
Infinite Paths in the Situation Calculus: Axiomatization and Properties

Shakil M. Khan and Yves Lespérance
Department of Electrical Engineering and Computer Science

York University, Toronto, Ontario, Canada
Email: {skhan, lesperan}@eecs.yorku.ca

Abstract

The situation calculus has proved to be a very popular for-
malism for modeling and reasoning about dynamic systems.
This otherwise elegant and refined language however lacks
a natural way of dealing with “infinite future histories”. To
this end, in this paper we introduce a new sort ranging over
infinite paths in the situation calculus and propose an axiom-
atization for infinite paths. We thus obtain a convenient way
of specifying several kinds of notions that involve infinite fu-
tures such as temporal properties of non-terminating execu-
tions of agents or programs and mental attitudes such as de-
sires and intentions. We prove the correctness of the axioma-
tization and show that our formalization has some intuitively
desirable properties.

Introduction

One of the most prominent formalisms for modeling dy-
namic domains is the situation calculus (McCarthy and
Hayes 1969). Since its introduction, much work has been
done to further refine and enrich this language (Reiter 2001).
However, this otherwise simple yet elegant language lacks
a convenient way of dealing with “infinite future histo-
ries”. One cannot talk directly about such infinite paths in
the situation calculus. While some work has been done to
capture the notion of path in the situation calculus, all of
these approaches have drawbacks. Many of these deal ex-
clusively with finite paths. For example, while specifying
agents’ goals and behavior, Shapiro (2005) considers only
finite paths. He models a finite path using a pair of situa-
tions representing the beginning state and the ending state
of the path. Unfortunately, a temporal framework based on
such finite paths has limited expressiveness and can’t cap-
ture arbitrary temporally extended formulae, e.g. the goal to
maintain a property φ indefinitely far in the future, �φ. Also,
quantification over these finite paths requires dealing with a
pair of situations explicitly which is somewhat clumsy.

Others have looked at infinite paths within the situation
calculus, for instance, Lespérance et al. (2000). They intro-
duced the notion of action selection functions (also called
ASF or strategies), which are mappings from situations to
primitive actions, and showed how ASFs can be used to
model infinite paths (see below for details). Their account

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

however does not have paths as a sort and thus does not al-
low for first-order quantification over paths.

Finally, a third set of approaches utilize other logics along
with the situation calculus to express properties of infinite
sequences involving situations. For example, (Claßen and
Lakemeyer 2008) develops a second-order modal logic in-
spired by CTL∗ and dynamic logic that can express prop-
erties about executions of (possibly) non-terminating Con-
Golog programs (De Giacomo, Lespérance, and Levesque
2000). However, the authors derive the semantics of pro-
grams and temporal operators from the model theoretic se-
mantics of their logic, rather than using axioms as in the
standard situation calculus. Thus, it is not clear if all the de-
sirable features of the situation calculus are inherited in their
framework. We discuss other related work in an extended
version of this paper (Khan and Lespérance 2015).

To deal with these issues, in this paper we introduce a
new sort of infinite paths (along with path variables that
can be quantified over) in the situation calculus and pro-
pose an axiomatization for infinite paths. By adding a new
sort ranging over infinite paths in the situation tree, we ob-
tain a convenient way of specifying several kinds of notions
that involve infinite futures such as temporal properties of
non-terminating executions of agents or programs, and fu-
ture looking mental attitudes such as desires and intentions,
as well as beliefs about the future. We show that our formal-
ization of paths has some intuitively reasonable properties
and prove the correctness of the axiomatization.

Background

We adopt the version of the situation calculus as formalized
in (Levesque, Pirri, and Reiter 1998; Reiter 2001). We will
not go over it here except to note the following components:
Init(s) denotes that s is one of the initial situations, i.e. a sit-
uation where no actions have yet occurred; the special con-
stant S0 is taken to denote the actual initial situation; there
is a distinguished binary function symbol do where do(a, s)
denotes the successor situation to s resulting from perform-
ing the action a; fluents are denoted by predicate and func-
tion symbols taking a situation term as their last argument;
there is a special predicate Poss(a, s) used to state that action
a is executable in situation s; s � s′ means that s′ can be
reached from s by performing a sequence of actions; s � s′
is an abbreviation for s � s′ ∨ s = s′. We will use s ≺ s′

Proceedings, Fifteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR 2016)

565

and s � s′ to denote that the sequence of actions performed
to reach s′ from s were all executable. Finally, a situation
is called executable if every action in its history was exe-
cutable, i.e.:

Executable(s) .
= ∀a, s′. do(a, s′) � s ⊃ Poss(a, s′).

A dynamic domain can be represented by a basic action
theory (Reiter 2001) Dbat that includes: (1) action precon-
dition axioms, one per action a characterizing Poss(a, s),
(2) successor state axioms, one per fluent, that succinctly
encode both effect and frame axioms and specify exactly
how and when the fluent changes (Reiter 2001), (3) ini-
tial state axioms describing what is true initially, (4) unique
names axioms for actions, and (5) domain-independent
foundational axioms Σ describing the structure of situations
(Shapiro 2005). All these axioms are first-order except for
Σ, which includes a second-order induction axiom for defin-
ing the trees of situations.1

Infinite Paths in the Situation Calculus

Following (Lespérance et al. 2000), we only consider “re-
alistic” paths; paths involving non-executable actions can-
not really occur as they are not realistic. Thus a path in our
framework is essentially an infinite sequence of situations,
where each situation along the path can be reached by per-
forming some executable action in the preceding situation.
To allow (first-order) quantification over infinite paths, we
in addition introduce a new sort called paths in the language
with (possibly sub/super-scripted) variables p ranging over
paths. We give an axiomatization for infinite paths below.

Thus our formalization of infinite paths is more general
than Shapiro’s (2005) finite paths. Arbitrary temporally ex-
tended formulae such as unbounded maintenance goals can
be interpreted using our paths. Moreover, our account is sim-
pler than that of (Lespérance et al. 2000), and unlike them,
we allow quantification over paths, which makes our lan-
guage easier to use.

Before delving into the technical details, let us point out
some notational conventions. We will use both state and path
formulae denoted by uppercase and lowercase Greek letters,
resp., e.g. Φ(s) and φ(p). Here s is a free situation vari-
able in which the state formula must be evaluated and p is
a free path variable over which the path formula must hold.
We sometimes suppress these variables where the intended
meaning is clear.
Axiomatization: We now give our axiomatization for infi-
nite paths. We have a predicate OnPath(p, s), meaning that
situation s is on path p. Also, the abbreviation Starts(p, s)
means that s is the starting situation of path p. A path p starts
with s iff s is the earliest situation on p:

Starts(p, s) .
= OnPath(p, s)∧∀s′. OnPath(p, s′) ⊃ s � s′. (D1)

1We allow multiple initial situations to support the modeling of
mental states and use the foundational axioms Σ given by Shapiro
(2005), which are proven to be equivalent to the ones given by
(Levesque, Pirri, and Reiter 1998). Nevertheless, since the set of
foundational axioms given by (Reiter 2001) is a special case of our
Σ (where the only initial situation happens to be S0), all our results
are also entailed by Reiter’s Σ.

As shown in (Lespérance et al. 2000), one can use action se-
lection functions (ASFs) to model infinite paths. Recall that
ASFs or strategies are mappings from situations to primitive
actions. The idea is that given a situation s, an ASF F pre-
scribes an action that the agent must perform in s if she were
to follow the path induced by this strategy. An infinite path
can then be formalized as a tuple (s, F), where s is the start-
ing situation of the path, and F is a strategy that defines an
infinite sequence of situations by specifying an action for ev-
ery situation starting from s. Thus, one way of axiomatizing
paths is by making them correspond to such pairs (s, F):

(a). ∀p. (∃F, s. Executable(F, s)

∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),
(b). ∀F, s. Executable(F, s) ⊃ (∃p. Starts(p, s)

∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′)).

(A1)

This second-order axiom says that for every path p, there is
an action selection function F and a situation s such that F
starting in s is executable, and that F produces exactly the
same sequence of situations on p starting from s. Also, for
every executable action selection function F and situation
s, there is a path p that starts with s and that corresponds
exactly to the sequence of situations produced by F starting
from s. Here, OnPathASF(F, s, s′) means that the situation
sequence defined by (s, F) includes the situation s′:

OnPathASF(F, s, s′) .
=

s � s′ ∧ ∀a, s∗. s ≺ do(a, s∗) � s′ ⊃ F (s∗) = a.
(D2)

Also, the situation sequence encoded by a strategy F and a
starting situation s is executable iff s is executable, and for
all situations s′ on this sequence, the action selected by F in
s′ is executable in s′.

Executable(F, s) .
= Executable(s) ∧

∀s′. OnPathASF(F, s, s′) ⊃ Poss(F (s′), s′).
(D3)

Another axiom is needed to state that different situation
sequences represent different paths.

∀p, p′. (∀s. OnPath(p, s) ≡ OnPath(p′, s)) ≡ p = p′. (A2)

Note that, for every situation s on a path, there must be
an action that is possible in s, i.e. ∀p, s. OnPath(p, s) ⊃
∃a. Poss(a, s). We consider that situations where no ac-
tion is possible are “artificial”. One can always introduce
a dummy action noOp that has the precondition that True,
and consequently is always executable. Taking paths to be
sequences of executable situations means that there may
be infinite sequences of successor situations that are not
paths; even if the situations on a prefix of a sequence are
executable, the presence of a non-executable situation in
the sequence means that it is not a path. One could easily
modify the above axiomatization to include paths with non-
executable situations, and identify the subset of such paths
that are executable.

Also, while we focus on infinite paths, finite (executable)
paths can be viewed as prefixes of paths since a finite path
can always be extended to an infinite one, e.g. by extending
the prefix with an infinite sequence of noOp actions.

566

We now define what it means for a path p′ to be a suffix of
another path p w.r.t. a situation s:

Suffix(p′, p, s) .
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s � s′ ⊃ (OnPath(p, s′) ≡ OnPath(p′, s′)).
(D4)

That is, a path p′ is a suffix of another path p w.r.t. a situation
s iff s is on p, and p′ which starts with s, contains exactly
the same situations as p starting from s.

Given this, we can talk about properties of infinite paths in
a natural way within the language of the situation calculus.
For example, one can express that there is a path p starting in
situation s such that a certain property Φ holds over all situ-
ations on p using the following sentence: ∃p. Starts(p, s) ∧
(∀s′. OnPath(p, s′) ⊃ Φ(s′)). In an extended version of
this paper (Khan and Lespérance 2015), we show how CTL∗
formulae can be interpreted over the situation calculus with
paths and sketch how paths can be utilized in applications in-
volving agents’ goals and non-terminating programs. Also,
in (Khan and Lespérance 2010), we discuss in detail the use
of infinite paths in formalizing prioritized temporally ex-
tended goals and their dynamics in the situation calculus.

Properties of Paths

We now show some properties of our axiomatization of
paths. Proofs of these properties can be found in (Khan and
Lespérance 2015). Let Σ be the set of foundational axioms,
and Dpath consist of the axiomatization for paths and the
associated definitions. Our first property captures the con-
ditions under which a situation can be extended to a path:
Σ ∪ Dpath entails that for any executable situation, there is
a path that starts with that situation, provided that for any
situation there exists an executable action.

Σ ∪ Dpath |= (∀s′. ∃a. Poss(a, s′)) ⊃
(∀s. Executable(s) ⊃ ∃p. Starts(p, s)).

(P1)

Again, we maintain that situations with no executable ac-
tions are “artificial”.

Next, we prove some properties of the starting situation
of a path. In particular, we can show that Σ ∪ Dpath entails
that (a) any path starts with some situation, (b) the starting
situation of any path is unique, and (c) the starting situation
of any path is executable.

(a). Σ ∪ Dpath |= ∀p. ∃s. Starts(p, s),

(b). Σ ∪ Dpath |= ∀p, s, s′. Starts(p, s) ∧ Starts(p, s′)

⊃ s = s′,
(c). Σ ∪ Dpath |= ∀p, s. Starts(p, s) ⊃ Executable(s).

(P2)

The next two properties deal with the successor situation
of a situation on a path that is also on the path. The first states
that Σ ∪ Dpath entails that for any situation s on a path p,
there is a successor situation s′ = do(a, s) on p, and s′ can
be reached from s by performing an executable action a.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s)

⊃ ∃s′, a. OnPath(p, s′) ∧ s′ = do(a, s) ∧ Poss(a, s).
(P3)

Moreover, Σ ∪ Dpath entails that the successor situation
of a situation on a path is unique.

Σ ∪ Dpath |= ∀p, s. [OnPath(p, s) ∧
OnPath(p, do(a, s)) ∧ OnPath(p, do(b, s))] ⊃ a = b.

(P4)

The next property deals with the uniqueness of paths: Σ∪
Dpath entails that if p �= p′, then there is a situation that is
on path p but not on path p′.

Σ ∪ Dpath |= ∀p, p′. p �= p′ ⊃
∃s. (OnPath(p, s) ∧ ¬OnPath(p′, s)).

(P5)

We can also show that Σ∪Dpath entails that all situations
on a path are executable.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ Executable(s). (P6)

We say that two situations are co-linear if they are the
same or if one of them strictly precedes the other. Our next
set of properties deal with the structure of situations on paths
and shows that paths are essentially linear sequences of sit-
uations. First, we have Σ ∪ Dpath entails that any pair of
situations on the same path are co-linear:

Σ ∪ Dpath |= ∀p, s, s′. OnPath(p, s) ∧ OnPath(p, s′) ⊃
s = s′ ∨ s ≺ s′ ∨ s′ ≺ s.

(P7)

Secondly, we have Σ ∪ Dpath entails that if situations s
and s′ are on a given path p, then all situations in the interval
defined by these two situations are also on p.

Σ ∪ Dpath |= ∀p, s, s′, s∗. (OnPath(p, s) ∧ OnPath(p, s′)

∧ s � s∗ � s′) ⊃ OnPath(p, s∗).
(P8)

Finally, we can show that Σ∪Dpath entails that two paths
can share only one common prefix. Once they branch at
some situation, they never merge after that.

Σ ∪ Dpath |= ∀p1, p2, s, a, b, s1, s2. [OnPath(p1, do(a, s))
∧ OnPath(p2, do(b, s)) ∧ a �= b ∧ s ≺ s1 ∧ s ≺ s2

∧ OnPath(p1, s1) ∧ OnPath(p2, s2)] ⊃ s1 �= s2.

(P9)

The next few properties deal with suffixes and prefixes of
a given path. The first of these states that Σ ∪ Dpath entails
that for any situation s on a path p, there is a suffix of p that
starts with s.

Σ ∪ Dpath |= ∀p, s. OnPath(p, s) ⊃ ∃p′. Suffix(p′, p, s). (P10)

Secondly, we can show that given a path p with starting
situation do(a, s), Σ∪Dpath entails that there is a path p′ s.t.
p′ starts with s, and p is a suffix of p′ starting from do(a, s).

Σ ∪ Dpath |= Starts(p, do(a, s)) ⊃
∃p′. Starts(p′, s) ∧ Suffix(p, p′, do(a, s)).

(P11)

Finally, Σ ∪ Dpath entails that any path that starts with
a non-initial situation can be extended in the past; formally,
for all situations s1 and s2, if s1 strictly precedes s2 and
there is a path p2 that starts with s2, then there must also
exist a path p1 such that p1 starts with s1 and p2 is a suffix
of p1 starting from s2.

Σ ∪ Dpath |= ∀s1, s2, p2. s1 ≺ s2 ∧ Starts(p2, s2) ⊃
∃p1. Starts(p1, s1) ∧ Suffix(p2, p1, s2).

(P12)

567

We now prove some second-order induction principles for
paths and for situations in a path. First, we have Σ ∪ Dpath

entails that if some property Q holds for all paths that start
with an initial situation, and if whenever Q holds for all
paths that start with situation s, then it holds for all paths
that start with any successor situation to s, then the property
Q holds for all paths.
Theorem 1 (Induction on Paths).

Σ ∪ Dpath |= ∀Q. [{∀s, p. Init(s) ∧ Starts(p, s) ⊃ Q(p)} ∧
{∀a, s. (∀p. Starts(p, s) ⊃ Q(p))

⊃ (∀p′. Starts(p′, do(a, s)) ⊃ Q(p′))}]
⊃ ∀p. Q(p).

Moreover, Σ∪Dpath entails that if some property Q holds
for the starting situation of a given path p, and if whenever
Q holds for a situation s on path p, then it holds for the
successor situation to s on p, then the property Q holds for
all situations on path p.
Theorem 2 (Induction on Situations in a Path).

Σ ∪ Dpath |= ∀p,Q. [{∀s. Starts(p, s) ⊃ Q(s)} ∧
{∀a, s. (OnPath(p, s) ∧Q(s) ∧ OnPath(p, do(a, s)))

⊃ Q(do(a, s))}]
⊃ ∀s. OnPath(p, s) ⊃ Q(s).

Next, we prove the correctness of our axiomatization. A
natural way of capturing the notion of infinite path is by
specifying it as a mapping from the set of natural numbers
to situations on a path. To this end, we use a function σ of
the following sort (here S denotes the set of all situations):
σ : N → S. We say that such a function σ models a path
sequence if σ maps the number 0 to an executable situation
(representing the starting situation of the path), and for each
number n, there is an action a that is executable in the situ-
ation sn produced by σ(n) such that σ maps the immediate
successor of n (i.e. n+ 1) to the situation do(a, sn):

PathSeq(σ) .
= Executable(σ(0)) ∧

∀n. ∃a. Poss(a, σ(n)) ∧ σ(n+ 1) = do(a, σ(n)).
(D5)

We say that a path p matches a path sequence σ if σ is
indeed a path sequence, σ(0) is the starting situation of p,
and for all n, s and a, if σ(n) is a situation s on path p, then
σ(n+ 1) is the successor situation do(a, s) of s on p:

Matches(p, σ) .
= PathSeq(σ) ∧ (σ(0) = s ≡ Starts(p, s))

∧ ∀n, s. [σ(n) = s ∧ OnPath(p, s) ⊃
∀a. (σ(n+ 1) = do(a, s) ≡ OnPath(p, do(a, s)))].

(D6)

Given this formalization, the task of proving correctness of
our axiomatization for infinite paths can be reduced to show-
ing that path sequences are isomorphic to paths defined by
Σ ∪Dpath, i.e. that there is an one-to-one mapping between
these two. To this end, we first show that for any path p, there
is a path sequence σ that matches p.2

Theorem 3 (Soundness).

ΣN ∪ Σ ∪ Dpath |= ∀p. (∃σ. PathSeq(σ) ∧ Matches(p, σ)).
2Here ΣN is an axiomatization of the natural numbers, i.e., stan-

dard second-order Peano arithmetic, for the natural number sort.

Note that this implies that for any path p, there is a countably
infinite number of distinct situations on p. Conversely, for
any path sequence σ, there is a path p that matches σ.
Theorem 4 (Completeness).

ΣN ∪ Σ ∪ Dpath |= ∀σ. PathSeq(σ) ⊃ ∃p. Matches(p, σ).

Conclusion
Our main contribution here is twofold: first, we introduced
infinite paths in the situation calculus by providing an ax-
iomatization for infinite paths; and second, we proved some
desirable properties and showed that infinite paths in the sit-
uation calculus are well behaved and indeed correspond to
an intuitive notion of paths. To the best of our knowledge,
ours is the only work that introduces infinite paths as a sort
in the language of the situation calculus.

Our framework thus allows one to specify dynamic do-
mains and processes over them as well as their temporal
properties. Also, compared to other formalisms, we inherit
all the nice features of the situation calculus, e.g. a reason-
able solution to the frame problem (Reiter 2001). Again, our
account allows first-order quantification over paths, which
contributes to much more readable formulae and makes
the modeler’s job simpler. Finally, by incorporating infinite
paths in the language, we were able to identify useful gen-
eral properties for reasoning within the situation calculus;
e.g. the induction on paths property is a nice general prop-
erty that follows from our foundational axioms.

In the future, we would like to utilize paths in the situ-
ation calculus to develop/further refine various applications
involving infinite histories, such as verification of temporal
properties of non-terminating programs.

References
Claßen, J., and Lakemeyer, G. 2008. A logic for non-terminating
Golog programs. In Proc. KR-08, 589–599.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121:109–169.
Khan, S. M., and Lespérance, Y. 2010. A logical framework for
prioritized goal change. In Proc. AAMAS-10, 283–290.
Khan, S. M., and Lespérance, Y. 2015. Infinite paths in the situa-
tion calculus (extended version). Technical Report EECS-2015-05,
Dept. of EECS, York University, Canada.
URL: http://www.eecs.yorku.ca/research/techreports/2015/
Lespérance, Y.; Levesque, H. J.; Lin, F.; and Scherl, R. 2000.
Ability and knowing how in the situation calculus. Studia Logica
66(1):165–186.
Levesque, H. J.; Pirri, F.; and Reiter, R. 1998. Foundations for a
calculus of situations. Electronic Transactions of AI (ETAI) 2(3–
4):159–178.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical problems
from the standpoint of artificial intelligence. Machine Intelligence
4:463–502.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Shapiro, S. 2005. Specifying and Verifying Multiagent Systems
using the Cognitive Agents Specification Language (CASL). Ph.D.
Dissertation, University of Toronto, Canada.

568

