
Online Agent Supervision in the Situation Calculus

Bita Banihashemi
York University

Toronto, ON, Canada
bita@cse.yorku.ca

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Abstract
Agent supervision is a form of control / customiza-
tion where a supervisor restricts the behavior of an
agent to enforce certain requirements, while leav-
ing the agent as much autonomy as possible. In this
work, we investigate supervision of an agent that
may acquire new knowledge about her environment
during execution, for example, by sensing. Thus
we consider an agent’s online executions, where, as
she executes the program, at each time point she
must make decisions on what to do next based on
what her current knowledge is. This is done in a
setting based on the situation calculus and a vari-
ant of the ConGolog programming language. The
main results of this paper are (i) a formalization of
the online maximally permissive supervisor, (ii) a
sound and complete technique for execution of the
agent as constrained by such a supervisor, and (iii)
a new type of lookahead search construct that en-
sures nonblockingness over such online executions.

1 Introduction
In many settings, we want to restrict an agent’s behavior to
conform to a set of specifications. For instance, the activi-
ties of agents in an organization have to adhere to some busi-
ness rules and privacy/security protocols. Similarly, a mo-
bile robot has to conform to safety specifications and avoid
causing injuries to others. One form of this is customization,
where a generic process for performing a task or achieving
a goal is refined to satisfy a client’s constraints or prefer-
ences. Process customization includes personalization [Fritz
and McIlraith, 2006] and configuration [Liaskos et al., 2012]
and finds applications in number of areas.

A key challenge in such settings is ensuring conformance
to specifications while preserving the agent’s autonomy. Mo-
tivated by this and inspired by supervisory control of dis-
crete event systems [Wonham and Ramadge, 1987; Won-
ham, 2014; Cassandras and Lafortune, 2008], De Giacomo,
Lespérance and Muise [De Giacomo et al., 2012] (DLM) pro-
posed agent supervision as a form of control/customization of
an agent’s behavior. The DLM framework is based on the sit-
uation calculus [McCarthy and Hayes, 1969; Reiter, 2001]
and a variant of the ConGolog [De Giacomo et al., 2000]

programming language. DLM represent the agent’s possi-
ble behaviors as a nondeterministic ConGolog process. An-
other ConGolog process represents the supervision specifica-
tion, i.e., which behaviors are acceptable/desirable.

If it is possible to control all of the agent’s actions, then it is
easy to obtain the behaviors of the supervised agent through
a kind of synchronous concurrent execution of the agent pro-
cess and the supervision specification process. However,
some of the agent’s actions may be uncontrollable. DLM for-
malize a notion of maximally permissive supervisor that min-
imally constrains the behavior of the agent in the presence of
uncontrollable actions so as to enforce the desired behavioral
specifications. The original DLM account of agent supervi-
sion assumes that the agent does not acquire new knowledge
about her environment while executing. This means that all
reasoning is done using the same knowledge base. The re-
sulting executions are said to be offline executions.

In this paper we study how we can apply the DLM frame-
work in the case where the agent may acquire new knowledge
while executing, for example through sensing. This means
that the knowledge base that the agent uses in her reason-
ing needs to be updated during the execution. For instance,
consider a travel planner agent that needs to book a seat on
a certain flight. Only after querying the airline web service
offering that flight will the agent know if there are seats avail-
able on the flight.

Technically, this requires switching from offline execu-
tions to online executions [De Giacomo and Levesque, 1999;
Sardiña et al., 2004], which, differently from offline execu-
tions, can only be defined meta-theoretically (unless one adds
a knowledge operator/fluent) since at every time point the
knowledge base used by the agent to deliberate about the next
action is different.

Based on online executions, we formalize the notion of on-
line maximally permissive supervisor and show its existence
and uniqueness, as in the simpler case of DLM. Moreover,
we meta-theoretically define a program construct (i.e., super-
vision operator) for online supervised execution that given the
agent and specification, executes them to obtain only runs al-
lowed by the maximally permissive supervisor, showing its
soundness and completeness. We also define a new looka-
head search construct that ensures the agent can successfully
complete the execution (i.e., ensures nonblockingness).

2 Preliminaries
The situation calculus (SC) is a well known predicate logic
language for representing and reasoning about dynamically
changing worlds. Within the language, one can formulate
action theories that describe how the world changes as the
result of actions [Reiter, 2001]. We assume that there is a fi-
nite number of action types A. Moreover, we assume that the
terms of object sort are in fact a countably infinite set N of
standard names for which we have the unique name assump-
tion and domain closure. As a result a basic action theory
(BAT) D is the union of the following disjoint sets: the foun-
dational, domain independent, (second-order, or SO) axioms
of the situation calculus (Σ), (first-order, or FO) precondi-
tion axioms stating when actions can be legally performed
(Dposs), (FO) successor state axioms describing how fluents
change between situations (Dssa), (FO) unique name axioms
for actions and domain closure on action types (Dca); (SO)
unique name axioms and domain closure for object constants
(Dcoa); and (FO) axioms describing the initial configuration
of the world (DS0

). A special predicate Poss(a, s) is used to
state that action a is executable in situation s; precondition
axioms inDposs characterize this predicate. The abbreviation
Executable(s) means that every action performed in reach-
ing situation s was possible in the situation in which it oc-
curred. In turn, successor state axioms encode the causal laws
of the world being modeled; they replace the so-called effect
axioms and provide a solution to the frame problem. We write
do([a1, a2, . . . , an−1, an], s) as an abbreviation for the situa-
tion term do(an, do(an−1, . . . , do(a2, do(a1, s)) . . .)); for an
action sequence ~a, we often write do(~a, s) for do([~a], s).

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, various
so-called high-level programming languages have been de-
fined. Here, we concentrate on (a fragment of) ConGolog that
includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2 | δ1& δ2

In the above, α is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, i.e., a SC formula with
all situation arguments in fluents suppressed. As usual, we
denote by ϕ[s] the formula obtained from ϕ by restoring the
situation argument s into all fluents in ϕ. Program δ1|δ2 al-
lows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeter-
ministic choice of a legal binding for variable x (observe
that such a choice is, in general, unbounded). δ∗ performs
δ zero or more times. Program δ1‖δ2 represents the inter-
leaved concurrent execution of programs δ1 and δ2. The in-
tersection/synchronous concurrent execution of programs δ1
and δ2 (introduced by DLM) is denoted by δ1& δ2.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using two predicates [De Giacomo
et al., 2000]: (i) Trans(δ, s, δ′, s′), which holds if one step
of program δ in situation s may lead to situation s′ with δ′
remaining to be executed; and (ii) Final(δ, s), which holds
if program δ may legally terminate in situation s. The defini-
tions of Trans and Final we use are as in [De Giacomo
et al., 2010]; differently from [De Giacomo et al., 2000],
the test construct ϕ? does not yield any transition, but is

final when satisfied. Thus, it is a synchronous version of
the original test construct (it does not allow interleaving).
As a result, in our version of ConGolog, every transition
involves the execution of an action. Predicate Do(δ, s, s′)
means that program δ, when executed starting in situation
s, has as a legal terminating situation s′, and is defined as
Do(δ, s, s′)

.
= ∃δ′.T rans∗(δ, s, δ′, s′)∧Final(δ′, s′) where

Trans∗ denotes the reflexive transitive closure of Trans.
A ConGolog program δ is situation-determined (SD) in a

situation s [De Giacomo et al., 2012] if for every sequence
of transitions, the remaining program is determined by the
resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

For example, program (a; b) | (a; c) is not SD, while a; (b | c)
is (assuming the actions involved are always executable).
Thus, a (partial) execution of a SD program is uniquely de-
termined by the sequence of actions it has produced. Hence
a program in a starting situation generates a set/language of
action sequences, its executions, and operations like intersec-
tion and union become natural. In the rest, we use C to denote
the axioms defining the ConGolog programming language.

3 Agents Executing Online
In our account of agent supervision, we want to accommodate
agents that can acquire new knowledge about their environ-
ment during execution, for example by sensing, and where
their knowledge base is updated with this new knowledge.
Thus we consider an agent’s online executions, where, as she
executes the program, at each time point, she makes decisions
on what to do next based on what her current knowledge is.

Sensing. A crucial aspect of online executions is that the
agent can take advantage of sensing. Similarly to [Lespérance
et al., 2008], we model sensing as an ordinary action which
queries a sensor, followed by the reporting of a sensor result,
in the form of an exogenous action.

Specifically, to sense whether fluent P holds within a pro-
gram, we use a macro:

SenseP
.
= QryIfP ; (repV alP (1) | repV alP (0)),

where QryIfP is an ordinary action that is always executable
and is used to query (i.e., sense) if P holds and repV alP (x)
is an exogenous action with no effect that informs the agent if
P holds through its precondition axiom, which is of the form:

Poss(repV alP (x), s) ≡ P (s) ∧ x = 1 ∨ ¬P (s) ∧ x = 0.

Thus, we can understand that SenseP reports value 1
through the execution of repV alP (1) if P holds, and 0
through the execution of repV alP (0) otherwise.

For example, consider the following agent program:

δi = SenseP ; [P?;A] | [¬P?;B]

and assume the agent does not know if P holds initially.
So initially we have D ∪ C |= Trans(δi, S0, δ

′, S1) where
S1 = do(QryIfP , S0) and δ′ = nil; (repV alP (1) |
repV alP (0))); [P?;A] | [¬P?;B]. At S1, the agent
knows either of the exogenous actions repV alP (0) or

repV alP (1) could occur, but does not know which. Af-
ter the occurrence of one of these actions, the agent
learns whether P holds. For example, if repV alP (1) oc-
curs, the agent’s knowledge base is now updated to D ∪
C ∪ {Poss(repV alP (1), S1)}. With this updated knowl-
edge, she knows which action to do next: D ∪ C ∪
Poss(repV alP (1), S1) |= Trans(nil; [P?;A] | [¬P?;B],
do(repV alP (1), S1), nil, do([repV alP (1), A], S1)).

Notice that with this way of doing sensing, we essentially
store the sensing results in the situation (which includes all
actions executed so far including the exogenous actions used
for sensing). In particular the current KB after having per-
formed the sequence of actions ~a is:

D ∪ C ∪ {Executable(do(~a, S0)}.

Note that this approach also handles the agent’s acquiring
knowledge from an arbitrary exogenous action.

Agent online configurations and transitions. We denote
an agent by σ, denoting a pair 〈D, δi〉, where δi is the initial
program of the agent expressed in ConGolog and D is a BAT
that represents the agent’s initial knowledge (which may be
incomplete). We assume that we have a finite set of prim-
itive action types A, which is the disjoint union of a set of
ordinary primitive action types Ao and exogenous primitive
action types Ae.

An agent configuration is modeled as a pair 〈δ,~a〉, where
δ is the remaining program and ~a is the sequence of actions
performed so far starting from S0. The initial configuration
ci is 〈δi, ε〉, where ε is the empty sequence of actions.

The online transition relation between agent configura-
tions is (a meta-theoretic) binary relation defined as:

〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉
if and only if

either A ∈ Ao, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0))} |=

Trans(δ, do(~a, S0), δ′, do(A(~n), do(~a, S0)))

or A ∈ Ae, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0)),
T rans(δ, do(~a, S0), δ′, do(A(~n), do(~a, S0)))} is satisfiable.

Here, 〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉 means that configuration
〈δ,~a〉 can make a single-step online transition to configura-
tion 〈δ′,~aA(~n)〉 by performing action A(~n). If A(~n) is an
ordinary action, the agent must know that the action is exe-
cutable and know what the remaining program is afterwards.
IfA(~n) is an exogenous action, the agent need only think that
the action may be possible with δ′ being the remaining pro-
gram, i.e., it must be consistent with what she knows that the
action is executable and δ′ is the remaining program. As part
of the transition, the theory is (implicitly) updated in that the
new exogenous action A(~n) is added to the action sequence,
and Executable(do([~a,A(~n)], S0)) will be added to the the-
ory when it is queried in later transitions, thus incorporating
the fact that Poss(A(~n), do(~a, S0)) is now known to hold.

The (meta-theoretic) relation c →∗~a c′ is the reflexive-
transitive closure of c →A(~n) c

′ and denotes that online con-
figuration c′ can be reached from the online configuration c
by performing a sequence of online transitions involving the
sequence of actions ~a.

We also define a (meta-theoretic) predicate cX mean-
ing that the online configuration c is known to be final:
〈δ,~a〉X if and only if
D ∪ C ∪ {Executable(do(~a, S0))} |= Final(δ, do(~a, S0)).

Online situation determined agents. In this paper, we
are interested in programs that are SD, i.e., given a program,
a situation and an action, we want the remaining program to
be determined. However this is not sufficient when consid-
ering online executions. We want to ensure that the agent
always knows what the remaining program is after any se-
quence of actions. We say that an agent is online situation-
determined (online SD) if for any sequence of actions that the
agent can perform online, the resulting agent configuration is
unique. Formally, an agent σ = 〈D, δi〉 with initial configu-
ration ci = 〈δi, ε〉 is online SD if and only if for all sequences
of action ~a, if ci →∗~a c′ and ci →∗~a c′′ then c′ = c′′. In [Ban-
ihashemi et al., 2016b], it is shown that for an agent to be
online SD, it is sufficient that the agent always knows what
the remaining program is after an exogenous action. From
now on, we assume that the agent is online SD.

Online Runs. For an agent σ that is online SD, online ex-
ecutions can be succinctly represented by runs formed by the
corresponding sequence of actions. The set RR(σ) of (par-
tial) runs of an online SD agent σ with starting configuration
ci is the sequences of actions that can be produced by execut-
ing ci from S0: RR(σ) = {~a | ∃c.ci →∗~a c}. A run is com-
plete if it reaches a final configuration. Formally we define
the set CR(σ) of complete runs as: CR(σ) = {~a | ∃c.ci →∗~a
c∧cX}. Finally we say that a run is good if it can be extended
to a complete run. Formally we define the set GR(σ) of good

runs as: GR(σ) = {~a | ∃c, c′, ~a′.ci →∗~a c ∧ c→∗~a′ c
′ ∧ c′X}.

4 Online Agent Supervision
Agent supervision aims at restricting an agent’s behavior to
ensure that it conforms to a supervision specification while
leaving it as much autonomy as possible. DLM’s account of
agent supervision is based on offline executions and does not
accommodate agents that acquire new knowledge during a
run. DLM represent the agent’s possible behaviors by a (non-
deterministic) SD ConGolog program δi relative to a BAT
D. The supervision specification is represented by another
SD ConGolog program δs. First note that if it is possible
to control all the actions of the agent, then it is straightfor-
ward to specify the result of supervision as the intersection of
the agent and the specification processes (δi& δs). However
in general, some of agent’s actions may be uncontrollable.
These are often the result of interaction of an agent with ex-
ternal resources, or may represent aspects of agent’s behavior
that must remain autonomous and cannot be controlled di-
rectly. This is modeled by the special fluent Au(a, s) that
means action a is uncontrollable in situation s.

DLM say that a supervision specification δs is controllable
wrt the agent program δi in situation s iff:

∀~aau.∃~b.Do(δs, s, do([~a,~b], s)) ∧Au(au, do(~a, s)) ⊃
(∃~d.Do(δi, s, do([~a, au, ~d], s)) ⊃

∃~b′.Do(δs, s, do([~a, au, ~b′], s))),

i.e., if we postfix an action sequence ~a that is good offline run
for δs (i.e., such that ∃~b.Do(δs, s, do([~a,~b], s)) holds) with an
uncontrollable action au which is good for δi, then au must
also be good for δs.

Then, DLM define the offline maximally permissive super-
visor (offline MPS) mpsoffl(δi, δs, s) of the agent behavior
δi which fulfills the supervision specification δs as:

mpsoffl(δi, δs, s) = set(
⋃

E∈E E) where

E = {E | ∀~a ∈ E ⊃ Do(δi & δs, s, do(~a, s))
and set(E) is controllable wrt δi in s}

This says that the offline MPS is the union of all sets of action
sequences that are complete offline runs of both δi and δs

(i.e., such that Do(δi & δs, s, do(~a, s))) that are controllable
wrt δi in situation s.

The above definition uses the set(E) construct intro-
duced by DLM, which is a sort of infinitary nondeterministic
branch; it takes an arbitrary set of sequences of actions E and
turns it into a program. We define its semantics as follows:

Trans(set(E), s, δ′, s′) ≡ ∃a,~a.a~a ∈ E ∧ Poss(a, s) ∧
s′ = do(a, s) ∧ δ′ = set({~a | a~a ∈ E ∧ Poss(a, s)})

Final(set(E), s) ≡ ε ∈ E

Therefore set(E) can be executed to produce any of the se-
quences of actions in E.1

DLM show that their notion of offline MPS,
mpsoffl(δi, δs, s), has many nice properties: it always
exists and is unique, it is controllable wrt the agent behavior
δi in s, and it is the largest set of offline complete runs of
δi that is controllable wrt δi in s and satisfy the supervision
specification δs in s, i.e., is maximally permissive. However,
the notion of offline MPS is inadequate in the context of
online execution, as the following example shows.

Example 1 Suppose that we have an agent that does not
know whether P holds initially, i.e., D 6|= P (S0) and D 6|=
¬P (S0). Suppose that the agent’s initial program is:

δi4 = [P?; ((A; (C | U)) | (B;D))] |
[¬P?; ((A;D) | (B; (C | U)))]

where all actions are ordinary, always executable, and con-
trollable except for U , which is always uncontrollable. Sup-
pose that the supervision specification is:

δs4 = (πa.a 6= U?; a)∗

i.e., any action except U can be performed. It is easy to show
that the offline MPS obtained using DLM’s definition is dif-
ferent depending on whether P holds or not:

D ∪ C |= (P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[B,D]})) ∧

(¬P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[A,D]}))

For models of the theory where P holds, the offline MPS is
set({B,D}), as the set of complete offline runs of δs4 in S0

1Obviously there are certain sets that can be expressed directly in
ConGolog, e.g., when E is finite. However in the general case, the
object domain may be infinite, and set(E) may not be representable
as a finitary ConGolog program.

is {[B,D], [A,C]} and set({[A,C]}) is not controllable wrt
δi4 in S0. For models where P does not hold, the offline MPS
is set({A,D}), since the set of complete offline runs of δs4 in
S0 is {[A,D], [B,C]} and set({[B,C]}) is not controllable
wrt δi4 in S0. Since it is not known if P holds, it seems that a
correct supervisor should neither allow A nor B.

As the above example illustrates, we have an offline MPS
for each model of the theory. Instead, we want a single online
MPS that works for all models and includes sensing infor-
mation when acquired. The difference between offline MPS
and online MPS is analogous to the difference between clas-
sical plans and conditional plans that include sensing in the
planning literature [Ghallab et al., 2004].

Online Maximally Permissive Supervisor. In our ac-
count of supervision, we consider agents that may acquire
knowledge through sensing and exogenous actions as they
operate and make decisions based on what they know, and
we model these as online SD agents. To see how we can
formalize supervision for such agents, assume that we have
an online SD agent σ = 〈D, δi〉 whose behavior we want to
supervise. Also suppose that we have a supervision specifica-
tion δs of what behaviors we want to allow in the supervised
system and that the system 〈D, δs〉 is also online SD.

We say that a specification δs is online controllable wrt
online SD agent σ = 〈D, δi〉 iff:

∀~aau.~a ∈ GR(〈D, δs〉) and
D ∪ {Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)) implies

if ~aau ∈ GR(σ) then ~aau ∈ GR(〈D, δs〉).

i.e, if we postfix a good online run ~a for 〈D, δs〉 with an ac-
tion au that is not known to be controllable which is good for
σ (and so ~a must be good for σ as well), then au must also be
good for 〈D, δs〉 (~aau ∈ GR(σ) and ~aau ∈ GR(〈D, δs〉) to-
gether imply that ~aau ∈ GR(〈D, δi& δs〉)). This definition,
differently from DLM’s, applies to online runs. Moreover it
treats actions that are not known to be controllable as uncon-
trollable, thus ensuring that δs is controllable in all possible
models/worlds compatible with what the agent knows. As
DLM, we focus on good runs of the process, assuming that
the agent will not perform actions that don’t lead to a final
configuration of δi. The supervisor only ensures that given
this, the process always conforms to the specification.

Given this, we can then define the online maximally per-
missive supervisor mpsonl(δ

s, σ) of the online SD agent
σ = 〈D, δi〉 which fulfills the supervision specification δs:

mpsonl(δ
s, σ) = set(

⋃
E∈E E) where

E = {E | E ⊆ CR(〈D, δi & δs〉)
and set(E) is online controllable wrt σ}

i.e., the online MPS is the union of all sets of action sequences
that are complete online runs of both δi and δs that are online
controllable wrt the agent σ. We can show that:
Theorem 1 For the maximally permissive supervisor
mpsonl(δ

s, σ) of the online SD agent σ = 〈D, δi〉 which
fulfills the supervision specification δs, where 〈D, δs〉 is also
online SD, the following properties hold:

1. mpsonl(δ
s, σ) always exists and is unique;

2. 〈D,mpsonl(δ
s, σ)〉 is online SD;

3. mpsonl(δ
s, σ) is online controllable wrt σ;

4. for every possible online controllable supervision spec-
ification δ̂s for σ such that CR(〈D, δi&δ̂s〉) ⊆
CR(〈D, δi&δs〉), we have that CR(〈D, δi&δ̂s〉) ⊆
CR(〈D,mpsonl(δ

s, σ)〉), i.e.,mpsonl is maximally per-
missive;

5. RR(〈D,mpsonl(δ
s, σ)〉) = GR(〈D,mpsonl(δ

s, σ)〉),
i.e., mpsonl(δ

s, σ) is non-blocking.
Example 2 If we return to the agent of Example 1, who does
not know whether P holds initially, it is easy to show that
our definition of online MPS yields the correct result, i.e.
mpsonl(δ

s
4, 〈D, δi4〉) = set({ε}).

Example 3 Supervision can also depend on the information
that the agent acquires as it executes. Again, suppose that
we have an agent that does not know whether P holds ini-
tially. Suppose also that the agent’s initial program is δi5 =
SenseP ; δi4. We can show that:
D ∪ C |= (P (S0) ⊃ mpsoffl(δi5, δ

s
4, S0) =

set({[QryIfP , repV alP (1), B,D]})) ∧
(¬P (S0) ⊃ mpsoffl(δi5, δ

s
4, S0) =

set({[QryIfP , repV alP (0), A,D]}))
Again, we have different offline MPSs depending on whether
P holds. But since the exogenous report makes the truth value
of P known after the first action, we get one online MPS for
this agent as follows:
mpsonl(δ

s
4, 〈D, δi5〉) = set({[QryIfP , repV alP (1), B,D],

[QryIfP , repV alP (0), A,D]})
Because the agent queries if P holds, the supervisor has

enough information to decide the maximal set of runs from
then on in each case. So if the reported value of P is true,
then the online supervisor should eliminate the complete run
[A,C] as it is not controllable, and if P does not hold, the run
[B,C] should be eliminated for the same reason.

As well, an action’s controllability or whether it satisfies the
specification may depend on a condition whose truth only be-
comes known during the execution. Such cases cannot be
handled by DLM’s original offline account but our online su-
pervision account does handle them correctly.

5 Online Supervision Operator
We also introduce a meta-theoretic version of a synchronous
concurrency operator δi&onl

Au
δs that captures the maximally

permissive execution of an agent 〈D, δi〉 under online super-
vision for specification δs. Wlog, we assume that both δi and
δs start with a common controllable action (if not, it is trivial
to add a dummy action in front of both). We define δi&onl

Au
δs

by extending the online transition relation as follows:

〈δi&onl
Au
δs,~a〉 →a 〈δi

′
&onl

Au
δs

′
,~aa〉

if and only if
〈δi,~a〉 →a 〈δi

′
,~aa〉 and 〈δs,~a〉 →a 〈δs

′
,~aa〉 and

if D ∪ {Executable(do(~a, S0))} |= ¬Au(a, do(~a, S0))
then for all ~au s.t. D ∪ {Executable(do(~aa~au, S0)),

Au(~au, do(~aa, S0))} is satisfiable,
if ~aa ~au ∈ GR(〈D, [~a; δi]〉), then ~aa ~au ∈ GR(〈D, [~a; δs]〉).

whereAu(~au, s), means that action sequence ~au is uncontrol-
lable in situation s, and is inductively defined on the length of
~au as the smallest predicate such that: (i) Au(ε, s) ≡ true;
(ii) Au(au ~au, s) ≡ Au(au, s)∧Au(~au, do(au, s)). Thus, the
online maximally permissive supervised execution of δi for
the specification δs is allowed to perform action a in situa-
tion do(~a, S0) if a is allowed by both δi and δs and moreover,
if a is known to be controllable, then for every sequence of
actions ~au not known to be controllable, if ~au may be per-
formed by δi right after a on one of its complete runs, then
it must also be allowed by δs (on one of its complete runs).
Essentially, a controllable action a by the agent must be for-
bidden if it can be followed by some sequence of actions not
known to be controllable that violates the specification.

The final configurations are extended as follows:

(〈δi&onl
Au
δs,~a〉)X if and only if (〈δi,~a〉)X and (〈δs,~a〉)X

We can show that firstly, if both the agent and supervision
specification processes are online SD, then so is the program
obtained using the online supervision operator, and moreover,
this program is controllable wrt to the agent process:
Theorem 2

1. If 〈D, δs〉 and 〈D, δi〉 are online SD, then so is
〈D, δi&onl

Au
δs〉.

2. δi &onl
Au

δs is online controllable wrt 〈D, δi〉.
Moreover, the complete runs of the program obtained us-

ing the online supervision operator are exactly the same the
complete runs generated under synchronous concurrency of
the agent and mpsonl(δ

s, σ):
Theorem 3
CR(〈D, δi &onl

Au
δs〉) = CR(〈D, δi & mpsonl(δ

s, σ)〉).
While δi &onl

Au
δs and mpsonl(δ

s, σ) have the same com-
plete runs, they differ in their set of partial runs. In gen-
eral, RR(〈D, δi &onl

Au
δs〉) 6= GR(〈D, δi &onl

Au
δs〉), i.e.,

the program obtained using the online supervision operator is
not necessarily non-blocking. This contrasts mpsonl(δ

s, σ),
which is guaranteed to be non-blocking (Theorem 1).
Example 4 Suppose we have the agent program:

δi6 = (A | [B;C; (U1 | U2;D)])

where all actions except U1 and U2 are ordinary and control-
lable. Moreover, assume the supervision specification is:

δs6 = (πa.a 6= D?; a)∗

i.e. any action except D can be performed. The online
MPS for this agent is simply set({A}), since CR(〈D, δs6〉) =
{A, [B,C,U1]} and set({[B,C,U1]}) is not controllable
wrt δi6. However, under online supervised execution, the
agent may execute the action B. We have 〈δi6&oln

Au
δs6, ε〉 →B

〈δ′6&onl
Au
δs6, B〉 where δ′6 is what remains from δi6 after exe-

cutingB. The resulting program is not final in do(B,S0), yet
there is no transition from this state, as the action C could be
followed by the uncontrollable action U2 and it is not pos-
sible to ensure successful completion of the process, as the
action D is not allowed. Thus, one must do lookahead search
over online executions of δi6 &onl

Au
δs6 to obtain good/complete

runs. We propose such a search/lookahead construct next.

6 Search Over a Controllable Process
When we have a specification/process δs that is (online) con-
trollable wrt an agent 〈D, δi〉 (e.g. δi &onl

Au
δs), for any choice

of uncontrollable action that is on a good run of δi, it is al-
ways possible to find a way to continue executing δs until
the process successfully completes. We define a search con-
struct2 that makes an arbitrary choice of action that is on a
good run of δi when the action is not known to be control-
lable, while still only performing actions that are on a good
run of δs otherwise. We call this construct weak online search
Σw

onl(δ
s, δi) and define it (metatheoretically) as: 3

〈Σw
onl(δ

s, δi),~a〉 →a 〈Σw
onl(δ

s′ , δi
′
),~aa〉

if and only if
〈δs,~a〉 →a 〈δs

′
,~aa〉 and 〈δi,~a〉 →a 〈δi

′
,~aa〉 and

if D ∪ Executable(~a, S0)} |= ¬Au(a, do(~a, S0))

then ~aa ∈ GR(〈D, [~aa; δs
′
]〉)

else ~aa ∈ GR(〈D, [~aa; δi
′
]〉)

The final configurations are extended as follows:

(〈Σw
onl(δ

s, δi),~a〉)X iff (〈δs,~a〉)X and (〈δi,~a〉)X

It is easy to show that:

Theorem 4 If 〈D, δs〉 and 〈D, δi〉 are online SD, than so is
〈D,Σw

onl(δ
s, δi)〉.

Now, we can show that the weak online search construct
has many nice properties when the process is controllable:

Theorem 5 Suppose that we have an agent 〈D, δi〉, and a su-
pervision specification δs which are online SD. Suppose also
that δs is online controllable with respect to 〈D, δi〉, and that
CR(〈D, δs〉) ⊆ CR(〈D, δi〉). Then we have that:

1. CR(〈D,Σw
onl(δ

s, δi)〉) = CR(〈D, δs〉), i.e. the com-
plete runs of Σw

onl(δ
s, δi) are the complete runs of δs.

2. If CR(〈D, δs〉) 6= ∅, then RR(〈D,Σw
onl(δ

s, δi)〉) =
GR(〈D, δs〉), i.e., the partial runs of Σw

onl(δ
s, δi) are

the good runs of δs.

3. If CR(〈D, δs〉) 6= ∅, then RR(〈D,Σw
onl(δ

s, δi)〉) =
GR(〈D,Σw

onl(δ
s, δi)〉), i.e., partial runs must be good

runs, and the resulting program is “non blocking”.

It is also easy to show that none of these properties hold for
arbitrary non-controllable processes.

Now we can show that if we apply this weak lookahead
search to δi &onl

Au
δs, we obtain a program that has the same

partial runs as mpsonl(δ
s, σ) and is thus non-blocking:

2In IndiGolog a simple type of search is provided that only al-
lows a transition if the remaining program can be executed to reach a
final state [De Giacomo and Levesque, 1999]. However, this search
does not deal with sensing and online executions.

3Since δi can include exogenous actions, in general, executions
of the process could actually perform exogenous actions that are not
on a good run of δi. However, in this paper we are interested in the
case where the exogenous actions are mainly sensor reports and ex-
ternal requests (rather than the actions of an adversary) and assume
that this won’t occur. Handling adversarial nondeterminism in δi is
left for future work.

Theorem 6
RR(〈D,Σw

onl(δ
i &onl

Au
δs, δi)〉) =

RR(〈D, δi & mpsonl(δ
s, σ)〉).

If we apply the weak online search construct over
δi6 &onl

Au
δs6 in Example 4, we no longer have an online transi-

tion involving action B; the only possible online transition
is 〈Σw

onl(δ
i
6&onl

Au
δs6, δ

i
6), ε〉 →A 〈Σw

onl(nil &onl
Au
δs6, nil), A〉

where action A is performed, after which we have
(〈Σw

onl(nil &onl
Au

δs6, nil), A〉)X.

7 Discussion
A popular approach to automated service composition [McIl-
raith and Son, 2002; Sohrabi et al., 2006] customizes a
generic ConGolog process based on the user’s constraints.
[Sardiña and De Giacomo, 2009] on the other hand, synthe-
sizes a controller that orchestrates the concurrent execution of
library of ConGolog programs to realize a target program not
in the library. However, they assume complete information on
the initial situation, and their controller is not maximally per-
missive. In related work, [De Giacomo et al., 2013b] synthe-
size a controller generator that represents all possible compo-
sitions of the target behavior and may adapt reactively based
on runtime feedback. In [Yadav et al., 2013], optimal realiza-
tion of the target behavior (in the presence of uncontrollable
exogenous events) is considered when its full realization is
not possible. [Alechina et al., 2015] regulates multiagent sys-
tems using regimented norms. A transition system describes
the behavior of a (multi-) agent system and a guard function
can enable/disable options that (could) violate norms after a
system history (possibly using bounded lookahead). Finally,
the approach in [Aucher, 2014] reformulates the results of
supervisory control theory in terms of model checking prob-
lems in an epistemic temporal logic. While these approaches
model behaviors as (nondeterministic) finite state transition
systems, our approach enables users to express the system
model and the specifications in a high-level expressive lan-
guage. Moreover, due to its first-order logic foundations, it
can handle infinite object domains and infinite states.

In this paper we have developed an account of supervision
for agents that execute online and can acquire new knowl-
edge as they operate. The framework uses a truely first-order
representation of states and allows for an infinite object do-
main and infinite states. Proofs and examples of using on-
line agent supervision to customize a travel planner agent are
presented in [Banihashemi et al., 2016a]. If the object do-
main is finite, then finite-state techniques developed for dis-
crete events systems [Wonham and Ramadge, 1987] can be
adapted to synthesize a program that characterizes the online
MPS. It should also be possible to effectively synthesize su-
pervisors for agents that use bounded action theories [De Gia-
como et al., 2013a; 2014]; verification of temporal properties
over such agents is known to be decidable.

Acknowledgments
We acknowledge the support of Sapienza 2015 project “Im-
mersive Cognitive Environments” and the National Sicience
and Engineering Research Council of Canada.

References
[Alechina et al., 2015] Natasha Alechina, Nils Bulling, Mehdi Das-

tani, and Brian Logan. Practical run-time norm enforcement
with bounded lookahead. In Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems, pages 443–451. ACM, 2015.

[Aucher, 2014] Guillaume Aucher. Supervisory control theory in
epistemic temporal logic. In International conference on Au-
tonomous Agents and Multi-Agent Systems. IFAAMAS/ACM,
2014.

[Banihashemi et al., 2016a] Bita Banihashemi, Giuseppe De Gia-
como, and Yves Lespérance. Online agent supervision in the
situation calculus - Extended version. Technical Report EECS-
2016-02, York University, 2016.

[Banihashemi et al., 2016b] Bita Banihashemi, Giuseppe De Gia-
como, and Yves Lespérance. Online situation-determined agents
and their supervision. In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and Rea-
soning. AAAI, 2016.

[Cassandras and Lafortune, 2008] C. G. Cassandras and S. Lafor-
tune. Introduction to Discrete Event Systems, Second Edition.
Springer, 2008.

[De Giacomo and Levesque, 1999] Giuseppe De Giacomo and
Hector J. Levesque. An incremental interpreter for high-level
programs with sensing. In Logical Foundations for Cognitive
Agents: Contributions in Honor of Ray Reiter, pages 86–102.
Springer Berlin Heidelberg, 1999.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a concur-
rent programming language based on the situation calculus.
Artificial Intelligence, 121(1–2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus based
programs for representing and reasoning about game structures.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Conference. AAAI
Press, 2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Christian J. Muise. On supervising agents
in situation-determined ConGolog. In International Confer-
ence on Autonomous Agents and Multiagent Systems, pages
1031–1038. IFAAMAS, 2012.

[De Giacomo et al., 2013a] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded epistemic situa-
tion calculus theories. In IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial Intelligence.
IJCAI/AAAI, 2013.

[De Giacomo et al., 2013b] Giuseppe De Giacomo, Fabio Patrizi,
and Sebastian Sardina. Automatic behavior composition synthe-
sis. Artificial Intelligence, 196:106–142, 2013.

[De Giacomo et al., 2014] Giuseppe De Giacomo, Yves
Lespérance, Fabio Patrizi, and Stavros Vassos. LTL verifi-
cation of online executions with sensing in bounded situation
calculus. In ECAI 2014 - 21st European Conference on Artificial
Intelligence, volume 263 of Frontiers in Artificial Intelligence
and Applications, pages 369–374. IOS Press, 2014.

[Fritz and McIlraith, 2006] Christian Fritz and Sheila A. McIl-
raith. Decision-theoretic Golog with qualitative preferences.
In Proceedings, Tenth International Conference on Principles

of Knowledge Representation and Reasoning, pages 153–163.
AAAI Press, 2006.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice. Morgan
Kaufmann/Elsevier, San Francisco, CA, USA, 2004.

[Lespérance et al., 2008] Yves Lespérance, Giuseppe De Giacomo,
and Atalay Nafi Ozgovde. A model of contingent planning for
agent programming languages. In 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages
477–484. IFAAMAS, 2008.

[Liaskos et al., 2012] Sotirios Liaskos, Shakil M. Khan, Marin
Litoiu, Marina Daoud Jungblut, Vyacheslav Rogozhkin, and
John Mylopoulos. Behavioral adaptation of information systems
through goal models. Information Systems, 37(8):767–783, 2012.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes. Some
Philosophical Problems From the StandPoint of Artificial Intelli-
gence. Machine Intelligence, 4:463–502, 1969.

[McIlraith and Son, 2002] Sheila A. McIlraith and Tran Cao Son.
Adapting Golog for composition of semantic web services. In
Proceedings of the Eights International Conference on Principles
and Knowledge Representation and Reasoning, pages 482–496.
Morgan Kaufmann, 2002.

[Reiter, 2001] Ray Reiter. Knowledge in Action. Logical Founda-
tions for Specifying and Implementing Dynamical Systems. The
MIT Press, 2001.

[Sardiña and De Giacomo, 2009] Sebastian Sardiña and Giuseppe
De Giacomo. Composition of ConGolog programs. In IJCAI
2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pages 904–910, 2009.

[Sardiña et al., 2004] Sebastian Sardiña, Giuseppe De Giacomo,
Yves Lespérance, and Hector J. Levesque. On the semantics of
deliberation in Indigolog - from theory to implementation. Ann.
Math. Artif. Intell., 41(2-4):259–299, 2004.

[Sohrabi et al., 2006] Shirin Sohrabi, Nataliya Prokoshyna, and
Sheila A. McIlraith. Web service composition via generic pro-
cedures and customizing user preferences. In Proceedings of the
5th International Semantic Web Conference (ISWC-06), volume
4273, pages 597–611. Springer, 2006.

[Wonham and Ramadge, 1987] WM Wonham and PJ Ramadge. On
the supremal controllable sub-language of a given language.
SIAM Journal on Control and Optimization, 25(3):637–659,
1987.

[Wonham, 2014] WM Wonham. Supervisory Control of Discrete-
Event Systems. University of Toronto, 2014 edition, 2014.

[Yadav et al., 2013] Nitin Yadav, Paolo Felli, Giuseppe De Gia-
como, and Sebastian Sardina. Supremal realizability of behav-
iors with uncontrollable exogenous events. In IJCAI 2013, Pro-
ceedings of the 23rd International Joint Conference on Artificial
Intelligence, pages 1176–1182. IJCAI/AAAI, 2013.

