisor. Next we study a more con-
servative approach: we require the supervision δS to be ful-
filled, and for getting effectiveness we restrict it further. In-
terestingly, we show that there is a single maximal way of
restricting the supervisor S so that it both fulfills δS and be-
comes effective. We call the resulting supervisor the maximal
permissive supervisor.

We start by introducing a new abstract program construct
set(E) taking as argument a possibly infinite set E of se-
quences of actions, with next and Final defined as follows:

next(set(E), a, s) =

{
set(E′) with E′ = {~a | a~a ∈ E}

if E′ 6= ∅
⊥ if E′ = ∅

Final(set(E), s) ≡ (ε ∈ E)

Thus set(E) can be executed to produce any of the sequences
of actions in E.

Notice that for every program δ and situation s, we can
define Eδ = CR(δ, s) such that CR(set(Eδ), s) = CR(δ, s).
The converse does not hold in general, i.e., there are abstract
programs set(E) such that for all programs δ, not involving
the set(·) construct, CR(set(Eδ), s) 6= CR(δ, s). That is,
the syntactic restrictions in ConGolog may not allow us to
represent some possible sets of sequences of actions.

With the set(E) construct at hand, following [Wonham
and Ramadge, 1987], we may define the maximal permissive
supervisor mps(δB , δS , s) of B with behavior δB by S with
behavior δS in situation s, as:

mps(δB , δS , s) = set(
⋃
E∈E E) where

E = {E | E ⊆ CR(δB & δS , s)
and set(E) is effective for δB in s}

Intuitively mps denotes the maximal set of runs that are ef-
fectively allowable by a supervisor that fulfills the specifica-
tion δS , and which can be left to the arbitrary decisions of the
agent δB on the non-controllable actions. A quite interesting
result is that, even in the general setting we are presenting,
such a maximally permissive supervisor always exists and is
unique. Indeed, we can show:
Theorem 6 For the maximal permissive supervisor
mps(δB , δS , s) the following properties hold:

1. mps(δB , δS , s) always exists and is unique;
2. mps(δB , δS , s) is an effective supervisor for δB in s;

3. For every possible effective supervisor δ̂S for δB in s

such that CR(δB & δ̂S , s) ⊆ CR(δB & δS , s), we have
that CR(δB & δ̂S , s) ⊆ CR(δB & mps(δB , δS , s), s).

Proof: We prove the three claims separately.
Claim 1 follows directly from the fact set(∅) satisfies the
conditions to be included in mps(δB , δS , s).
Claim 3 also follows immediately from the definition of
mps(δB , δS , s), by recalling that CR(δB & δ̂S , s) =
CR(δB & set(Eδ̂S), s).

For Claim 2, it suffices to show that ∀~aau.~a ∈ GR(δB &
mps(δB , δS , s), s) and Au(au, do(~a, s)) we have that if
~aau ∈ GR(δB , s) then ~aau ∈ GR(mps(δB , δS , s), s). In-
deed, if ~a ∈ GR(δB & mps(δB , δS , s), s) then there is
an effective supervisor set(E) such that ~a ∈ GR(δB &
set(E), δS , s), s). set(E) being effective for δB in s, if
~aau ∈ GR(δB , s) then ~aau ∈ GR(set(E), s), but then
~aau ∈ GR(mps(δB , δS , s), s).

We can illustrate using our example programs. If we as-
sume that the break action is uncontrollable (and the others

are controllable), the supervisor S1 can only ensure that its
constraints are satisfied if it forces B1 to discard an object as
soon as it is broken and repaired. This is what we get as max-
imal permissive supervisor mps(δB1, δS1, S0), whose set of
partial/complete runs can be shown to be exactly that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x))];
discard(x)]∗

By the way, notice that (δB1 & rl(δS1, Au)) instead is com-
pletely ineffective since it has exactly the runs as δB1.

Unfortunately, in general, mps(δB , δS , s) requires the use
of the abstract program construct set(E), which can be ex-
pressed directly in ConGolog only if E is finite.5 For this
reason the above characterization remains essentially mathe-
matical. So next, we develop a new construct for execution
of programs under maximal permissive supervision, which is
indeed realizable.

Maximal permissive supervised execution. To capture the
notion of maximal permissive execution of agent B with be-
havior δB under the supervision of S with behavior δS in sit-
uation s, we introduce a special version of the synchronous
concurrency construct that takes into account the fact the
some actions are uncontrollable. Without loss of generality,
we assume that δB and δS both start with a common control-
lable action (if not, it is trivial to add a dummy action in front
of both so as to fullfil the requirement). Then, we characterize
the construct through next and Final as follows:
next(δB &Au

δS , a, s) =
⊥ if ¬Au(a, s) and ∃ ~au.Au(~au, do(a, s)) s.t.
next∗(Σ(δB), a ~au, s) 6= ⊥ and next∗(Σ(δS), a ~au, s) = ⊥
⊥ if next(δB , a, s) = ⊥ or next(δS , a, s) = ⊥
next(δB , a, s) &Au

next(δS , a, s) otherwise

Here Au(~au, s) is inductively defined on the length of ~au as
the smallest predicate such that: (i) Au(ε, s) ≡ true; (ii)
Au(au ~au, s) ≡ Au(au, s) ∧Au(~au, do(au, s)).

Final for the new construct is as follows:

Final(δB &Au δS , s) ≡ Final(δB , s) ∧ Final(δS , s).

This new construct captures exactly the maximal permissive
supervisor; indeed the theorem below shows the correctness
of maximal permissive supervised execution:
Theorem 7

CR(δB &Au
δS , s) = CR(δB & mps(δB , δS , s), s).

Proof: We start by showing:

CR(δB &Au
δS , s) ⊆ CR(δB & mps(δB , δS , s), s).

It suffices to show that δB &Au δS is effective for δB in
s. Indeed, if this is the case, by considering that δB &
mps(δB , δS , s) is the largest effective supervisor for δB in s,
and that RR(δB & (δB &Au

δS), s) = RR(δB &Au
δS , s),

we get the thesis.
5Note that the object domain may be uncountable in general,

hence not even an infinitary ConGolog program could capture
set(E) in general.

So we have to show that: ∀~aau.~a ∈ GR(δB &Au δS , s)
and Au(au, do(~a, s)) we have that if ~aau ∈ GR(δB , s) then
~aau ∈ GR(δB &Au

δS , s).
Since, wlog we assume that δB and δS started with a com-
mon controllable action, we can write ~a = ~a′ac ~au, where
¬Au(ac, do(~a′, s)) and Au(~au, do(~a′ac, s)) holds. Let δ′B =

next∗(δB , ~a′, s), δ′S = next∗(δS , ~a′, s), and s′ = do(~a′, s).
By the fact that ~a′ac ~au ∈ GR(δB &Au

δS , s) we know that
next(δ′B &Au δ′S , do(ac, s

′)) 6= ⊥. But then, by de defini-
tion of next , we have that for all ~bu such that Au(~bu, s

′) if
~bu ∈ GR(δ′B , do(ac, s

′)) then ~bu ∈ GR(δ′S , do(ac, s
′)). In

particular this holds for ~bu = ~auau. Hence we have that if
~aau ∈ GR(δB , s) then ~aau ∈ GR(δS , s).

Next we prove:
CR(δB & mps(δB , δS , s), s) ⊆ CR(δB &Au

δS , s).

Suppose not. Then there exist a complete run ~a such that ~a ∈
CR(δB & mps(δB , δS , s), s) but ~a 6∈ CR(δB &Au

δS , s).
As an aside, notice that ~a ∈ CR(δ, s) then ~a ∈ GR(δ, s) and
for all prefixes ~a′ such that ~a′~b = ~a we have ~a′ ∈ GR(δ, s).

Hence, let ~a′ = ~a′′a such that ~a′ ∈ GR(δB &Au
δS , s) but

~a′′a 6∈ GR(δB &Au
δS , s), and let δ′′B = next∗(δ′′B ,

~a′′, s),
δ′′S = next∗(δS , ~a′′, s), and s′ = do(~a′′, s).

Since ~a′′a 6∈ GR(δB &Au δS , s), it must be the case
that next(δ′′B &Au

δ′′S , a, s
′′) = ⊥. But then, consider-

ing that both next(δ′′B , a, s
′′) 6= ⊥ and next(δ′′S , a, s

′′) 6=
⊥, it must be the case that ¬Au(a, s′′) and exists ~bu such
that Au(~bu, do(a, s

′′)), and a~bu ∈ GR(δ′′B , s
′′) but a~bu 6∈

GR(δ′′S , s
′′).

Notice that ~bu 6= ε, since we have that a ∈ GR(δ′′S , s
′′).

So ~bu = ~cubu ~du with a~cu ∈ GR(δ′′S , s
′′) but a~cubu 6∈

GR(δ′′S , s
′′).

Now ~a′ ∈ GR(δB & mps(δB , δS , s), s) and since
Au(~cubu, do(~a′, s)), we have that ~a′ ~cubu ∈ GR(δB &
mps(δB , δS , s), s). Since, mps(δB , δS , s) is effective for
δB in s, we have that, if ~a′ ~c′ubu ∈ GR(δB , s) then
~a′ ~cubu ∈ GR(mps(δB , δS , s), s). This, by definition of
mps(δB , δS , s), implies ~a′ ~cubu ∈ GR(δB & δS , s), and
hence, in turn, ~a′ ~cubu ∈ GR(δS , s). Hence, we can conclude
that a~c′ubu ∈ GR(δ′′S , s

′′), getting a contradiction.

5 Conclusion
In this paper, we have investigated agent supervision in
situation-determined ConGolog programs. Our account of
maximal permissive supervisor builds on [Wonham and Ra-
madge, 1987]. However, Wonham and Ramage’s work deals
with finite state automata, while we handle infinite state sys-
tems in the context of the rich agent framework provided by
the situation calculus and ConGolog. We used ConGolog
as a representative of an unbounded-states process specifi-
cation language, and it should be possible to adapt our ac-
count of supervision to other related languages. We consid-
ered a form of supervision that focuses on complete runs, i.e.,

runs that lead to Final configurations. We can ensure that an
agent finds such executions by having it do lookahead/search.
Also of interest is the case in which agents act boldly with-
out necessarily performing search to get to Final configura-
tions. In this case, we need to consider all partial runs, not
just good ones. Note that this would actually yield the same
result if we engineered the agent behavior such that all of its
runs are good runs, i.e. if RR(δB , s) = GR(δB , s), i.e.,
all configurations are final. In fact, one could define a clo-
sure construct cl(δ) that would make all configurations of
δ final. Using this, one can apply our specification of the
maximal permissive supervisor to this case as well if we re-
place δB & δS by cl(δB & δS) in the definition. Observe
also, that under the assumption RR(δB , s) = GR(δB , s), in
next(δB &Au

δS , a, s) we no longer need to do the search
Σ(δB) and Σ(δS) and can directly use δB and δS .

We conclude by mentioning that if the object domain is fi-
nite, then ConGolog programs assume only a finite number of
possible configurations. In this case, we can take advantage
of the finite state machinery that was originally proposed by
Wonham and Ramage (generalizing it to deal with situation-
dependent sets of controllable actions), and the recent work
on translating ConGolog into finite state machines and back
[Fritz et al., 2008], to obtain a program that actually char-
acterizes the maximally permissive supervisor. In this way,
we can completely avoid doing search during execution. We
leave an exploration of this notable case for future work.

Acknowledgments
We thank Murray Wonham for inspiring discussions on
supremal controllable languages in finite state discrete event
control, which actually made us look into agent supervision
from a different and very fruitful point of view. We also thank
the anonymous referees for their comments. We acknowledge
the support of EU Project FP7-ICT ACSI (257593).

References
[Bertoli et al., 2010] Piergiorgio Bertoli, Marco Pistore, and

Paolo Traverso. Automated composition of web ser-
vices via planning in asynchronous domains. Artif. Intell.,
174(3-4):316–361, 2010.

[De Giacomo et al., 1998] Giuseppe De Giacomo, Raymond
Reiter, and Mikhail Soutchanski. Execution monitoring of
high-level robot programs. In KR, pages 453–465, 1998.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1–2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In KR, 2010.

[Demolombe and Hamon, 2002] Robert Demolombe and
Erwan Hamon. What does it mean that an agent is per-
forming a typical procedure? a formal definition in the
situation calculus. In AAMAS, pages 905–911, 2002.

[Fritz and Gil, 2010] Christian Fritz and Yolanda Gil. To-
wards the integration of programming by demonstration
and programming by instruction using Golog. In PAIR,
2010.

[Fritz and McIlraith, 2006] Christian Fritz and Sheila McIl-
raith. Decision-theoretic Golog with qualitative prefer-
ences. In KR, pages 153–163, June 2–5 2006.

[Fritz et al., 2008] Christian Fritz, Jorge A. Baier, and
Sheila A. McIlraith. ConGolog, sin trans: Compiling Con-
Golog into basic action theories for planning and beyond.
In KR, pages 600–610, 2008.

[Lin et al., 2008] Naiwen Lin, Ugur Kuter, and Evren Sirin.
Web service composition with user preferences. In ESWC,
pages 629–643, 2008.

[McIlraith and Son, 2002] S. McIlraith and T. Son. Adapting
Golog for composition of semantic web services. In KR,
pages 482–493, 2002.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical
Foundations for Specifying and Implementing Dynamical
Systems. The MIT Press, 2001.

[Sardiña and De Giacomo, 2009] Sebastian Sardiña and
Giuseppe De Giacomo. Composition of ConGolog
programs. In IJCAI, pages 904–910, 2009.

[Sohrabi et al., 2009] Shirin Sohrabi, Nataliya Prokoshyna,
and Sheila A. McIlraith. Web service composition via the
customization of Golog programs with user preferences.
In Conceptual Modeling: Foundations and Applications,
pages 319–334. Springer, 2009.

[Su, 2008] Jianwen Su. Special issue on semantic web ser-
vices: Composition and analysis. IEEE Data Eng. Bull.,
31(3), 2008.

[Wonham and Ramadge, 1987] WM Wonham and PJ Ra-
madge. On the supremal controllable sub-language of a
given language. SIAM J Contr Optim, 25(3):637659, 1987.

