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Abstract—It is difficult to produce a detailed model of a
dynamic process ahead of time. Such processes may include
some underspecified activities whose exact definition is not yet
known at design-time, and may not be known until the time
that an instance of the process has started execution, due to
their context-dependent nature. In this paper, we propose a goal-
oriented framework to model and specify dynamic processes that
allows us to dynamically select and/or synthesize automatically
at run-time the content of underspecified activities.

I. INTRODUCTION

Business Process Management [1] (BPM) is a very active
research area, because it is highly relevant from a practical
point of view while at the same it offers many challenges for
researchers. Once identified, a business process is formalized
into a process model which captures every possible process
instance to be executed at run-time through a Process Manage-
ment System (PMS). Traditionally, PMSs have focused on the
support of predictable and repetitive business processes, which
can be fully pre-specified in terms of formal process mod-
els. This kind of highly-structured workflow includes mainly
production and administrative processes (such as financial
services, manufacturing, order handling, etc.) [2].

In recent years, the maturity of process management
methodologies has led to the application of BPM approaches
in new challenging knowledge-intensive scenarios [3], such
as healthcare [4] and domotics [5]. The need to deal with
knowledge-intensive and dynamic processes and provide sup-
port for flexible process management has emerged as a leading
research topic in the BPM domain [6]. In a dynamic process,
the sequence of tasks depends heavily on the specifics of the
context (e.g., which resources are available and what particular
options exist at the time), and it is often unpredictable how
the process will unfold. During the run-time execution of a
dynamic process, more execution paths could be incorporated
in the range of the existing process model, when it becomes
clear what needs to be done at a specific point in the process.
Such processes do not have the same level of repeatability
as classical business processes, and the execution changes on
a case-by-case basis, generating instances that are different
almost every time, depending on the context.

An interesting example comes from the emergency man-
agement domain. During the management of complex emer-
gency scenarios, teams of first responders act in disaster loca-
tions with the objective of assisting potential victims, assessing

and stabilizing the situation, etc. The set of activities and
procedures that collectively define an emergency response plan
are quite complex and involve teams with several members.
In many cases, there exist established and standardized emer-
gency plans and procedures, but they should be dynamically
adjusted at run-time. In fact, the designer often lacks the
needed knowledge to anticipate and incorporate all potential
alternatives into the process model at design-time; as well
this knowledge can become obsolete as process instances are
executed and the context evolves.

Since a dynamic process is generally well-structured but
does not have a detailed definition for every activity, building
on our previous work [7], in this paper we propose a goal-
oriented framework to model and specify dynamic processes
that allows us to dynamically select and/or to synthesize
automatically at run-time the content of those activities whose
exact definition is not known at design-time, and may not
be known until the time that an instance of the process is
being executed. Following [8], we call these activities as
underspecified. We allow the process designer to associate
underspecified activities with an abstract objective at design-
time, and to refine it at run-time into a concrete goal condition
defined on the contextual data linked to the process, when the
underspecified activity is going to be executed. Specifically,
we are able to deal automatically at run-time with two types
of underspecified activity enactment:

• Run-time binding: the content of an underspecified
activity in a given context is selected from a set
of available templates stored in a process template
library; a template specifies a best-practice procedure
for achieving a goal in contexts satisfying an asso-
ciated condition; we select a template whose goal
matches the one attached to the underspecified activity
and whose condition is satisfied in the current context;

• Run-time synthesis: if the library does not contain any
template matching the actual context/goal condition
associated to the underspecified activity, a new tem-
plate is generated using an external planner.

II. RUNNING EXAMPLE

As an application scenario, we consider an emergency
management process defined for train derailments, which is in-
spired by a real process used by Trenitalia. The corresponding



Fig. 1. A process for managing derailments.

BPMN1 [9] process is shown in Fig. 1. The process starts when
the railway traffic control center receives an accident notifica-
tion from the train driver and begins by collecting information
about the train (e.g., the area where the train derailed, the
number of affected coaches, etc.) and the emergency services
available in the area. Then, it may need to cut off power in
the area and interrupt railway traffic around the derailment
scene. The cylinder shapes in Fig. 1 represent the collection
of contextual data about the derailment that is manipulated
and updated during the process enactment. For example, after
the execution of the activity “Configure Information for an
Incident Response Plan”, we can assume to have contextual
scenario information defined as in Fig. 2(a), where we depict
a possible map of the area, represented as a 4x4 grid of
locations. We suppose that for this specific emergency the train
is composed only by a locomotive (located in loc33) and two
passenger coaches (located in loc32 and loc31 respectively).
The team is composed of four first responders (in the remain-
der, we refer to them as actors) and two robots, initially located
in loc00. Actors are equipped with mobile devices (for picking
up and executing tasks) and provide specific capabilities. For
example, actor act1 is able to extinguish fires, while act2 and
act3 can evacuate people from train coaches. The two robots,
instead, may take pictures and remove debris from specific
locations. Each robot has a battery and each action consumes
a given amount of battery charge. When a robot’s battery is
discharged, act4 can charge it. Fig. 2(b) summarizes the above.

At this point in the process, the information collected
so far (mostly unknown at design time) may be used for
defining and configuring at run-time an incident response plan,
which includes the set of tasks to be executed directly on
the field by first responders. Such tasks, abstracted into the
underspecified activity “Manage Emergency in the Area”, need
to be contextually and dynamically selected (or generated) at
run-time. In fact, it is infeasible to think that the process de-
signer can pre-define at design-time all the possible processes
required for coordinating first actors in the field, since the
concrete goal condition associated to “Manage Emergency in
the Area” depends on the kind of emergency that has to be
faced (e.g., some coaches could be on fire or a landslide may
have occurred), and may be different every time the process
runs. Moreover the recovery procedure depends strictly on the
current contextual information (the positions of operators, the
battery level of robots, etc.). Finally, it is also difficult to define
the ad-hoc emergency plan at run-time in a completely manual

1BPMN (Business Process Modeling Notation) is a diagramming language
designed to specify a process in a standardized way.

Fig. 2. Area and context of the intervention.

way, because the correctness of the process execution is highly
constrained by the values (or combination of values) of each
contextual data term.

III. ON MODELING DYNAMIC PROCESSES

Our approach to the definition of a dynamic process
requires a fundamental shift in how one thinks about modeling
business processes. A dynamic process depicts a high-level
procedure to be enacted in a specific situation. It may include
the execution of some basic activities and of some under-
specified activities. The definition of the control flow of the
process must be complemented with an explicit representation
of the contextual data reflecting the state of the dynamic
environment in which the process will be executed. Such data
will act as a driver for automatically selecting/synthesizing the
content of those activities that are underspecified at design-
time. Basic activities may refer to human or automated tasks,
and may be linked with an invokable application service. For
example, in the process of Fig. 1, the activity “Retrieve Info on
Emergency Services” is used for verifying the presence of an
emergency team close to the area affected by the derailment.
If so, contextual data associated to the process can be updated
and, through the execution of the activity “Notify Emergency
Services”, the leader of the selected team is notified by phone
to deal with the emergency. In general, we can assume that
the contextual information summarized in Fig. 2 is collected
step by step during the enactment of the process in Fig. 1.

To be more precise, we specify the context linked to
a specific dynamic process in the form of a Domain The-
ory D (cf. [7]), that captures the contextual data and sup-
porting information, such as the people/agents that may be
involved in performing the process. Data are represented
through some ground atomic terms v1[y1], ..., vm[ym] ∈ V
that range over a set of tuples (i.e., unordered sets of zero
or more attributes) y1, ..., ym of data objects, belonging to
some data types. In short, a data object depicts an entity
of interest; for example, in our scenario we define data
objects for representing participants (e.g., data type Partic-
ipant={act1, act2, act3, act4, rb1, rb2}) and locations in the
area (e.g., data type Location = {loc00, ..., loc33}). Terms can
be used to express properties of domain objects (and relations
over objects) and argument types of a term (taken from the set
of data types previously defined) represent the finite domains
over which the term is interpreted. In our example, we may
need boolean terms for expressing the presence of fire in a lo-



cation (e.g., fire free[loc : Location] = (bool : Boolean)),
integer terms for representing the battery charge level of
each robot (e.g., battery level[prt : Participant] ∈ Z) and
functional terms for recording the position of each actor in the
area (e.g., at[prt : Participant] = (loc : Location)).

During process enactment, atomic terms defined in D
may assume specific values, depending on the basic activities
executed so far and the contextual information gathered. To this
end, we introduce the concept of State S, that reflects an instan-
tiation of the domain theory D at a specific point of the process.
Basically, the state S records the evolution of the contextual
data during the process enactment, and can be specified as a
conjunction of atomic terms. Therefore, terms may be thought
of as properties of the world whose values may vary across
states. We do not assume complete information about S; this
means we allow a process designer to instantiate only the terms
necessary for representing what is known at a specific point of
the process, i.e., S = {v1[y1] == val1∧ ...∧vj [yj ] == valj},
where valj (with j ∈ 1..m) represents the j-th value assigned
to the j-th atomic term. Fig. 2(b) shows the portion of S after
the execution of the activity “Configure Information for an
Incident Response Plan”.

While basic activities may be enacted independently from
the values of contextual data, the final specification of under-
specified activities is not known at design-time. The process
in Fig. 1 contains a single underspecified activity “Manage
Emergency in the Area”, which involves coordinating the first
responders’ actions on the field. Clearly, it is difficult to foresee
at design-time the final content of this activity, since much
of the contextual information associated to the derailment is
discovered during the process execution. Each underspecified
activity is labeled at design-time with an abstract objective,
whose purpose is to drive the process designer in the definition
of more concrete goal conditions, defined over the contextual
data at run-time. An abstract objective may be specified in
a descriptive way (e.g., in natural language, and it may also
corresponds to the name of the activity itself, cf. Fig. 1),
or by writing a first-order formula defined over the domain
theory. For example, to express at design-time that at the
end of the execution of the activity “Manage Emergency in
the Area” every person in the train must have been evacu-
ated, the process designer may write the following formula:
∀ (loc) Location(loc) → evacuated[loc] == true. Clearly,
the choice to label an underspecified activity in a descriptive
way or with a first-order logic formula depends on the amount
of information available at design-time. When the underspeci-
fied activity is going to be executed, a concrete goal condition
has to be provided in place of the abstract objective. Since the
concrete goal may vary depending on the evolution of the state
S, we can characterize completely an underspecified activity
with a Case C, that reflects an instantiation of the domain
theory D with a starting state initC and a goal condition goalC.
Specifically, we denote by initC the starting state needed for
executing the underspecified activity, and this state will be
equal to the state S just before we execute the underspecified
activity (cf. Fig. 2(b)). Furthermore, we define a concrete goal
condition goalC as a conjunction of terms we want to make
true through the execution of the underspecified activity. For
example, in the scenario shown in Section II, the goal can
be represented as: goalC = {fire free[loc31] == true ∧
evacuated[loc32] == true∧ photo taken[loc33] == true}.

It reflects the objective of evacuating people from the coach
located in loc32, extinguishing a fire in the coach in loc31 and
finally taking pictures for evaluating possible damages to the
locomotive in loc33. Note that the abstract objectives specified
at design-time may be not sufficient for capturing the concrete
goal condition that will be associated to an underspecified
activity at run-time. In fact, the evolution of the contextual
data during the process enactment may require that the process
designer specifies the concrete goal condition in a way that
reflects the current knowledge about the contextual scenario.

The concrete realization of an underspecified activity is
finally provided in the form of a process template. A process
template PT captures a partially ordered set of planner tasks
whose successful execution (i.e., without exceptions) leads
from initC to goalC. Formally, we define a template as a
directed graph consisting of planner tasks, parallel gateways,
events and transitions between them. Planner tasks ti ∈ T are
collected in a specific repository, and each planner task can
be considered as a single step that consumes input data and
produces output data. In our case study, the repository contains
a set of emergency management (annotated) planner tasks, that
range from the simple activity of taking pictures to the more
complex activity of extinguishing a fire. Each planner task is
annotated with preconditions and effects. Preconditions can be
used to constrain the task assignment and must be satisfied
before the task is applied, while effects establish the outcome
of a task after its execution. For example, the task Go described
in Fig. 2(c) involves two parameters from and to of type
Location, and a parameter actor of type Participant, that
is the first responder that will execute the task. An instance
of Go can be executed only if actor is currently at the
starting location from and has the required capabilities for
executing the task. As a consequence of task execution, the
actor moves from the starting to the destination location, and
this is reflected by assigning to the term at[actor] the value
to in the effect.

IV. THE GENERAL FRAMEWORK

The starting point for the creation of a new dynamic
process is a BPMN graphical editor used to define the control
flow of the process and to label underspecified activities
with abstract objectives. We also provide a modeling tool for
specifying the domain theory D, for building the repository
of planner tasks T and for updating the state S associated
to the specific process under execution. If during the process
execution an underspecified activity is reached, a new case C
for the activity is created; the starting state initC is derived
from the current instantiation of the state S, while the concrete
goal condition goalC is inferred from the abstract objective
associated to the activity (if the objective is specified as a first-
order formula) or manually refined by the process designer.

Our approach (cf. Fig. 3) allows us to generate the content
of an underspecified activity with two different techniques,
named respectively run-time binding and run-time synthesis.
To this end, we rely on a planning-based tool that includes a
library of process templates and an external planner that are
used respectively for selecting and for synthesizing complex
concurrent process templates. First of all, a specific software
module is in charge of converting the domain theory D and
the set of planner tasks T into a Planning Domain PD, and



Fig. 3. The Overall Framework.

the starting state initC and the goal condition goalC into
a Planning Problem PR. The planning domain PD and the
planning problem PR are both specified in PDDL version
2.1 [10]. PDDL (known as the Planning Domain Definition
Language) is the standard representation language for classical
planners. A planner that works on such inputs generates a
partially ordered set of planner tasks (the plan) that leads from
the initial state to a state meeting the goal condition.

For dealing with run-time binding, at the heart of our
framework lies a library of process templates built for specific
planning domains and problems. These are reusable processes
that achieve specified goals of interest in any context that
satisfies the template’s required preconditions. Specifically, for
each template we keep their weakest preconditions. This means
that many library templates may be compatible with the values
of PD and PR. In fact, given a planning domain PD, a template
can be executed in several starting states, since it (usually)
requires a fragment of the contextual knowledge of the starting
state to successfully achieve its objectives. For example, as
shown in Fig. 4, two different process templates match with
the current values of PD and PR. This means that the process
designer can choose which template is the best for her/his
purposes: one with less concurrency in the tasks enactment
but with fewer participants (i.e., PT1), or one with more
concurrency but requiring more resources for being executed
(i.e., PT2). In fact, PT2 requires the presence of one more
robot (i.e., robot rb2) and more contextual information for
being executed, but it provides an higher degree of concurrency
in the execution of its tasks. After an appropriate template is
selected, it can be executed through an external PMS.

However, if no template exists for the current values of PD
and PR, we can invoke an external partial-order planner (a.k.a.
POP [11]) on these same inputs. We exploit the idea behind
POP of representing flexible plans that enables deferring
decisions. Instead of committing prematurely to a complete,
totally ordered sequence of actions, plans are represented as a
partially ordered set, and only the required ordering decisions
are recorded. The planner will try to generate a plan fulfilling
the goal condition goalC. When the POP planner is able to
find a partially ordered plan P consistent with the actual
contextual information, it is translated into a template PT
that preserves the ordering constraints imposed by the plan
(i.e., run-time synthesis). For example, the templates PT1 and
PT2 can be generated by our planning-based tool. A process
template generated in this way guarantees some interesting
properties, such as the executability of the template with
respect to the information available in the case C, and the

Fig. 4. Templates dealing with the scenario in Fig. 2.

property of sound concurrency, meaning that concurrent tasks
of a template are proven to be independent from each other.
Moreover, as anticipated above, we are able to identify the
weakest preconditions of process templates, and all the states
satisfying such preconditions are good candidates for executing
them. To show the feasibility of our approach, we ran some
experiments and measured the time required for synthesizing
a plan for some variants of our running example. Interested
readers may refer to [7] for the detailed experiments performed
and algorithms used for generating the library and synthesizing
the templates. If the tool fails to generate a process template
or the generated processes are of insufficient quality (e.g., they
are too time consuming, unreliable, or lack concurrency), the
designer can try to refine the domain theory D or the case C
and add information so that it becomes possible to generate a
satisfactory plan. There are many ways to strengthen a problem
description, such as adding to the starting state initC some
terms initially ignored (e.g., to specify the position of every
participant), or adding new objects in D or new activities in T
(e.g., if a task for extinguish fire is missing), or changing the
goal condition. Once a satisfactory template has been obtained,
it is used to execute the underspecified activity. The template
may also be added to the library so it can be re-used whenever
a case that matches the template’s preconditions arises.

V. RELATED WORK

The concept of “flexibility by underspecification” has been
introduced in [8], as the “ability to execute an incomplete
process model at run-time”. An incomplete process is one
which does not contain sufficient information for execution
as it may contain several “placeholders”, i.e., underspecified
activities whose content is to be discovered during the ex-
ecution of the process. The topic of process incompleteness
has been handled from different perspectives in the research
literature. The YAWL system [12], a well-known PMS coming
from academia, allows one to define a number of different
placeholders within a well-structured business process. YAWL
is able to provide both the run-time binding and the run-time
specification of the placeholders’ content, but such content
has to be pre-defined in advance as a complete stand-alone
business process and stored in a repository, or can be defined
manually directly at run-time. The Case Management and
Modeling Notation (CMMN 1.0) [13], recently released by
the Object Management Group (OMG), enables run-time bind-
ing/modelling by introducing discretionary elements which can
be manually selected, composed and added to a case at run-



time by the case worker. Clearly, the above approaches work
for processes where procedures are well known, repeatable and
the content of placeholders can be specified in advance with
some level of detail. Some adaptive PMSs like ADEPT2 [14]
and SmartPM [15] recognize that dynamic processes are
incomplete “by nature”, since they are executed in changing
environments. For this reason, they support the adaption of the
process instance by dynamically adding/implementing process
fragments that were not specified in the original process
model, on a case-by-case basis. However, process adaptation
in [14] and [15] is mainly seen as a solution to exception
handling; i.e., when some exception arises during the process
enactment by changing the context in an undesirable way,
the running process instance is dynamically adapted into a
new instance that may re-set the “wrong” context on the right
track. Furthermore, process mining [16], in some sense, deals
with process incompleteness. It allows the extraction of process
descriptions, stemming from a set of recorded executions of
real processes. Such executions are stored in so called event
logs; each recorded event reports the execution of a task (i.e.,
a well-defined step in the process) in a specific instance of the
process. Starting from several event logs, mining techniques
aim to infer a structured model of the executed workflow.
However, a dynamic process may be different every time it is
executed, making it impossible to build a process model that
represents every possible instance of the dynamic process.

An interesting goal-oriented approach for dealing with
incomplete processes is presented in [17]. This work relies
on Agent Technology, especially on BDI-Agents features [18]
to obtain agile business process behavior. In the BDI (belief-
desire-intention) agent architecture, an agent is described by
its beliefs (i.e., the information an agent has about itself and
its environment), its desires (i.e. motivations of the agent that
drive its course of action) and finally its intentions (i.e. the
short-term plans that the agent wants to execute), derived from
its desires and external events, to which the agent reacts. To
achieve its goals/intentions an agent has certain plans on how
the goals can be achieved. Different plans are designed for
different situations, which are described by the plan’s context
condition. A plan consists of certain actions/steps that have
to be executed to achieve the corresponding goal. The agent
has to select which goals it wants to pursue next and which
plan can be used to achieve the goal. In [17], based on the
BDI agent architecture, the idea is to have a final model of the
business process consisting of one or more goal hierarchies,
a list of context variables and a set of plans with conditions
linked to subgoals. The process can be executed by considering
the current goal and the context to determine the next step
of the process, and the agent can be seen as an assistant of
the user who is responsible for driving a task through the
process, whose real structure is discovered only during the
process enactment. Unfortunately, in [17] plans for dealing
with subgoals have to be defined in advance. So that approach
is not particularly useful for dynamic processes, where the
content of underspecified activities is unknown at design-time.

VI. CONCLUSION

To face the challenges posed by today’s highly dynamic
business contexts, traditional BPM approaches should be com-
plemented with new techniques that support flexible execution
of underspecified business processes. Towards this objective,

in this paper we have presented a goal-oriented framework
for modeling and executing incompletely-specified dynamic
processes, which relies on a library of process templates and
on planning techniques to obtain at run-time process templates
that can be used to realize underspecified activities. This allows
the dynamic process to be elaborated automatically at run-time
and then executed, providing the required flexibility. In general,
elements of the process may have to be specified interactively
with the system or manually, but we have focused here on
automatic generation. Our framework is an extension of the
one described in [7]. The novel aspect of this paper is that we
address dynamic processes with underspecified activities, and
the run-time elaboration of such activities. A future direction
for this work is to generate and support hierarchical process
templates, with high-level templates achieving more general
goals that can invoke simpler templates to achieve some of
their subgoals. It seems that agent-technology can provide
promising approaches and methods to address this challenge.
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