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Résumé :
It is generally thought that agents in a multiagent sys-
tem should be capable of communicating in a high-
level, speech acts-based, agent communication language
(ACL), for instance FIPA ACL. Many agent program-
ming languages (APLs) such as Jack, JASON, JADE,
etc., support communication in such ACLs, i.e., the pro-
duction and reception/processing of ACL messages. They
also support the specification of complex behaviors for
agents, typically by allowing the definition of a library of
hierarchical plans that are selected and executed at run
time based on external or internal events. However, ra-
tional communication requires more than the ability to
send and receive ACL messages ; the agent should un-
derstand the semantics and pragmatics of the associated
communication acts. Without this, agents can only in-
teract when they follow rigid protocols, which is diffi-
cult in open systems. Most APLs do not support any of
this. In this paper, we argue that this is a serious defi-
ciency that needs to be addressed and discuss the require-
ments for this. There is one tool that does support the pro-
cessing of FIPA ACL message semantics and pragmat-
ics, the JADE Semantic Add-On (JSA). But, JSA pro-
vides only limited support for the specification of com-
plex agent behaviors. To gain a better understanding of the
problem, we explore how one could combine JSA-like se-
mantics and pragmatics processing capabilities with the
complex behavior specification capabilities of a typical
APL.

1 Introduction and Motivation

It is generally thought that agents in a mul-
tiagent system should be capable of commu-
nicating in a high-level, speech acts-based,
agent communication language (ACL), for in-
stance the ACL standardized by the Founda-
tion for Intelligent Physical Agents (FIPA) [9]
or KQML [11]. This allows agents not only to
query/inform each other about what they know
and request the performance of actions, but to
make commitments to one another by making
proposals and agreeing to a proposal or request.
Such languages have a communication act layer
separate from the content layer that can be used
to make the illocutionary force (performative) of
a message explicit. This allows some processing
of messages, for example by a broker, without
requiring detailed understanding of their con-
tent. FIPA ACL provides a semantic specification
of the meaning of the available communication
acts in the FIPA Semantic Language (SL), which
is essentially a modal logic dealing with beliefs,

intentions, and action.

Many frameworks for programming multiagent
systems support the production, reception and
processing of FIPA ACL messages, for instance
Jack [5], JASON [2], JADE [1], IndiGolog [7] with
the IG-JADE-PKSlib library [19], etc. However in
nearly all cases, these tools process messages
only in terms of their syntax and do not sup-
port the semantic interpretation of messages and
reasoning about their illocutionary/rational ef-
fects and the associated agent beliefs and in-
tentions. In fact, agents are generally assumed
to interact only according to specified protocols
(e.g., contract net, query-reply, etc.) where the
types of performatives that may be exchanged
in a conversation are rigidly specified (many
such interaction protocols have also been stan-
dardized by FIPA). The agents only accept mes-
sages with the performatives (and content lan-
guages/ontologies) allowed by the protocol, and
process them based on their performative la-
bel and content, without access to their seman-
tics. As pointed out in [17, 18], this means that
agents can only interact when they have been
designed to interact and that it is very difficult to
get agents in an open system to work together.

To solve this problem, one needs agent pro-
gramming facilities that support rational com-
munication, i.e., the semantic/pragmatic inter-
pretation of FIPA ACL messages as well as rea-
soning over the resulting semantic representa-
tions. This would allow agents to understand
the meaning/pragmatics of the messages they
receive and to respond to them in a reason-
able way, even when messages do not come ac-
cording to a rigid protocol. Support for seman-
tic/pragmatic interpretation of messages also
has many other benefits. There are many ways
to perform the same communication act, e.g.,
one can make an implicit request by inform-
ing someone that one has a particular intention.
An agent that really understands the meaning of
messages will be able to see beyond the differ-
ence in surface form. When applying coopera-
tion principles, an agent with rational communi-
cation capabilities can exploit its understanding
of the pragmatics of the exchanged messages.



For instance, it can detect lying/deception when
receiving messages whose claims are inconsis-
tent with what is known about the sender’s be-
liefs/intentions. Furthermore, an agent with ra-
tional communication capabilities can in princi-
ple deal with various forms of communication
failure. When it detects a false presupposition
in a message, it can correct it. If a question or
request is unclear, it can ask for a clarification.
When a direct answer to a query is unlikely to
achieve the ultimate goal of the requester, it can
provide a helpful answer addressing the latter.
One can easily imagine this sort of capabili-
ties being very advantageous/profitable in an e-
commerce agent for example.

There is one tool that attempts to provide the
kind of rational communication facilities dis-
cussed above, the JADE Semantic Add-On (JSA)
[17, 18]. JSA provides a library for manipulating
FIPA ACL messages, and FIPA SL representations
of the semantics of these messages. Semantic
interpretation and pragmatic inference, includ-
ing cooperative belief/intention adoption, is per-
formed in a rule-based framework that can be
customized. Facilities are also provided for stor-
ing SL semantic representations in a knowledge
base and defining forward chaining and back-
ward chaining inference rules over them.

Another requirement for agent programming
tools is support for the specification of com-
plex behaviors. The main approach to this
is belief-desire-intention (BDI) agent program-
ming languages/architectures, such as PRS [10]
and its various successors, such as AgentSpeak
[23], JASON [2], Jack [5], JAM [14], and CAN
[30, 28], as well as the closely related 3APL
[13]. These BDI agent programming languages
were conceived as a simplified and operational-
ized version of the BDI (Belief, Desire, Inten-
tion) model of agency, which is rooted in philo-
sophical work such as Bratman’s [4] theory of
practical reasoning and Dennett’s theory of in-
tentional systems [8].

An important feature of BDI-style programming
languages and platforms is their interleaved ac-
count of sensing, deliberation, and execution
[22]. In BDI systems, abstract plans written
by programmers are combined and executed in
real-time. By executing as they reason, BDI
agents reduce the likelihood that decisions will
be made on the basis of outdated beliefs and
remain responsive to the environment by mak-
ing adjustments in the steps chosen as they pro-
ceed. Unlike in classical planning-based archi-

tectures, execution happens at each step. The as-
sumption is that the careful crafting of plans’
preconditions to ensure the selection of appro-
priate plans at execution time, together with a
built-in mechanism for retrying alternative op-
tions, will usually ensure that a successful exe-
cution is found, even in the context of a chang-
ing environment. There is also work on using
learning to improve the way plans are selected
[12, 15].

Another popular approach to agent program-
ming is the Golog [16] family of high-level pro-
gramming languages. In contrast to BDI APLs,
programming languages in the Golog line aim
for a middle ground between classical plan-
ning and normal programming. The idea is
that the programmer may write a sketchy non-
deterministic program involving domain spe-
cific actions and test conditions and that the in-
terpreter will reason about these and search for
a valid execution. The semantics of these lan-
guages is defined on top of the situation cal-
culus, a popular predicate logic framework for
reasoning about action [20, 25]. The interpreter
for the language uses an action theory represent-
ing the agent’s beliefs about the state of the en-
vironment and the preconditions and effects of
the actions to find a provably correct execution
of the program. By controlling the amount of
nondeterminism in the program, the high-level
program execution task can be made as hard
as classical planning or as easy as determinis-
tic program execution. In ConGolog [6], the lan-
guage was extended to support concurrent pro-
gramming. Finally in IndiGolog [7], the frame-
work was generalized to allow the programmer
to control planning/lookahead and support on-
line execution and sensing the environment.

There are also other approaches to agent pro-
gramming languages, for instance approaches
based on process algebra or temporal logic. Bor-
dini et al. [3] discusses many of these.

Clearly, it would be very useful to have an
agent programming framework that provides
both (JSA-like) communication and seman-
tics/pragmatics processing capabilities as well
as the complex behavior specification capa-
bilities of a typical BDI or Golog-style agent
programming language. However, developing
such a tool presents very significant chal-
lenges. To be able to represent the illocu-
tionary/perlocutionary effects of communica-
tion acts, one needs a very expressive logi-
cal framework with quantifiers and modal op-



erators for beliefs, intentions, time/action, etc.
(e.g., FIPA SL). Entailment in such a logic is un-
decidable. Even if we restrict attention to the
propositional fragment, deciding entailment has
very high complexity. Thus using a complete
reasoner for such a logic is incompatible with
the reactivity requirements of agents operating
in highly dynamic environments. One possible
approach is to try to identify fragments of such
logics where reasoning is decidable and prac-
tically feasible, along the lines of work on de-
scription logics. But as far as we know, no for-
malism of this type has ever been used to model
the effects of a wide range of communication
acts. An alternative approach is to use an incom-
plete set of inference rules and/or search control
heuristics in performing inference. This means
that the user must assume responsibility for the
range of inferences handled and must often craft
customized inference rules/proof strategies for
his application. One example of this approach
is the ARTIMIS [26] rational agent framework,
where a modal logic theorem prover with cus-
tomized proof strategies is used to implement
cooperative dialogue systems (many elements
of the ARTIMIS framework have been incorpo-
rated into JSA).

To get a better understanding of the issues
involved in developing an agent program-
ming framework that supports complex behav-
ior specification facilities and rational commu-
nication, we examine in this preliminary project
report how one could go about combining JSA
with a typical BDI or Golog-style agent pro-
gramming language. In the next section, we
go over JSA and IndiGolog in a bit more de-
tail. Then, we outline a generic architecture that
combines JSA and an APL. We keep it generic
so that it remains applicable to many different
APLs. After that, we examine how the model
could be realized with IndiGolog as the APL. We
conclude by summarizing our results so far and
discussing the work that remains.

2 Background

2.1 JSA

As mentioned earlier, agent communication lan-
guages (ACLs) are languages shared between
agents that are used to formulate messages
sent between them. In this paper, we focus on
FIPA ACL. A FIPA ACL message contains a per-
formative and may (and usually does) include
other parameters, such as a sender, a receiver,

and the content of the message. The performa-
tive indicates what the message is intended to
achieve. Examples of performative are : Inform,
Request, Inform Ref (which informs the recipi-
ent of the referent of a descriptor), Call for Pro-
posal, Agree, Cancel, etc. Examples of FIPA ACL
messages are given below.

FIPA ACL identifies a set of primitive and com-
posite communication actions (such as Inform
and Request) and gives them a semantics using a
first-order, multimodal, multiagent logic called
the FIPA Semantic Language (FIPA SL). FIPA SL
has the following modalities :
– (B i φ) : agent i believes φ
– (U i φ) : agent i is uncertain whether φ holds
– (I i φ) : agent i intends φ
– (done a φ) : action a has just occurred and φ

held beforehand
– (feasible a φ) : action a can possibly occur

and φ would hold if it did
The semantics of communicative acts in
FIPA ACL are defined using feasibility condi-
tions and rational effects. A feasibility condition
specifies the condition that must hold for an act
to be performed. A rational effect is the effect
an agent intends to bring about by performing
the act.

The main activity of a JSA agent is interpreting
incoming FIPA ACL messages. The interpreta-
tion loop has access to a belief base which stores
facts and maintains a history of previously exe-
cuted actions (using FIPA SL as its representation
language), and a planner. There are two main
processes in the JSA interpretation loop, one is
a production function and the other is a con-
sumption function. The objects that these func-
tions operate over (i.e., produce or consume)
are FIPA SL sentences which are called semantic
representations (SRs). When a message comes
in, the production function reads the message
and produces SRs according to the type and con-
tent of the message. The consumption function
reads these SRs and acts on these SRs by, e.g.,
asserting beliefs, executing actions, and/or pro-
ducing more SRs.

The production and consumption functions
are implemented using semantic interpretation
principles (SIPs). The SIPs are rules that opera-
tionalize the FIPA ACL semantics (via predefined
SIPs) but can also be used to customize the be-
havior of agents in a particular domain, imple-
ment planning or complex activities, etc. (via
user-defined SIPs).

As an example of the interpretation process



[17], suppose a son agent wants to know the
current temperature from a display agent. There
are different ways to formulate this request in
FIPA ACL. One way is for the son to inform the
display that it wants to know the current temper-
ature. This is expressed by the following action
which we denote Act1.

(inform :sender son :receiver (:set display)
:content (“(I son (exists ?t

(B son (temperature ?t)))))′′).

This is an inform action from the son to a set
of recipients, which in this case is just the dis-
play agent. The content of the action is that the
son intends that there be a t such that the son
believes that t is the current temperature. When
the display agent receives this message, the fact
that the son agent sent the message is asserted
in the belief base of the display agent :

(B display (done (action son Act1) true)).

This belief triggers the ActionFeature SIP
which asserts (among other beliefs) the belief
in the rational effect of the action. In this case,
the rational effect is that the son intends that the
display believes that the son intends to know the
temperature.

(B display (I son
(B display (I son

(exists ?t (B son (temperature ?t))))))).

A belief of this form, i.e., that the agent believes
that another agent intends the agent to believe
something, triggers the BeliefTransfer SIP. This
is a user-customizable SIP which when fired
causes the agent to adopt a belief of another
agent. In this case, it causes the display to adopt
the belief intended by the son :

(B display (I son
(exists ?t (B son (temperature ?t))))).

This type of belief, i.e., that the agent be-
lieves another agent has a particular intention
triggers an IntentionTransfer SIP. This user-
customizable SIP, when fired, causes the agent
to adopt the intention of the other agent.

(I display
(exists ?t (B son (temperature ?t)))).

At this point, the RationalityPrinciple SIP kicks
in. This SIP searches the agent’s base of ac-
tions for an action whose rational effect matches

the intention. If the content of the intention is
to achieve a goal in the agent’s environment,
then the PlanningSIP could be triggered, which
would try to create a plan to achieve the goal. In
this case, the result of the SIP will be to produce
an action which informs the son of the current
temperature.

(Inform-ref :sender display :receiver (:set son)
:content “((any ?t (temperature ?t)))′′).

JSA can be customized in various ways. In ad-
dition to writing SIPs or modifying the default
ones, users can write assert and query filters.
These are called when a sentence is asserted or
queried (resp.) in the belief base. A filter con-
tains a trigger which matches certain sentences.
If the trigger matches, then the filter is applied
to the sentence. The conditions for belief and in-
tention transfer are also customizable. These are
the conditions under which an agent will adopt
the beliefs or intentions of other agents. Inten-
tion transfer is the main mechanism to imple-
ment cooperation among agents in this frame-
work.

2.2 The Situation Calculus and IndiGolog

The situation calculus [20, 25] is a predicate
logic language for representing dynamically
changing worlds in which all changes are the re-
sult of named actions. The constant S0 is used to
denote the initial situation, namely that situation
in which no actions have yet occurred. There is a
distinguished binary function symbol do, where
do(a, s) denotes the successor situation to s re-
sulting from performing the action a. Relations
(resp. functions) whose values vary from situa-
tion to situation, are called fluents, and are de-
noted by predicate (resp. function) symbols tak-
ing a situation term as their last argument. There
is a special predicate Poss(a, s) used to state that
action a is executable in situation s.

Within this language, one can formulate action
theories that describe how the world changes as
the result of the available actions as in [25] :
– Axioms describing the initial situation, S0.
– Action precondition axioms, one for each

primitive action a, characterizing Poss(a, s).
– Successor state axioms, one for each re-

lational fluent F (resp. functional flu-
ent f ), which characterize the conditions
under which F (~x, do(a, s)) holds (resp.
f(~x, do(a, s)) = v) in terms of what holds



in situation s ; these axioms may be compiled
from effects axioms, but provide a solution to
the frame problem [24].

– Unique names axioms for the primitive ac-
tions.

– A set of foundational, domain independent
axioms for situations Σ.

On top of situation calculus action theories,
logic-based programming languages can be de-
fined, which, in addition to the primitive actions,
allow the definition of complex actions. The
ConGolog language [6], an extension of Golog
[16], provides the following rich set of program-
ming constructs :

α, primitive action
φ ?, wait for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ, nondet. choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, prioritized concurrency
δ||, concurrent iteration
〈 ~x : φ→ δ 〉, interrupt
p(~θ), procedure call

Among these constructs, we notice the presence
of nondeterministic constructs. These include
(δ1 | δ2), which nondeterministically chooses
between programs δ1 and δ2, π x. δ, which non-
deterministically picks a binding for the variable
x and performs the program δ for this binding
of x, and δ∗, which performs δ zero or more
times. Also notice that ConGolog includes con-
structs for dealing with concurrency. In particu-
lar (δ1 ‖ δ2) expresses the concurrent execution
(interpreted as interleaving) of the programs δ1
and δ2. Beside (δ1 ‖ δ2), ConGolog includes
other constructs for dealing with concurrency,
such as prioritized concurrency (δ1 〉〉 δ2), where
δ1 runs at higher priority than δ2, and interrupts
〈 ~x : φ → δ 〉. We refer the reader to [6] for a
detailed account of ConGolog.

In [6], a single step transition semantics in the
style of [21] is defined for ConGolog programs.
Two special predicates Trans and Final are in-
troduced. Trans(δ, s, δ′, s′) means that by exe-
cuting program δ starting in situation s, one
can get to situation s′ in one elementary step
with the program δ′ remaining to be executed.
Final(δ, s) means that program δ may success-
fully terminate in situation s.

Offline executions of programs, which are the

kind of executions originally proposed for Golog
and ConGolog [16, 6], are characterized us-
ing the Do(δ, s, s′) predicate, which means that
there is an execution of program δ that starts in
situation s and terminates in situation s′ :

Do(δ, s, s′)
def
= ∃δ′.Trans∗(δ, s, δ′, s′)∧Final(δ′, s′),

where Trans∗ is the reflexive, transitive closure
of Trans. An offline execution of δ from s is a
sequence of actions a, . . . , an such that : D ∪
C |= Do(δ, s, do(an, . . . , do(a1, s) . . .)), where
D is an action theory as mentioned above, and C
is a set of axioms defining the predicates Trans
and Final and the encoding of programs as first-
order terms [6].

Golog and ConGolog programs were intended to
be executed offline, that is, a complete execu-
tion was obtained before committing even to the
first action. However, IndiGolog [7, 27], 1 the lat-
est language within the Golog family, provides a
formal logic-based account of interleaved plan-
ning, sensing, and action by executing programs
online and using a specialized new construct
Σ(δ), the search operator, to perform local of-
fline planning when required.

Roughly speaking, an online execution of a pro-
gram finds a next possible action, executes it in
the real world, then obtains sensing information,
and repeats the cycle until the program is com-
pleted. Formally, an online execution is a se-
quence of so-called online configurations of the
form (δ, σ), where δ is a high-level program and
σ is a history (see [7] for its formal definition).
A history contains the sequence of actions exe-
cuted so far as well as the sensing information
obtained.

3 Generic Architecture

In this section, we describe the architecture we
propose for combining JSA with APLs. There
were two guiding principles we followed when
designing our generic architecture for combin-
ing JSA with APLs. 1) We strove for modu-
larity, i.e., we wanted to avoid the duplication
of control structures and information storage in
JSA and the APL. This facilitates the design and
modification of a system by keeping informa-
tion and control either in the JSA component or
the APL component but not both. 2) We wanted
to insulate the APL programmer as much as pos-
sible from having to deal with JSA program-
ming. That is, we aimed to develop the JSA side

1http ://sourceforge.net/projects/indigolog/



of the system so that the APL programmer can
avoid JSA programming altogether.

Generally, we kept the conversational aspects of
the system on the JSA side and the information
storage and planning aspects on the APL side.
In particular, let the objective belief base of an
agent be the set of beliefs the agent has about
the world. These beliefs cannot contain belief or
intention operators but may include (for ACLs
that support them, such as IndiGolog) the tem-
poral operators, i.e., done and feasible. The ob-
jective belief base is maintained on the APL
side but is also used by JSA. However subjective
beliefs, i.e., beliefs whose content contains be-
liefs and/or intentions are handled by JSA, since
the APLs of which we are aware do not han-
dle subjective beliefs. Planning and plan execu-
tion to bring about intentions are also handled
on the APL side. The JSA component is used to
handle communication with other agents. The
default behavior of JSA is intended to be cus-
tomized to suit the needs of a particular appli-
cation using JSA and JADE. This customization
includes what amounts to agent programming.
Instead, we propose that the application-specific
customization be done in the APL since APLs
provide more sophisticated tools for program-
ming agents.

To this end, we propose modifying JSA so that
the objective beliefs of an agent that would be
asserted by the JSA default behavior (e.g., as a
result of an inform action) are passed on to the
APL and stored in the belief base of the APL.
If JSA has a query about an objective belief, the
belief is passed on to the APL which answers
the query if it can and the answer is passed back
to JSA. This would be handled by adding an as-
sert filter which checks if the asserted sentence
is objective and if so it sends the sentence to be
asserted in the APL belief base. The sentence is
prevented from being asserted in the JSA belief
base. Similarly, a query filter is put in place so
that objective queries are sent to the APL and
the answer is sent back to JSA. However, sen-
tences that are not objective are still asserted and
queried within JSA, such as beliefs about beliefs
or beliefs about intentions.

The APL’s intention base would be used to store
the agent’s intentions (using assert filters) and
queries about the agent’s intentions would be
handled by the APL. The APL would be used
for planning or using precompiled plans accord-
ing to the capabilities of the APL.

The JSA process and the APL process would be

running independently. However, the APL pro-
cess must be responsive to the JSA process in
order to handle assertions to the belief base and
belief queries. The APL may also be called upon
by the JSA process to plan or execute precom-
piled plans in order to generate actions to per-
form. The architecture is illustrated in Fig. 1.

The APL process might also want to send out
messages on its own, i.e., independently of
the JSA process interpreting received messages.
This could be handled with a separate JADE or
JSA process which takes as input messages to
be sent by the APL, handles the translation into
FIPA ACL, and sends the message to the appro-
priate agents. JSA has predefined methods that
initiate communication (using FIPA ACL) with
other agents that could be adapted for this pur-
pose.

The architecture will have to be tailored to each
APL since different APLs use different lan-
guages and have different capabilities. For ex-
ample, IndiGolog has temporal operators and so
can handle the done and feasible operators, but
some BDI APLs do not have temporal opera-
tors. On the other hand, IndiGologdoes not have
a built-in intention base nor does it have a built-
in facility for updating beliefs about a particu-
lar fluent due to an exogenous action, so these
would have to be added. Also, the form of the
formulas that could be asserted in the belief base
of both IndiGolog and BDI agents would have to
be restricted to conjunctions of literals.

4 JSA+IndiGolog Architecture

In this section, we discuss how the generic ar-
chitecture described above could be instantiated
and implemented with the APL being IndiGolog.
There are several issues that need to be ad-
dressed to obtain such an implemented architec-
ture : how to handle 1) assertions of objective
beliefs, 2) belief queries, 3) assertions of inten-
tions, and 4) sending FIPA ACL messages from
IndiGolog using JSA. Other issues, such as how
to handle Call for Proposals performatives, in-
tention and belief transfer, supporting queries
from IndiGolog to the JSA belief base, etc., are
left for future work.

As discussed above, objective beliefs will be
stored in the IndiGolog belief base. A simple way
to handle belief update is to introduce two spe-
cial actions for each fluent F : addF (~x), which
makes the fluent F (~x) true, and deleteF (~x),
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FIG. 1 – Diagram of JSA-APL architecture

which makes F (~x) false. We assume that the ob-
jective formulas to be asserted in the IndiGolog
belief base are literals, however it is straightfor-
ward to generalize the account to handle con-
junctions of literals. We also assume that the im-
plementation of the generic architecture on the
JSA side translates assertions of positive literals
into addF actions and assertions of negative lit-
erals into deleteF actions. Then for each fluent
F , we add the addF and deleteF actions to the
successor state axiom for F . That is, if the suc-
cessor state axiom for F is of the form :

F (~x, do(a, s)) ≡
(γ+(~x, s) ∨ (F (~x, s) ∧ ¬γ−(~x, s))),

we modify it as follows :

F (~x, do(a, s)) ≡
[a = addF (~x) ∨ γ+(~x, s) ∨
(F (~x, s) ∧ ¬(a = deleteF (~x) ∨ γ−(~x, s)))].

Note that this only performs a very simple form
of belief update. In response to a belief being
updated, one may want to revise related beliefs
(e.g., to satisfy some state constraints), or hy-
pothesize the occurrence of exogenous actions.
This could be handled using programmer pro-
vided rules that can be triggered by belief up-
dates. We leave the details for future work.

Handling belief base queries is a little more in-
volved since it involves action on the part of
the IndiGolog agent. When a query comes in, the
agent checks its belief base to see if the query
is true or false and replies accordingly. For sim-
plicity, we assume here that the belief base is

complete. But note there has been some work
on allowing incomplete knowledge in IndiGolog
[29], which can be used to relax this assumption.

Queries are implemented with the query(φ) ex-
ogenous action, which is executed by the JSA
agent when it wants to know the value of the
objective formula φ. The IndiGolog agent replies
using the reply(φ) action, if φ currently holds,
or reply(¬φ), if ¬φ currently holds.

We introduce a new fluent Queried(φ) which
holds, if φ has been queried but no reply has
been issued yet :

Queried(φ, do(a, s)) ≡
(a = query(φ) ∨
(Queried(φ, s) ∧ a 6= reply(φ) ∧

a 6= reply(¬φ))).

Next we define a complex action which pro-
cesses queries :

ProcessQueries def
=

〈 φ : Queried(φ)→ if φ then reply(φ) else
reply(¬φ) endIf 〉.

Now, given an IndiGolog program δ, we can en-
able query processing in δ by executing Pro-
cessQueries concurrently with and at a higher
priority than δ, i.e., ProcessQueries 〉〉 δ.

IndiGolog, unlike BDI languages, does not have
a built-in intention base, and control in IndiGolog
is driven by the agent’s program as opposed to



its intentions. Thus, in general it would be up to
the IndiGolog programmer to decide how inten-
tions should be incorporated into the program.

We can implement an intention base in IndiGolog
using a fluent, Requested(φ), where φ is a state
formula representing an achievement goal (in-
tentions to perform a complex action δ could
be represented as Done(δ)). The exogenous ac-
tion request(φ) adds φ to the intention base (i.e.,
causes Requested(φ) to hold), while the exoge-
nous action cancelReq(φ) drops φ from the in-
tention base.

The successor state axiom for Requested is as
follows :

Requested(φ, do(a, s)) ≡
(a = request(φ) ∨ (Requested(φ, s) ∧

a 6= cancelReq(φ))).

The IndiGolog program can access the inten-
tion base (using the Requested fluent) in order
to work towards achieving the intentions.

There will be cases where an IndiGolog agent
wants to initiate FIPA ACL messages rather than
just reacting to messages received from other
agents. Since JSA already has a library for creat-
ing and sending FIPA ACL messages, we propose
to use that rather than recreating it for IndiGolog
(and for other ACLs using our generic architec-
ture). To do this, we propose a special action
sendJSA(perf, list), which takes as its first argu-
ment the performative of the message, and as its
second argument, a list containing the remain-
der of the components of the message, which
would include the recipient list for the message
and whatever other components are appropri-
ate for the given performative. The JSA agent
would have a thread waiting for such a message,
and upon receipt, it would create the appropri-
ate FIPA ACL message for the performative and
component list, and send the message to the re-
cipients.

To implement the communication between JSA
and IndiGolog, we would use TCP/IP sockets.
The current IndiGolog implementation allows
users to specify device managers, which listen
on a specified socket for messages which can
be custom translated into exogenous actions and
then inserted into the history of actions. Simi-
larly, device managers handle the implementa-
tion of physical actions, which would include
messages sent from the IndiGolog agent to the
JSA agent. It would not be difficult to implement
a device manager to handle the communication
between IndiGolog and JSA.

5 Discussion and Conclusion

In this paper, we outlined an approach to com-
bining the sophisticated communication capa-
bilities of JSA with the well-developed agent
programming features of APLs. We believe the
combination of these languages/tools can lead
to a very flexible framework for implement-
ing agent systems with complex behavior and
communication capacities. First, we outlined a
generic architecture that could be applicable to a
variety of APLs, and then we discussed how the
architecture could be implemented for IndiGolog.

As this work is still in its preliminary stages,
there are many issues that remain to be resolved.
One issue is where to handle the specification
of when an agent will accept intention and be-
lief transfers. In keeping with our strategy of
isolating the APL programmer from having to
customize JSA, we would suggest using spe-
cial predicates on the APL side to specify un-
der which conditions such transfers would be
allowed. If the decisions about these transfers
are static, i.e., the decisions could be made in
advance, then this would be possible. However,
if an agent is allowed to change its mind about
whether to accept belief or intention transfers
from another agent at run-time, then this would
be difficult to implement on the APL side, since
the beliefs about the beliefs and intentions of
other agents (which would be needed to make
these decisions) are stored on the JSA side and
the APL does not have access to them. However,
we note that APLs generally do not allow the
representation of beliefs about the beliefs and
intentions of other agents, so this would seem to
be a reasonable restriction.

Another issue still to be resolved is how to ac-
commodate Call for Proposal messages. A Call
for Proposal is a FIPA ACL performative that is
used to initiate negotiations between agents and
is therefore somewhat more difficult to imple-
ment in an APL than simpler performatives such
as Inform and Request (the recipient must de-
cide what proposal to make, if any). We re-
serve the handling of this performative for fu-
ture work. In future work, we also plan to im-
plement the architecture for IndiGolog and a BDI
APL, and evaluate the resulting platforms.
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