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Abstract

A recent trend in planning with incomplete information
is to model the actions of a planning problem as non-
deterministic transitions over the belief states of a plan-
ner, and to search for a plan that terminates in a desired
goal state no matter how these transitions turn out. We
show that this view of planning is fundamentally lim-
ited. Any plan that is successful by this criteria has an
upper bound on the number of actions it can execute.
Specifically, the account will not work when iterative
plans are needed. We also show that by modifying the
definition slightly, we obtain another account of plan-
ning that does work properly even for iterative plans.
Although the argument is presented in an abstract form,
we illustrate the issues using a simple concrete example.

Introduction
Most work in AI planning today deals with sequential plan-
ning: generating a sequence of actions to achieve a goal.
A smaller community is concerned with conditional plan-
ning where plans can be tree-like structures, and an even
smaller community is concerned with iterative planning,
where plans can be graph-like structures with loops. The
motivation for the latter two cases involves planning prob-
lems where there is information about the domain that is un-
available at plan time, but can be acquired at runtime by the
robot or agent executing the plan. It is the job of the plan to
specify what to do depending on how this information turns
out. Typically, we imagine a robot or agent armed with sen-
sors of some sort, and the plan must specify courses of action
for the various outcomes of these sensors.

Since conditional and iterative planning are done in a set-
ting where full information about the world is not avail-
able, a recent trend has been to perform the planning over
belief states rather than world states (e.g., (De Giacomo
et al. 1997; Bonet & Geffner 2000; Bertoli et al. 2001;
Petrick & Bacchus 2002; Bryce & Kambhampati 2004)).1
Instead of formulating the problem in terms of states of the
world where fluents (the changing properties of the world)
hold or do not hold and actions that change these world
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1This is sometimes called “planning at the knowledge level.”

states, we think of the problem as involving states of be-
lief about the world, where beliefs are held or not held and
actions that change these belief states.

To take an example from (Moore 1985; Bacchus & Pet-
rick 1998), consider the effect of dipping a litmus paper into
a solution. From a world viewpoint, this is a deterministic
action: if the solution is acidic, the paper turns red; other-
wise, it stays blue; either way the effect is completely de-
termined. But from a belief viewpoint, we can think of this
as a nondeterministic action that leads to two possible belief
states: one in which we believe that the paper is red and the
solution acidic, and the other in which we believe the paper
is blue and the solution not acidic. Or as a variant, we might
think of the dipping action as deterministic (not changing
beliefs about the color of the paper at all), but introduce a
sensing action to examine the color of the paper, with again
two possible outcomes. Either way, the effect is the same:
we have two possibilities to consider, and no information
whatsoever at plan time to choose between them.2

Now imagine planning in a setting like this. Different sys-
tems will have different ideas about what a plan will look
like and how beliefs are to be represented, but in all cases,
plans must specify what to do depending on how the runtime
information turns out. And what we are after is an adequate
plan, that is, one that will achieve the goal in all cases.3

But what do we mean by this? This is taken to mean
something like the following: a plan is adequate iff it works
from the initial belief state, where a plan is considered to
work from some state iff either (1) it says do nothing and the
goal is believed to hold, or (2) it says to do some action, and
for every possible state you can get to by doing the action,
the remaining plan works in the resulting state.

In this paper, we will make these notions precise and
prove that this view of planning is fundamentally limited.
We will show that every plan that is adequate according to
this definition has an upper bound on the number of actions
it can perform. Specifically, it will not work for iterative
planning, where unbounded loops may be necessary. How-

2All the actions in this paper will be considered to be determin-
istic in the world, but potentially nondeterministic in terms of their
believed effects.

3For some purposes, a weaker notion of planning is considered,
such as achieving the goal with some probability or achieving the
goal in some cases. These notions will not be addressed here.



ever, we will also show that by slightly varying this view of
planning, we obtain another account of adequacy that does
work properly even for iterative plans. Our accounts will
remain abstract and independent of the representations and
planning algorithms that might be used.

Observe that in this paper we assume a setting of strict
uncertainty in that the space of possibilities (possible effects
of actions or sensing outcomes) is known, but the proba-
bilities of these potential alternatives cannot be quantified.
This contrasts with settings where a probability distribution
over the set of possibilities is available as it is the case with
Markov decision processes (MDPs/POMDPs) (e.g., (Kael-
bling, Littman, & Cassandra 1998; Boutilier, Dean, & Hanks
1999)) or probabilistic planning (e.g., (Draper, Hanks, &
Weld 1994; Bonet & Geffner 2000)). We shall claim our re-
sults valid only in the context of strict uncertainty and claim
nothing for settings where quantitative information about the
likelihood of possible outcomes of action or sensing is avail-
able. We will elaborate on this in the discussion section.

Belief-Based Planning
We believe that the limitations on planning over belief states
sketched in the introduction do not depend on the details
of how the planning problem is formalized. Let us assume
that a belief-based planning problemB = 〈B,A, T, b0, G〉 is
characterized by five entities: a set B of belief states, a finite
set A of actions, a transition relation T ⊆B×A×B, and for
simplicity, one initial state b0 ∈ B, and a set of goal states
G ⊆ B. The interpretation is that T (b, a, b′) holds when
action a performed in belief state b may lead to a successor
belief state b′. An action a is said to be possible in b if there
is at least one b′ such that T (b, a, b′) holds, and the action
is deterministic if there is at most one such b′. Though B is
typically finite, the only constraint we really need to insist
on is that, for any b and a, the set of b′ such that T (b, a, b′)
must be finite. Note that if we were to think of the states B
as world states, we might want to allow the possibility of an
agent not knowing what state it was in; but we are modeling
belief states, and so assume that an agent always has enough
introspection to be able to tell what belief state it is in.

Solving a planning problem means finding actions that
will take us from the initial state to one of the goal states.
There are very different forms of plans for different pur-
poses. What we care about, however, is that when using
a plan we can always get the next action to perform. For
a sequential (or conformant) plan, we need a sequence of
actions: a1 then a2 then . . . then an. A conditional plan,
however, can make the next action depend on the state that
results from the execution of the previous one. To sidestep
issues of plan structure, we simply assume that a plan P is a
quadruple P = 〈Q, q0, nexta, nexts〉 defined as follows:

• Q is a (possibly infinite) set of plan states;

• q0 ∈ Q is the initial plan state;

• nexta ∈ [Q×B → A∪{stop}], where nexta(q, b) returns
the next action to execute starting from a plan state q and
a belief state b;

• nexts ∈ [Q × B × A → Q], where nexts(q, b, a) returns

the next state of the plan, starting from a plan state q and
belief state b and performing action a.

Intuitively, a plan issues at each step, according to the func-
tion nexta, an action a or a special command stop that indi-
cates that the plan has terminated. If an action a is issued,
then the plan state evolves to a next state, according to the
function nexts. Note that the plan state argument of function
nexta allows us to arrive at a belief state more than once but
take different actions.

Even though the state of the plan could always be seen
as part of the agent’s beliefs, for convenience, we keep this
separate from the belief state. In addition, we assume the
plan state is always known by the agent.

Finally, we insist on one constraint for a plan to be legal4
with respect to a planning problem B, namely, that it does
not prescribe impossible actions: If nexta(q, b) = a and a 6=
stop, then for some b′, T (b, a, b′). In what follows, we will
only care about plans that are legal in this sense, and we will
not mention the issue again.

Adequacy
We now present our first definition of adequacy, along the
lines sketched in the introduction. We first define the set RP

of pairs 〈q : b〉 such that running P in plan state q and in
belief state b is guaranteed to get to a goal state. Then, P is
adequate if 〈q0 : b0〉 ∈ RP . More precisely, the definition is
as follows:
Definition 1 A plan P = 〈Q, q0, nexta, nexts〉 is considered
adequate with respect to a belief-based planning problem
B = 〈B,A, T, b0, G〉 iff the pair 〈q0 : b0〉 ∈ RP , where RP

is the least set satisfying the following two properties:
1. If nexta(q, b) = stop and b ∈ G, then 〈q : b〉 ∈ RP ;
2. If nexta(q, b) = a, nexts(q, b, a) = q′, and for all

b′ such that T (b, a, b′) we have that 〈q′ : b′〉 ∈ RP ,
then 〈q : b〉 ∈ RP .

It is not hard to show that this definition is well formed in
that there is indeed a unique least set RP satisfying the two
conditions. For the first condition, if P tells us to stop, then
we must already be at the goal; for the second, if P tells us to
continue with a, then no matter what belief state b′ this takes
us to (and there must be at least one since the plan is assumed
to be legal and must not prescribe impossible actions), P
must take us to the goal from there. Note that nothing stops
us from having an action a that has transitions to b′ and to
b′′, where from b′ we can get to the goal in n steps, but from
b′′ we can only get to the goal in some different number of
steps. We will now investigate how big those numbers can
be.

We first define the configuration tree for a plan P :
Definition 2 The configuration tree of a plan P =
〈Q, q0, nexta, nexts〉 with respect to a belief-based planning
problem B = 〈B,A, T, b0, G〉 is the smallest tree whose
nodes are labelled with pairs 〈q : b〉 as follows:

(i) the root of the tree is labelled 〈q0 : b0〉;
4We follow Reiter (2001) in the use of the term “legal.” There

is no deontic or judicial connotation.



(ii) from any node labelled 〈q : b〉, there is an edge to another
node 〈q′ : b′〉, for every b′ such that nexta(q, b) = a,
nexts(q, b, a) = q′ and T (b, a, b′).

A branch in the configuration tree is a, possibly infinite, se-
quence of nodes corresponding to a maximal path from the
root node. If 〈q : b〉 is the last element in a (finite) branch,
we say that the branch terminates in belief state b.

We will show an example of a configuration tree in the
next section.

While plans that are adequate may get to the goal in dif-
ferent numbers of steps depending on the transitions taken,
the following result shows that every branch of the configu-
ration tree must eventually get to the goal:

Theorem 1 A plan P is adequate with respect to B iff ev-
ery branch of the configuration tree of P with respect to B
terminates in a goal state.

Proof: (⇐) We assume that every branch of the config-
uration tree terminates in a goal state. Let L be the set of
all labels on nodes in the configuration tree. We will show
that if RP is any set that satisfies (1) and (2), then L ⊆ RP .
Since 〈q0 : b0〉 ∈ L, it then follows that 〈q0 : b0〉 is an ele-
ment of the least set satisfying (1) and (2), and therefore that
P is adequate.

So suppose that RP is any set that satisfies (1) and (2), and
that 〈q : b〉 ∈ L. We prove that 〈q : b〉 ∈ RP by induction on
the length d of the longest path from 〈q : b〉 to a leaf node
(which is well defined, since each branch is finite).

1. If d = 0, then 〈q : b〉 is a leaf, and so P (q, b) = stop and
b ∈ G. Therefore, 〈q : b〉 ∈ RP since RP satisfies (1).

2. If d > 0, then 〈q : b〉 is not a leaf, and nexta(q, b) = a for
some a. Let 〈q′ : b′〉 be any successor child of this node.
Then, q′ = nexts(q, b, a) and T (b, a, b′) must hold. Also,
node 〈q′ : b′〉 has a smaller d, and by induction, 〈q′ : b′〉 ∈
RP . Therefore, 〈q : b〉 ∈ RP , since RP satisfies (2).

(⇒) Let us assume that there is a branch of
the configuration tree labelled with pairs L =
{〈q0 : b0〉, 〈q1 : b1〉, 〈q2 : b2〉, . . .} that does not termi-
nate in a goal state (either it is infinite or the leaf node is
not labelled 〈q : b〉 where b ∈ G). We will show that P
cannot be adequate. What we will show is that if RP is any
set of pairs 〈q : b〉 that satisfies conditions (1) and (2) in the
definition of adequate, then the set RP −L also satisfies (1)
and (2). Since 〈q0 : b0〉 ∈ L, it then follows that 〈q0 : b0〉 is
not in the least set that satisfies (1) and (2), and therefore P
is not adequate.

So assume that RP is any set that satisfies (1) and (2).

1. Suppose that nexta(q, b) = stop and b ∈ G. Then we have
that 〈q : b〉 /∈ L, but 〈q : b〉 ∈ RP since RP satisfies (1).
Therefore, 〈q : b〉 ∈ RP − L. So RP − L satisfies (1).

2. Suppose that nexta(q, b) = a and that for every b′

such that T (b, a, b′), 〈q′ : b′〉 ∈ RP − L, with q′ =
nexts(q, b, a). Therefore, for every b′ such that T (b, a, b′),
we have that 〈q′ : b′〉 ∈ RP . Then 〈q : b〉 ∈ RP since
RP satisfies (2). Also, by assumption, for every b′

such that T (b, a, b′), 〈q′ : b′〉 /∈ L. It then follows that
〈q : b〉 /∈ L, since each element 〈q : b〉 of L, except for

when nexta(q, b) = stop, has a successor in L. Therefore,
〈q : b〉 ∈ RP − L and RP − L satisfies (2).

This completes the proof.

Next, we define whether a plan is bounded as follows:

Definition 3 Plan P is bounded with respect to B if the con-
figuration tree of P with respect to B is finite.

Thus, a plan P is bounded iff there is some number n such
that we cannot make more than n transitions using the ac-
tions specified by P (where n is the maximum depth of the
configuration tree). Note that we can have unbounded plans
even in a system with a single action a, a single plan state
q0, and a single belief state b: simply let nexta(q0, b) = a
and nexts(q0, b, a) = q0. A less obvious case is where there
are two states b1 and b2 where T (b1, a, b1) and T (b1, a, b2),
and where nexta(q0, b1) = a, nexta(q0, b2) = stop, and
nexts(q0, b1, a) = q0. This is unbounded because of the
infinite sequence of belief states b1, b1, . . ., even though a
transition to b2 would allow us to terminate.

The main result of this section is the following:

Theorem 2 If a plan P is adequate with respect to B, then
it is bounded with respect to B.

Proof: Suppose to the contrary that P is not bounded.
Then, the configuration tree of P has infinitely many nodes.
Since for any action, the transition relation T leads to only
finitely many successor states, the tree is finitely branching.
Therefore, by König’s Lemma, the tree contains an infinite
branch. Hence, at least one branch of the tree does not ter-
minate. By Theorem 1, P is not adequate.

So the notion of adequacy that we have defined, however
intuitive it may appear, never holds for unbounded plans.
In other words, for any adequate plan P , there is a num-
ber n such that P cannot perform more than n actions. We
now turn to a simple example where unbounded plans are
required.

A Problematic Example
Consider a situation in which an agent wants to cut down a
tree. Assume that the agent has a primitive action chop to
chop at the tree, and that the tree will eventually come down
if it is hit often enough. Assume also that the agent can find
out whether the tree is down by doing a (binary) sensing
action look: a result of 1 indicates that the tree is down; a
result of 0 means that the tree is still up.

In its simplest form, we can model this prob-
lem using the belief-based planning problem Btc =
〈Btc, {chop, look}, Ttc, bu, {bd}〉, where Btc has three be-
lief states: bu is the state where it is known that the tree is
up; bd is the state where it is known that the tree is down;
and b? is the state where the status of the tree is not known.
The transition relation Ttc is the following:

(bu, chop, b?), (bu, look, bu), (bd, look, bd),

(b?, look, bu), (b?, look, bd).

That is, a chop action is only possible if we believe the tree
to be up, and the result is to move to a state where we do not



〈q : bu〉 -chop 〈q : b?〉 -look
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〈q : bd〉

〈q : bu〉 -chop 〈q : b?〉 -look
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look

〈q : bd〉

. . .

Figure 1: Execution tree of program Ptc with respect to
belief-based tree chopping planning problem Btc. A link
between two nodes means that a transition is “possible” be-
tween the two corresponding configurations.

know the status of the tree; a look action is possible in any
state, and if done when we do not know the status of the tree,
we move nondeterministically to one of the states where we
do know it. Initially, we are in the state bu (i.e., the tree is
known to be up), and the goal is to get to bd (i.e., the tree is
known to be down).

The most obvious “reactive” plan then is Ptc, which has
only one state q, and its next action and next plan state func-
tions are defined as follows:

nexta(q, bd) = stop,
nexta(q, bu) = chop,
nexta(q, b?) = look,

nexts(q, b, chop) = q, for b ∈ {b?, bu, bd},
nexts(q, b, look) = q, for b∈{b?, bu, bd}.

In other words, we chop at the tree when we know it is up,
stop when we know it is down, and look otherwise. We re-
peat this unless we have stopped. Intuitively, this is all it
takes to get the tree down no matter how many chops are
needed—the tree will go down after a finite, though un-
bounded, number of chops. Note that the above strategy
would not work if the tree were made of metal and chop-
ping at it therefore had no effect (we shall deal with this
variant later in the paper). In Figure 1, the configuration tree
of plan Ptc with respect to belief-based planning problem
Btc is depicted.

Unfortunately, this plan is not adequate:
Theorem 3 The plan Ptc is not adequate with respect to
planning problem Btc.

Proof: The plan is not bounded, since we can go through
the states bu, b?, bu, b?, . . . indefinitely. Then, we apply The-
orem 2.

This result is perhaps not too surprising since nothing in our
characterization Btc captures the fact that the tree will even-
tually go down if it is hit often enough. To do so, we will
look at belief-based planning problems from a different per-
spective, where they are induced by world-based ones.

World-Based Planning
Let us imagine that we start with a potentially infinite set
of world states W. Rather than describing actions as nonde-
terministic transitions among belief states, we now think of
actions as deterministic transitions among world states. We

assume that actions can return a sensing result, which for
simplicity, we take to be binary. In different world states,
we may get different sensing results.5 However, in this view,
we still want to apply plans to belief states and not world
states, since an agent may not know what world state it is
in. We think of belief states as certain non-empty subsets of
W . Intuitively, a belief state b ⊆ W is one where the agent
believes that any element of b might be the real world.

Formally, W = 〈W,A, τ, σ, i, g〉 is a world-based plan-
ning problem where W is a set of world states, A is a finite
set of actions, τ ∈ [A×W → W ∪{⊥}] is a transition func-
tion, σ ∈ [A ×W → {0, 1}] is a sensing function, i ⊆ W
is a non-empty set of initial world states, and g ⊆ W is a
non-empty set of goal world states. Symbol ⊥ here is used
for an action that is not possible in a world state.

It is possible to induce a belief-based planning problem
from a world-based planning one, as follows. As suggested
above, the states of the induced belief-based planning prob-
lem will be sets of world states. Probably the most difficult
task is to characterize what the resulting belief state (i.e., set
of world states) is when an action is executed in some, pos-
sibly different, belief state. To that end, it is convenient to
define, for any w ∈ W, any a ∈ A, and any b ⊆ W , the set
of world states κ(w, a, b) as follows:

w′′ ∈ κ(w, a, b) iff
for some world state w′ ∈ b,
w′′ = τ(a,w′) and σ(a,w′) = σ(a,w).

The definition of κ(w, a, b) is a version of the successor
state axiom for knowledge proposed by Scherl and Levesque
(Scherl & Levesque 2003), where w is the real world, b is the
set of worlds accessible from w, and κ(w, a, b) is the new set
of accessible worlds after doing action a in world w and be-
lief state b. Overall, if all the world states in b agree on the
sensing result for action a, there will be one resulting belief
state b′ (a deterministic outcome); otherwise there will be
two (a nondeterministic outcome).

We can now formally define the induced belief-based
planning problem from a world-based one.

Definition 4 Let W = 〈W,A, τ, σ, i, g〉 be a world-based
planning problem. The belief-based planning problem
induced by W is 〈B,A, T, b0, G〉, where

1. b0 = i (i.e., the initial belief state is the set of all initial
world states);

2. B ⊆ 2W is the least set such that: (i) b0 ∈ B; (ii) for all
b ∈ B and a ∈ A, if T (b, a, b′), then b′ ∈ B;

3. T (b, a, b′) holds iff (i) for all w ∈ b, τ(w, a) 6= ⊥, and
(ii) for some w∗ ∈ b, b′ = κ(w∗, a, b);

4. G = {b | b ∈ B and b ⊆ g}.

Thus, the belief states we deal with are those subsets of
W that result from starting with belief state b0 and closing
under the T relation. The T relation for action a starting
in a belief state b involves progressing (using τ ) the world
states that are elements of b, but dividing them into groups
that have the same sensing result (using σ). A belief state

5We assume that non-sensing actions always return the same
sensing result.



is a goal state in the induced problem if it is in B and is a
subset of g. Note that, when building the induced T relation,
we require that the action be known to be possible, that is,
possible in all (accessible) world states (condition (i) in point
(3) of Definition 4).

Let us now define a world-based version of the tree chop-
ping problem Wtc = 〈Wtc, {chop, look}, τtc, σtc, itc, gtc〉.
To capture the fact that the tree will eventually go down if
it is hit sufficiently often, we can model world states using
Wtc = N (i.e., the natural numbers including 0), with the
interpretation that a world n is one where n chops are nec-
essary to bring the tree down—in world state 0, the tree
is down. So, in every world, the tree will go down if it
is hit enough times. The initial states itc = N − {0} are
those where the tree is up. The goal state gtc = {0} is
the single state where no further chops are needed (and so
the tree is down). We can define σtc(chop, n) = 0 and
τtc(look, n) = n for all n, and

σtc(look, n) =
{

1 if n = 0
0 otherwise

τtc(chop, n) =
{
⊥ if n = 0
n− 1 otherwise

So the look action reports a 1 if the tree is down and 0 other-
wise, and the chop action changes the world so that one less
chop is needed to fell the tree.

Despite the fact thatWtc has an infinite set of world states,
the belief-based planning problem it induces has just three
(belief) states:
Theorem 4 The belief-based planning problem induced by
Wtc is equivalent to Btc.

Proof (sketch): The induced belief-based planning prob-
lem is BWtc = 〈{b?, bu, bd}, {chop, look}, Ttc, bu, {bd}〉,
where b? = N, bu = N−{0}, bd = {0}, and relation Ttc

is the one from the previous section. (See the appendix for
the full proof.)

So, while a world-based planning problem may look in-
tractable in terms of the number of states it deals with, the
resulting belief-based problem may be quite small.

Adequacy Reconsidered
What is the point of redefining the tree chopping example
in terms of worlds? After all, given that we end up with
exactly the same belief-based planning problem, the plan
Ptc remains unbounded and therefore not adequate. The an-
swer is that the world-based version will let us see what goes
wrong in the definition of adequacy and how to fix it.

First observe that the plan Ptc will be adequate for any
bounded version Wn

tc of the tree chopping problem:
Theorem 5 Let Wn

tc be just like Wtc except that the set
of world states Wn is the set {0, 1, . . . , n}, for some fixed
n ≥ 0. Then, the plan Ptc is adequate for the belief-based
planning problem BWn

tc induced by Wn
tc.

Proof: Consider the configuration tree of Ptc with respect
to the induced problem BWn

tc . Each branch will be finite,
since no branch can have more than n chop actions. Also,

each leaf will be labelled 〈q0 : {0}〉. So, Ptc is adequate by
Theorem 1.
We point out that althoughWn

tc has only finitely many world
states, the belief-based planning problem it induces has 2n
belief states, compared to only 3 belief states for the infinite
Wtc.

Now let us reconsider tree chopping in the general case
for Wtc. We start in the belief state bu = N − {0}. We do
not know how many chops are needed—every m > 0 is a
member of the belief state bu. Then, we do a chop action,
which subtracts one from every element of bu, producing
b? = N. Next, we do a look, one of whose results is bd

and the other is bu. In bd, we know that the tree is down,
but in bu, we are back to where we started. In terms of our
beliefs, we have made no progress, and it appears that Ptc is
no closer to a state where the tree is down.

But this is an illusion. While it is true that we do not know
how many chops are needed, in the real world, some number
of chops is sufficient. If we start in a state where n chops are
really needed, action look will unambiguously tell us that
the tree is up until we do n chops, at which point, it will
unambiguously tell us that the tree is down. Once we fix the
starting state, the behavior of Ptc is completely determined.

This is unfortunately not what happens in our definition
of adequate. As we perform chop actions, we ask what look
will do with respect to any member of our current belief
state. To see this more formally, note that condition (2) in
the definition of adequate (Definition 1) requires that
〈q′ : b′〉 ∈ RP , for every b′ such that T (b, a, b′).

For a planning problem induced by a world-based one, this
is the same as requiring that: 〈q′ : b′〉 ∈ RP , for every b′ such
that for some w ∈ b, b′ = κ(w, a, b). What our definition of
adequate is saying, in effect, is that at any given point, our
plan must work under the assumption that sensing results
may come from any element w of the current belief state b.
Since, until we know the tree is down, there will always be
elements of b with more chops remaining, we never see the
progress happening in the real world.

To remedy this, we need to consider each world state in
the initial belief state separately, and ask if the plan will
work in each case. Instead of considering a set of pairs
〈q : b〉, we consider a set of triples 〈w : q : b〉 where w ∈ b
and such that running P from its state q in belief state b and
with sensing determined by w is guaranteed to get to a goal
state. More precisely, the new definition is as follows:
Definition 5 A plan P = 〈Q, q0, nexta, nexts〉 is consid-
ered adequate′ with respect to a world-based planning prob-
lem W = 〈W,A, τ, σ, i, g〉 iff for every w0 ∈ i, the triple
〈w0 : q0 : i〉 ∈ RP , where RP is the least set satisfying the
following:

1. If nexta(q, b) = stop and b ⊆ g, then 〈w : q : b〉 ∈ RP ;
2. If nexta(q, b) = a, nexts(q, b, a) = q′, and
〈τ(a,w) : q′ : κ(w, a, b)〉 ∈ RP , then 〈w : q : b〉 ∈ RP .

This is exactly like the previous definition, except that sens-
ing is now done with respect to a world state w (that changes
systematically as actions are performed) rather than with re-
spect to arbitrary elements of the current belief state b.



We can define an analogue to branches of the configura-
tion trees for world-based problems:

Definition 6 The run of a plan P with respect to W on ini-
tial state w0 ∈ i is the smallest sequence of triples 〈w : q : b〉
such that:

1. the initial triple of the sequence is 〈w0 : q0 : i〉;
2. if 〈w : q : b〉 is in the sequence, and nexta(q, b) = a and

nexts(q, b, a) = q′, then the next triple in the sequence is
〈τ(a,w) : q′ : κ(w, a, b)〉.

Then we get an analogue to Theorem 1 with a similar proof:

Theorem 6 A plan P is adequate′ with respect toW iff for
every initial state w0 ∈ i the run of P with respect to W on
state w0 terminates in a goal state.

Proof: See appendix.

Applying this to tree chopping, we get the following:

Theorem 7 The plan Ptc is adequate′ with respect to Wtc.

Proof: Using Theorem 6 (every run of Ptc with respect to
Wtc terminates in a goal state).

Hence, adequacy′ differs from adequacy in that it correctly
judges the plan Ptc to solve the tree chopping problem. Here
is the crux of the matter: whereas each of the infinitely many
runs of Ptc is finite, the configuration tree of Ptc has an infi-
nite branch that does not correspond to anything in reality.

As a result, adequacy and adequacy′ are not the same.
They are very close, however, and in fact, agree on bounded
plans:

Theorem 8 Let B be a belief-based problem induced by
some W . Suppose a plan P is bounded with respect to B.
Then, P is adequate′ with respect to W iff P is adequate
with respect to B.

Proof: See appendix.

So the two definitions are identical in the bounded case:
planning with one is the same as planning with the other.
Of course, these properties of adequacy′ would still be true
if every unbounded plan were adequate′. To show that
adequacy′ is not too weak, we discuss a variant of the tree
chopping example that is intuitively unsolvable.

Imagine that not only do we not know the number of
chops needed to fell the tree, we also have the possibility
of being in a world state ∗ where the tree is up and chop
does not change the state (e.g., the tree is actually a steel
lamp post). Formally, we can letW∗ be just likeWtc except
that i now includes the new world state ∗, where τ(a, ∗) = ∗
and σ(a, ∗) = 0, for every action a. Obviously, the planning
problem induced by W∗ should not be solvable: if it turns
out that the real world is ∗, nothing can be done to fell the
tree. We get the following:

Theorem 9 No plan is adequate′ with respect to W∗.

Proof: The run of any plan P on initial state ∗ ∈ b0 will
never get to the goal state. Therefore, by Theorem 6, P is
not adequate′.

Hence, adequacy′ follows our intuitions once more in this
case. Interestingly, from the point of view of belief-based
planning, nothing has changed in this variant:
Theorem 10 The belief-based planning problem induced by
W∗ is equivalent to the one induced by Wtc.
Proof: The belief-based planning problem induced by W∗
is very similar to that induced by Wtc, namely BWtc , de-
scribed in the proof of Theorem 4. It also has 3 belief states,
corresponding to bu, bd, and b?, which are as in BWtc , except
that the ∗ world is included in both bu and b?. The induced
transition relation is exactly as in BWtc .
So, with respect to belief-based planning,Wtc andW∗ seem
to be equally unsolvable (and so much the worse for belief-
based planning).

To recap: for any belief-based planning problem induced
by a world-based one, the adequate plans coincide with the
adequate′ plans in the bounded case. In the unbounded case,
there are no adequate plans, but some adequate′ plans may
exist, and just in those cases where the planning problem ap-
pears to be intuitively solvable. The conclusion: adequacy′
is the appropriate definition of plan correctness, not ade-
quacy.

Discussion and Conclusion
Even though superficially similar, adequate and adequate′
are very different. Adequacy is a condition on the belief
states that are reachable through possible transitions of the
plan being considered; adequacy′, in contrast, depends on
what is believed about possible transitions in world states.
Our results mean that the former is unable to recognize
progress towards the goal in the general case, that is, when
the solution to the planning problem cannot be bounded in
advance. The latter then, though more involved, is required
to correctly capture when a plan is a solution to a planning
problem.

Our results also mean that planning with loops is more
difficult than what one might have expected. Note that in
this paper, we were not interested in developing algorithms
for iterative planning, but only in investigating the concep-
tual limitations of planning over belief states. For practical
approaches to iterative planning, we refer to (Lin & Dean
1996; Son, Baral, & McIlraith 2001; Cimatti et al. 2003;
Levesque 2005).

In (Cimatti et al. 2003), three different types of solu-
tions for planning problems in nondeterministic domains are
devised, namely, weak, strong, and strong cyclic solutions.
Weak solutions are plans that may achieve the goal, but are
not guaranteed to do so; strong solutions are plans that are
guaranteed to achieve the goal. In our work, we have not
been concerned with weak solutions, but rather with strong
“safe” ones. However, Cimatti et al.’s notion of strong plans
does not account for (unbounded) iterative behavior. Strong
cyclic plans are an alternative way to deal with unbounded
domains by capturing the notion of “acceptable” iterative
trial-and-error strategies. A strong cyclic plan is not required
to actually reach a goal state in the unbounded cases, but
only to remain on a path to a goal state. This may be advan-
tageous if for instance, the world might change to delay the



attainment of the goal. On the other hand, a strong cyclic
plan may procrastinate indefinitely. Hence, adequate′ plans
are stricter, in the sense that indefinite procrastination is dis-
allowed. In fact, whereas our definition of adequate′ sepa-
rates the two tree chopping scenariosWtc andW∗ correctly,
Cimatti et al.’s account would not as it would produce the
same (strong cyclic) plan with the same guarantee in both
cases. Roughly speaking, this is because planning problems
are cast as finite state systems and, as a result, it is not possi-
ble to express fairness directly which then must be assumed
as a meta-constraint on the system.

The reader may wonder how our work relates to deci-
sion theoretic and probabilistic planning (e.g., (Kaelbling,
Littman, & Cassandra 1998; Boutilier, Dean, & Hanks 1999;
Draper, Hanks, & Weld 1994; Bonet & Geffner 2000)) in
which the underlying setting is similar, tough somewhat
richer, than the one assumed here. In those areas, be-
lief states are often represented as probability distributions
over the set of world states. It is well known that belief
states comprise sufficient statistics for acting optimally (see
(Aström 1965)). There are basically two main differences
with the work presented here. First, we are concerned with
checking whether a plan is (always and completely) “effec-
tive” for the given goal rather than checking whether the plan
is “optimal” or “satisficing” (i.e., gets maximum expected
reward or has sufficient chances of success). Still, one can
imagine ways of recasting our objective in terms of utilities
and probabilities. Second, and most importantly, we have
assumed that the uncertainty present in the domain cannot
be quantified, whereas the aforementioned approaches do
assume that a probability distribution over the world states
is available. When these probabilities are available, one
can annotate configuration trees with transition probabili-
ties between a node and each of its children. We suspect
that, by making use of this additional information on the
configuration trees, one could develop a purely belief-based
account of adequacy expressive enough to deal with even
unbounded problems like the tree chopping example. The
intuitive reason for this is that one could make use of the
available probabilities, together with the reward system, to
recognize progress towards the goal. When it comes to our
tree chopping example, a belief state will be a distribution
over an infinite set of world states with zero reward except
for only one absorbing state (where there are 0 chops re-
maining) with reward r > 0. The expected utility of plan
Ptc will turn out to be exactly r. A fuller study of this is left
for future work.

In this paper, we made assumptions on plans sufficient to
guarantee two fundamental properties: (i) epistemic feasi-
bility and (ii) determinism. A plan is epistemically feasible
if an executor will always have enough information to con-
tinue the execution up to successful termination—a neces-
sary requirement for autonomous execution of the plan. The
plans used in this paper are always epistemically feasible,
but if the programming constructs in our planning language
are general enough, the issue of verifying that a plan is actu-
ally epistemically feasible arises (see (Sardina et al. 2004)).
As for determinism, this implies that plans do not leave any
leeway to the executor. This is certainly the case in the vast

majority of the planning literature, and indeed we required
it in this paper. However, different notions of plans can be
developed in which plans are in fact nondeterministic pro-
grams. In this case, one must consider how the choice be-
tween different transitions available to the executor is made,
perhaps arbitrarily by a “dumb executor” or perhaps intelli-
gently, by an executor that plans ahead. Interestingly, natu-
ral generalizations of adequate and adequate′ for this class
of plans can be defined (see (De Giacomo et al. 2003)).

Thus, our results are also relevant for agent programming
language design and semantics, where one may need a no-
tion of agent program adequacy that handles unbounded iter-
ative programs. Also, we point out that an account of agent
ability (e.g., (Moore 1985; Lespérance 2003)) would nec-
essarily have to include an account of plan adequacy in the
style of what we have done here: to be able to achieve φ is
to know of an “adequate” plan for it. We will address some
of the above issues in future work.
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Proofs
Theorem 4 The belief-based planning problem induced by
Wtc is equivalent to Btc (as defined in the previous section).

Proof: Let us recall the world-based version of the tree
chopping problem:

Wtc = 〈N, {chop, look}, τtc, σtc, N− {0}, {0}〉,

where σtc(chop, n) = 0 and τtc(look, n) = n for all n, and

σtc(look, n) =
{

1 if n = 0
0 otherwise

τtc(chop, n) =
{
⊥ if n = 0
n− 1 otherwise

So, let us build inductively the induced belief-based plan-
ning problem BWtc = 〈BWtc , {chop, look}, TWtc , N −
{0}, GWtc〉. First of all, we know that N − {0} ∈ BWtc .
Next, we build TWtc and BWtc simultaneously by starting
with the initial belief state bu and applying the two available
actions:

1. TWtc(N− {0}, look, b) iff b = N− {0} (and N− {0} is
already in BWtc ).

2. TWtc(N − {0}, chop, b) iff b = N. This is because for
all n > 0, τ(n, chop) 6= ⊥ and κ(n, chop, bu) = N. At
this point, we obtained a new belief state N, and hence,
we add it to the belief base of BWtc , that is, N ∈ BWtc .

3. TWtc(N, look, b) iff b ∈ {N − {0}, {0}}. First of all, for
every n ≥ 0, τ(n, look) 6= ⊥. Moreover, κ(0, look, N) =
{0}, and κ(m, look, N) = N − {0} for m > 0. Thus, we
have a new belief state {0} ∈ BWtc .

4. TWtc(N, chop, b) does not hold for any b because
τ(0, chop) = ⊥. That is, it is not possible to do a chop
action in belief state N.

5. TWtc({0}, look, b) iff b = {0}, since τ(0, look) 6= ⊥ and
κ(0, look, {0}) = {0}.

6. TWtc({0}, chop, b) does not hold for any b because
τ(0, chop) = ⊥. That is, it is not possible to do a chop
action in belief state {0}.

At this point, we have finished defining TWtc and the re-
sulting set of belief states is BWtc = {N, N − {0}, {0}}.
Finally, the set of goal states for BWtc is easily obtained as
GWtc = {{0}}.

Putting it all together, the induced belief planning prob-
lem is as follows:

BWtc =
〈{N, N− {0}, {0}},{chop, look}, TWtc , N− {0},{{0}}〉.

It is not hard to see that BWtc is just a “renaming” of Btc

from the example section, by talking b? = N, bu = N−{0},
and bd = {0}.



Theorem 6 A plan P is adequate′ with respect toW iff for
every initial state w0 ∈ i the run of P with respect to W on
state w0 terminates in a goal state.

Proof: The proof mirrors the one for Theorem 1.
(⇐) We assume that every run of P terminates in a goal
state. Let L be the set of labels on all the nodes of all the
runs. It can be shown, using an argument like the one in
Theorem 1, that if R is any set that satisfies conditions (1)
and (2) in the definition of adequate′, then L ⊆ R. Since
for every w0 ∈ i, 〈w0 : q0 : i〉 ∈ L, it then follows that
〈w0 : q0 : i〉 is an element of the least set satisfying (1) and
(2), and therefore that P is adequate′.
(⇒) Now let us assume that there is a
run of plan P labelled with triples L =
{〈w0 : q0 : i〉, 〈w1 : q1 : b1〉, 〈w2 : q2 : b2〉, . . .}, for some
w0 ∈ i, that does not terminate in a goal state (either it
is infinite or the leaf node is not labelled 〈w : qk : bg〉 with
bg ⊆ G). It can be shown, using an argument like the one
in Theorem 1, that if RP is any set of triples 〈w : q : b〉
that satisfies conditions (1) and (2) in the definition of
adequate′, then the set RP − L also satisfies (1) and (2).
Since 〈w0 : q0 : i〉 ∈ L, it then follows that 〈w0 : q0 : i〉 is not
in the least set that satisfies (1) and (2), and therefore P is
not adequate′.

Theorem 8 Let B be a belief-based planning problem in-
duced by some W . Suppose a plan P is bounded with re-
spect to B. Then P is adequate′ with respect to W iff P is
adequate with respect to B.

Proof: (⇐) Suppose P is adequate (and hence, bounded).
By Theorem 1, every branch of the configuration tree of P
terminates in a goal state. Now consider an arbitrary run of
P . If we replace any label 〈w : q : b〉 in this run by the pair
〈q : b〉, we obtain a branch of the configuration tree. Hence
the run is finite and terminates in a goal state. Since this
holds for any run, by Theorem 6, P is adequate′.

(⇒) Suppose P is adequate′. By Theorem 6, every run
of P terminates in a goal state. Now consider an arbitrary
branch of the configuration tree of P . In general, there may
be no run corresponding to this branch (e.g. the infinite
branch for Ptc). But if P is bounded, we can construct a
run corresponding to the finite branch as follows:

1. if the leaf of the branch is 〈q : b〉, we make the leaf of the
run be 〈w : q : b〉, for some w ∈ b;

2. if we have a node 〈q′ : b′〉 on the branch corresponding
to 〈w′ : q′ : b′〉 on the run, and the predecessor node of
〈q′ : b′〉 is 〈q : b〉, then we add the node 〈w : q : b〉 as the
predecessor to 〈w′ : q′ : b′〉, where w is some element of
b such that w′ = τ(a,w), for which it will then follow
that b′ = κ(w, a, b). (Such a w must exist since every ele-
ment of b′ (including w′) is of the form τ(a,w′′) for some
w′′ ∈ b.)

Since every run terminates in a goal state, it follows that the
branch also terminates in a goal state. Since this holds for
any branch, by Theorem 1, P is adequate.


