Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

A SITUATION CALCULUSAPPROACH TO
MODELING AND PROGRAMMING AGENTS

1 INTRODUCTION

The notion of computational agents has become very fashionable lately [24, 32].
Building such agents seems to be a good way of congenialy providing services
to usersin networked computer systems. Typica applicationsare information re-
trieval over the internet, automation of common user activities, smart user inter-
faces, integration of heterogenous software toolss, intel ligent roboti cs, business and
industrial process modeling, etc. Theterm “agent” isused in many different ways,
so let ustry to clarify what we mean by it. We take an agent to be any active entity
whose behavior is usefully described through mental notions such as knowledge,
goals, ahilities, commitments, etc. (Thisis pretty much the standard usage in arti-
ficia intelligence, in contrast to the common view of agents as scriptsthat can ex-
ecute on remote machines). Moreover, we will focus on the approach to building
applicationsthat involves designing a system as a collection of interacting agents.

Agent programming [30] can be viewed as a generalization of object-oriented
programming. But the notion of an agent is much more complex than that of an
object. Because of this, it is crucid that tools for modeling and designing agents
be based on solid theoretical foundations. For some time now, we have been work-
ing on alogical theory of agency and on programming tools based on it. The the-
oretica framework includes a formalization of action that incorporates a solution
to the frame problem, thus relieving the designer from having to specify what as-
pects of theworld don’'t change when an action is performed. The framework aso
includes a model of what agents know and how they can acquire information by
doing knowledge-producing actions, such as sensing the environment with vision
or sonar, or interacting with users or other agents. And finally, we have an account
of complex actionsand processes that inheritsthe solution to the frame problemfor
simple actions. The framework a so has attractive computational properties.

The set of complex action expressions defined can be viewed as a programming
languagefor agents. It can be used to model the behavior of aset of agentsand/or to
actually implement them. Given adeclarative specification of theagents' primitive
actions, the designer/model er can specify complex behaviorsfor the agents proce-
durally in the programming language. The behavior specification can be in terms

2 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

of very high-level actions and can refer to conditionsin effect in the environment
— the interpreter automatically maintains a world model based on the specifica
tions. The approach focuses on high-level programming rather than planning. But
the programs can be nondeterministic and search for appropriate actions. When an
implementation of the primitiveactionsis provided, the programs can be executed
inarea environment; otherwise, a simulated execution is still possible.

Most of our work so far on the theory and implementation of agents has been
concerned with single agents. Here, we extend our framework to deal with multi-
agent systems. The treatment proposed is somewhat preliminary and we identify
various problems that need to be solved before we have a completely satisfactory
theoretical account and implementation.

The approach will be presented with the help of an example — a multi-agent
system that helps users schedule meetings. Each user has a “schedule manager”
agent that knows something about his schedule. When someone wants to organize
a meeting, he creates a new “meeting organizer” agent who contacts the partici-
pants schedule managers and tries to set up the meeting. The example is a very
simplified version of such asystem. To be truly useful, a schedule manager agent
should know the user’s preferences about meeting times, when and how it should
interact with the user in response to requests from meeting organizer agents, per-
haps the hierarchical structure of the office, etc. Meeting organizer agents should
have robust scheduling and negotiating strategies. Our formalization of the appli-
cation includes asimple generic agent communi cation module that can be used for
other applications. Each agent hasaset of messageswaitingfor it and abstract com-
munication acts are defined (e.g., INFORM, REQUEST, QUERY WHETHER, €tc.).

In the next section, we outline our theory of simple actions. Then, we discuss
how knowledgeand knowl edge-producingactions can bemodel ed. Next, wepresent
our account of complex actions, and explain how it can be viewed as an agent pro-
gramming language. Section 6 develops a set of simpletoolsfor agent communi-
cation and section 7 compl etes our specification of the meeting scheduling applica-
tion. In the following section, we discuss various architectural issues that arisein
implementing our framework, describe the status of theimplementation, and sketch
what experimental applications have been implemented. We conclude by summa:
rizing the main features of our approach and discussing the problems that remain.

2 THE SITUATION CALCULUSAND THE FRAME PROBLEM

The situation calculus [17] is afirst-order language (with some second-order fea
tures) for representing dynamically changing worlds. All changes to theworld are
the result of named actions. A possibleworld history, which issimply a sequence
of actions, is represented by afirst order term called a situation. The constant .S
is used to denote the initial situation, namely that situation in which no actions
haveyet occurred. Thereisadistinguished binary functionsymbol do and theterm

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 3

do(«, s) denotes the situation resulting from action « being performed in situation
s. Actionsmay be parameterized. For example, PUT (agt, #, y) might stand for the
action of agent agt putting object « onobject y, inwhich casedo(PuT(agt, z,), s)
denotes that situation resulting from agt placing # on y when the worldisin situ-
ation s. Notice that in the situation cal culus, actions are denoted by function sym-
bols, and situations (world histories) are adso first order terms. For example,

do(PUTDOWN(AGT, A), do(WALK(AGT, P), do(PICKUP(AGT, A), Sp)))
is a situation denoting the world history consisting of the sequence of actions
[PICKUP(AGT, A), WALK(AGT, P), PUTDOWN(AGT, A)].

Noticethat the sequence of actionsin ahistory, inthe order in which they occur, is
obtai ned from a situation term by reading off its action instances from right to | eft.

Relations whose truth values vary from situation to situation, called relational
fluents, are denoted by predicate symbols taking a situation term as their last argu-
ment. For example, HOLDING(agt, x, s) might mean that agt isholdingobject « in
situation s. Functionswhose denotationsvary from situationto situationare called
functional fluents. They are denoted by function symbols with an extra argument
taking a situation term, asin POS(ayt, s), i.€, the position of agt in situation s.

An action is specified by first stating the conditions under which it can be per-
formed by means of a precondition axiom of the following form:

Poss(a(Z), s) < mo(Z,s)

Here, 7, (Z, s) isaformulaspecifying the preconditions for action «(Z). For ex-
ample, the precondition axiom for the action ADDTOSCHED might be:

Poss(ADDTOSCHED (agt, user, period, activity, organizer), s) <
agt = SCHEDULEMANAGER(user) A
—Jactivity’ , organizer’

SCHEDULE(user, period, activity', organizer', s)

D)

Thissaysthat itispossiblefor agent agt to add an activity to user’s schedulein sit-
uation s iff agt isuser’s schedule manager and thereis nothingon user’sschedule
for that periodin s.

Secondly, one must specify how the action affects the state of the world with
effect axioms. For example,

Poss(ADDTOSCHED (agt, user, period, activity, organizer),s) =
SCHEDULE(user, period, activity, organizer,
do(ADDTOSCHED (agt, user, period, activity, organizer), s))

Effect axioms providethe “causa laws’ for the domain of application.

4 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

The above axioms are not sufficient if one wants to reason about change. Itis
usually necessary to add frame axiomsthat specify when fluents remain unchanged
by actions; for example,

POSS(RAISESALARY (company, usery, amount), s) A
SCHEDULE(userz,per, activ, org, 5) =
SCHEDULE(userz,per, activ, org,

do(RAISESALARY (company, user, amount), s))

The frame problem arises because the number of these frame axiomsisvery large,
in generd, of theorder of 2 x A x F, where A isthe number of actions and F
the number of fluents.

Our approach incorporates the solution to the frame problem described in [20].
First, for each fluent I, one can collect dl effects axiomsinvolving #' to produce
two general effect axioms of the followingform:

Poss(a, s) A V3 (Z,a,s) = F(Z,do(a, s))

Poss(a, s) A v (¥, a,s) = —F (¥, do(a, s))

Here~# (%, a, s) isaformuladescribing under what conditionsdoing the action «
insituation s leadsthefluent F'(£) to become truein the successor situationdo(a, s)
and similarly v (Z, a, s) is aformula describing the conditions under which per-
forming action a in situation s resultsinthefluent F'(£) becoming falsein situation
do(«, s). For example, thefollowingmight bethe general effect axiomsfor theflu-
ent SCHEDULE:

@ Poss(a, s) A Jagt a = ADDTOSCHED (agt, user, per, activ, org)
= SCHEDULE(user, per, activ, org, do(a, s))

3) Poss(a, s) A Jagt « = RMVFROM SCHED (agt, user, per)
= ' SCHEDULE(user, per, activ, org, do(a, s))

The solution to the frame problem rests on a completeness assumption. This
assumption is that the general effect axioms characterize al the conditions under
which action a can lead to afluent F'(£)’'s becoming true (respectively, false) in
the successor situation. Therefore, if action a is possible and F'(Z)’s truth value
changes from falseto true as aresult of doing a, then~3 (7, a, s) must betrue and
similarly for a change from true to false. Additionaly, unique name axioms are
added for actionsand situations. From the general effect axiomsand the complete-
ness assumption, one can derive asuccessor state axiom of the following form for
the fluent F":

Poss(a, s) = [F'(#,do(a, s)) <
7}‘—(5’&5) N (F(f’ 5) A —ryE(f’a’s))]

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 5

By quantifying over actions, this single axiom provides a parsimonious solution to
the frame problem. Similar successor state axioms can be written for functional
fluents.!

Applying thisto our example, from the general effect axioms2 and 3 we obtain
the following successor state axiom for SCHEDULE:

Poss(a, s) =
[SCHEDULE(user, per, activ, org,do(a, s)) <
4 Jdagt a = ADDTOSCHED (agt, user, per, activ, org)
V SCHEDULE(user, per, activ, org, s) A
—Jagt « = RMVFROM SCHED(agt, user, per)]

i.e., an activity ison user’'s schedule following the performance of action « in sit-
uation s iff either the action is some agent adding the activity to user’s sched-
ule, or the activity was already on user’s schedule in s and the action is not some
agent removing the activity from user’s schedule. Now note for example that if
SCHEDULE(u, p, ¢, 0, Sp), then by the uniquenames axiomsfor actions, it a so fol-
lowsthat SCHEDULE(«w, p, i, 0, JO(RAISESALARY (¢, v’, d), Sp)).

In multi-agent domains, it isoften useful to refer to the agent of an action a. We
usethetermagent(a) for this. Werequirethat for each primitiveaction one provide
an axiom specifying who its agent is, for example:

agent(ADDTOSCHED (agt, user, per, activ, org)) = agt

In general, a particular domain of application will be specified by the union of
the following sets of axioms:

e Axiomsdescribing theinitial situation, Sp.

¢ Action precondition axioms, one for each primitiveaction.
e Successor state axioms, one for each fluent.

¢ Unigue names axioms for the primitive actions.

o Axioms specifying the agent of each primitive action.

¢ Some foundational, domain independent axioms.

The latter foundational axiomsinclude unique names axiomsfor situations, and an
induction axiom. They a so introducethe relation < over situations. s < s’ holds
iff s’ isthe result of some sequence of actions being performed in s, where each
action in the sequence ispossiblein the situation in which it is performed; s < s’

1in the above, we have assumed that there were no state constraints which might contribute rami-
fications, i.e., indirect effects of actions. In [15], the approach presented is extended to deal with state
constraints by compiling their effects into the successor state axioms.

6 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

standsfor s < s’ V s = s’. Since the foundational axioms play no specia role
in this paper, we omit them. For details, and for some of their metamathematical
properties, see Lin and Reiter [15] and Reiter [21].

For domaintheories of thiskind, thereare very clean characterizationsof various
reasoning tasks, for instance planning [7]:

Classical Planning: Given adomain theory Axioms as above, and a
goa formula¢(s) withasinglefree-variable s, the planning task isto
find a sequence of actions @ such that:

Axioms = Sy < do(d, Sp) A ¢(do(d, So))
wheredo([ay, . . ., a,], s) isan abbreviation for

do(an, do(an_1, . .., do(ay, 5) ..).

In other words, the task is to find a sequence of actions that is executable (each
actionisexecuted in acontext where its preconditionis satisfied) and that achieves
thegoal (thegoal formula¢ holdsinthefina situation that resultsfrom performing
theactionsin sequence). If you have aparticular planning algorithm, you can show
that it is sound by proving that it only returns answers that satisfy the specification
given above.

3 KNOWLEDGE AND KNOWLEDGE PRODUCING ACTIONS

Knowledge can be represented in the situation calculus by adapting the possible
world model of modal logic (as first done by Moore [18]). The ideais to model
someone' s uncertai nty (lack of knowledge) about what istrueusing the set of situa-
tionshe/she considers possible. Weintroduceafluent K, whereK(agt, s’, s) means
that in situation s, the agent agt thinkstheworld could bein situation s’ (in modal
logic terms, K is the knowledge accessibility relation). Then we introduce the ab-
breviation:
Know(agt, ¢,s) Vs’ (K(agt, s',s) = ¢(s')).

Thus, agt knowsin s that ¢ holdsiff ¢ holdsin al the situations s’ that agt con-
siders possiblein s.?

With thisin place, we can then consider knowledge-producing actions (as they
occur in perception or communication). Such actions affect the mental state of the

2Inthis, ¢ standsfor asituation calculusformulawith all situation argumentssuppressed; ¢ (s') will
denote the formula obtained by restoring situation variable s’ to all fluents appearingin ¢. For clarity,
we sometimes use the special constant now to represent the situation bound by the enclosing K now; so
Know(agt, ¢(now), s) standsfor Vs’ (K(agt, s, s) = #(s)).

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 7

agent rather than the state of the externa world. For example, consider the action
of an agent sensing what messages he has with the following effect axiom:

POsS(SENSEM SGS(agt), s) =
KWhether (agt, MSGRCVD(agt, sender, msgld, msg, NOW),
do(SENSEM SGS(agt), s))

This says that after performing the action SENSEM SGS, the agent agt knows ex-
actly which messages it has received and not yet processed, who sent them, and
what their message |Ds are (KWhether (agt, ¢, s) is an abbreviation for the for-
mulaKnow(agt, ¢, s) V Know(agt, ¢, s)).

Scherl and Levesgue [27] have shown how one can generdlize the solution to
the frame problem of the previous section to deal with knowledge and knowledge-
producing actions. But they only consider domains where thereis a single agent.
For multi-agents settings, their solution can used with minimal changes provided
weassumethat al actionsarepublic, i.e., that agents are aware of every action that
happens. For instance, if we make thisassumption and the only knowledgeproduc-
ing action in the domain is SENSEM SGS, then we can use the following successor
state axiom for the knowledge fluent K:

Poss(a, s) =
[K(knower, s do(a, s)) <
s’ (K(knower, s’, s) A s' = do(a, s') A Poss(a, s') A
[@ = SENSEM SGS(knower) =
Vsndr, mId, m(MSGRCVD(knower, sndr, mId, m,s') <
MSGRCVD (knower, sndr, mId, m, s))])]

Let'slook at what this says. There are two cases. If the action a is not a knowl-
edge producing action performed by the agent under consideration knower (i.e.,
a # SENSEMSGS(knower)), then the axiom says that in the resulting situation
do(a, s), knower considers possible any situation s’ that is the result of « being
performedinasituation s’ that knower used to consider possible beforethe action.
Thus, knower only acquires the knowledge that the action « has been performed.
If on the other hand, the action « is a knowledge producing action performed by
knower (i.e, a« = SENSEMSGS(knower)), then we get that in the resulting sit-
uation do(a, s), knower considers possible any situation s” that is the result of a
being performed in asituation s’ that knower used to consider possible before the
action, and where the fluent MSGRcvD(knower, . .) holds exactly for the mes-
sagesfor which it holdsinthe“real” situations. Thus after doing SENSEM SGS, an
agent knows that it has performed this action and knows exactly which messages
it has received and not yet processed. Thiscan be extended to an arbitrary number
of knowledge-producing actionsin a straightforward way.

However, the assumption that al actionsare publicistoo strong for many multi-
agent domains; agents need not be aware of the actions of other agents (exogenous

8 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

actions). Another workable approach isto be very “conservative” and have agents
allow for the occurrence of an arbitrary number of exogenous actionsat every step.
For our meeting scheduling application, this yields the following successor state
axiom:

Poss(a, s) =
[K(knower, s, do(a, s)) &
3s' (K(knower, s, s) A
(agent(a) # knower = ExoOnly(knower, s, s")) A
(agent(a) = knower = Is*(ExoOnly(knower, s, s*) A
s = do(a, s*) A Poss(a, s*) A
[a = SENSEMSGS(knower) =
Vsndr, mId, m(MsGRcvD(knower, sndr, mId,m,s*) &
MSGRcvVD(knower, sndr, mId, m, s))])))]
where ExoOnly(agt, s, s") o< A
Vs*Va(s < do(a,s*) < s’ = agent(a) # agt)

Let usexplain how thisworks. When an action « is performed by some agent other
than the knower, the specification saysthat in theresulting situation, knower con-
siders possible any situation that is the result of any nhumber of exogenous actions
occurringinasituationthat used to be considered possible; thismeansthat knower
allows for the occurrence of an arbitrary number of exogenous actions, and thus
loses any knowledgeit may have had about fluentsthat could be affected by exoge-
nous actions. When « is a non-knowledge-producing action (eg.,
ADDTOSCHED (knower, u, p, a, o)) performed by knower, the specification states
that in the resulting situation, knower considers possible any situation that isthe
result of itsdoing a preceded by any number of exogenous actions occurring in a
Situation that used to be considered possible; thus, knower acquiresthe knowledge
that it hasjust performed a, but loses any knowledge it may have had about fluents
that could be affected by exogenous actions and are not reset by «. Finaly, when
a isaknowledge-producing action (i.e., SENSEM SGS) performed by knower, we
get the same as above, plusthefact that the agent acquires knowledge of the values
of the fluents associated with the sensing action, in this case what messages it has
received and not yet processed.

In general, allowing for the occurrence of an arbitrary number of exogenous ac-
tionsat every step aswe do here would probably leave agents with too littleknow!-
edge. But our meeting scheduling domain is neatly partitioned: a user’'s schedule
can only be updated by that user’s schedule manager agent. Thus, schedule man-
ager agents always know what their user’s schedul e (as recorded) is. In other cir-
cumstances, it may be appropriateto assumethat actionsareall public, as discussed
earlier. In other cases, it seems preferable for agents to assume that no exogenous
actions occur and to revise their beliefs when an inconsistency isdiscovered; afor-
malization of this approach is being investigated.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 9
4 COMPLEX ACTIONSAND GOLOG

A very genera and flexible approach to designing agents involves using a plan-
ner. When the agent gets a goal, the planner is invoked to generate a plan that
achieves the goal, and then the plan is executed. A problem with this approach is
that plan synthesisis often computationally infeasible in complex domains, espe-
cialy when the agent does not have compl ete knowledge and there are exogenous
actions. An aternative approach that is showing promiseisthat of high-level pro-
gram execution [14]. Theides, roughly, isthat instead of searching for asequence
of actionsthat would take the agent from aninitia stateto some goal state, the task
istofind a sequence of actionsthat constitutesalegal execution of some high-level
non-deterministic program. Asin planning, to find such a sequence it is necessary
to reason about the preconditions and effects of the actions within the body of the
program. However, if the program happens to be amost deterministic, very little
searching is required; as more and more non-determinism is included, the search
task beginsto resembletraditiona planning. Thus, in formulating ahigh-level pro-
gram, the user getsto control the search effort required. The hope is that in many
domains, what an agent needsto do can be conveniently expressed using a suitably
rich high-level programming language.®

Our proposd for such alanguage is Golog[14], alogic-programming language
whose primitive actions are those of a background domain theory of the form de-
scribed earlier. 1t includes the following constructs:

a, primitiveaction
6?2, wait for acondition®
(o1;02), sequence
(o1] 02), nondetermi ni stic choice between actions
TT.o, nondeterministic choice of arguments
o*, nondeterministiciteration
if ¢ then oy else oy, conditional
while ¢ do o, loop
proc 3(%) o, procedure definition®

Here's a simple example to illustrate some of the more unusua features of the

3Thisisnot to imply that the planning approach or belief-desire-intention modelsof agentsare never
useful, quite the opposite. Later on, we will seefor instance, that modeling goals would be quite use-
ful in dealing with communication. But the fact remains that these approaches are computationally
problematic.

4Because there are no exogenousactions or concurrent processes in Golog, waiting for ¢ amounts
to testing that ¢ holdsin the current situation.

5SFor space reasons, we ignore these here.

10 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

language:

proc REMOVEABLOCK
7b [ONTABLE(b)7; PICKUP(b); PUTAWAY (b)]
endProc;
REMOVEABLOCK";
—3block ONTABLE(block)?

Here we first define a procedure to remove a block from the table using the non-
deterministic operator 7. 7z [o(«)] means nondeterministically pick an individua
z, and for that =, perform the program o (x). Thewait action ONTABLE(6)? suc-
ceeds only if theindividual chosen, b, isablock that is on thetable. The main part
of the program uses the nondeterministic iteration operator; it simply saysto exe-
cute REMOVEABLOCK zero or more timesuntil thetableisclear.

Initsmost basic form, the high-level program execution task isa special case of
the planning task discussed earlier:

Program Execution: Given adomain theory Axioms as above, and a
program o, the execution task is to find a sequence of actions @ such
that:

Axioms ': DO(O’, So, dO(Ei, SO))

whereDo(o, s, s') isan abbreviation for aformulaof thesituation cal-
culuswhich says that program o when executed starting in situation s
has s’ asalegal terminating situation.

In[14], asimpleinductivedefinition of Do was presented, containing rules such
as.

Do([o1; 03], 5,s') £3s". Do(o1,5,5") ADo(aa, 5", s)
Do([o1 | o2], s, 8") « Do(oy,s,s') V Do(oa, s, 8)

one for each construct in thelanguage. Thiskind of semanticsis sometimes called
evaluation semantics [8] since it is based on the complete evaluation of the pro-
gram.

It is difficult to extend this kind of semantics to deal with concurrent actions.
Since these are required in multi-agent domains, a more refined kind of semantics
was developedin[2]. Thiskind of semantics called computational semantics[8], is
based on“singlesteps’ of computation, or transitions®. A step hereiseither aprim-
itive action or testing whether a condition holdsin the current situation. Two spe-
cia predicatesareintroduced, Final and Trans, whereFinal (o, s) isintendedto say
that program o may legally terminatein situation s, and where Trans(a, s, ¢/, s’} is
intended to say that program o in situation s may legally execute one step, ending
in situation s’ with program ¢’ remaining.

6Both typesof semanticsbelong to the family of structural operational semanticsintroducedin [19)].

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 11

Final and Trans are characterized by a set of equivalence axioms, each depend-
ing on the structure of the first argument. These quantify over programs and so,
unlike in [14], it is necessary to encode Golog programs as first-order terms, in-
cluding introducing constants denoting variables, and so on. Asshown in [4], this
is laborious but quite straightforward’. We omit all such details here and simply
use programs within formulas as if they were already first-order terms.

The equivalence axioms for Final are as follows (universaly closing on s):®

Final(nil, s) & TRUE
Final(a, s) & FALSE
Final(¢?, s) < FALSE
Final([o1; 02], s) < Final(o1, s) A Final(oz, s)
Final([o1 | 02],s) & Final(o1, s) v Final(o2, s)
Final(rz.0, s) & 3z.Final(s, s)
Final(¢*, s) & TRUE
Final(if ¢ then o1 else oz, s) &

@(s) AFinal(o1,s) vV —¢(s) A Final(o2, s)
Final(while¢ doo, s) & ¢(s) AFinal(s, s) V —¢(s)

The equivalence axioms for Trans are as follows (universally closingon s, 4, s'):

Trang(nil, 5,4, s") & FALSE

Trang(a, s,d,s') & Poss(a, s) A § = nil A s’ = do(a, 5)
Trang(¢?,s,4,s') & d(s)Ad=nilAs' =5
Trang([o1; 02], 5,4, s") &

Final(o1, s)ATrang(oz, 5,4, s')v38'.8 = (8';02) ATrang o1, 5,6, s)
Trang([o1 | 02], 5,8, s") & Trang(o1, 5,4, s') Vv Trang(o2, s, 4, s')
Trany(nz.0,5,4,s') & Jz.Trany(o, s, 6, s')

Trang(s*,s,d,s') & 38'.6 = (8';0*) A Trang(o, 5,8",5)
Trang(if ¢ then o1 else s, 5,4, s") &

d(s) ATrang(o1,s,8,s") V —é(s) ATrang oz, s, 4, s")
Trangwhile ¢ do s, 5,4, s') &

d(s) A38'. 5 = (§'; whileg do o) A Trang(s, s,4', s")

With Final and Transin place, Do may be defined as:
Do(a, 5, s') £ 35.Trans® (0,5,8,5") ANFinal(é, s')

where Trans® isthe transitive closure of Trans, defined as the (second-order) situ-
ation calculus formula

Trans* (o, s, o', s') EVT.. = T(o,s,0',5")]

where the élipsis standsfor:

"Observethat Final and Trans cannot occur in tests, hence self-referenceis disallowed.
8]t is convenient to include a special “empty” program nil.

12 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

Vs. T(o,s,0,8) A
Vs, 8, s',6",s". T(0,s,8, ") ATrandé’,s',6",s") = T(o,s,8",5").

In other words, Do(e, s, ') holdsiff it ispossibleto repeatedly single-step the pro-
gram o, obtaining a program ¢ and a situation s’ such that § can legdly terminate
ins’. In[4], itis shown that this definition of Do isequivaent to that in [14].

On the surface, Golog looks a lot like a standard procedura programming lan-
guage. Itisindeed a programming language, but one whose execution, like plan-
ning, depends on reasoning about actions. An interpreter for Golog essentialy
searches for a sequence of primitive actions that can be proven to lead to afinal
situation of the program. Thus, acrucia part of aGolog programisthe declarative
part: the precondition axioms, the successor state axioms, and the axioms charac-
terizing the initial situation. A Golog program together with the definition of Do
and some foundational axioms about the situation calculusisaformal logica the-
ory about the possible behaviors of an agent in a given environment.

The declarative part of a Golog program is used by the Golog interpreter intwo
ways. The successor state axiomsand the axioms specifyingtheinitial situationare
used to eval uate the conditionsthat appear inthe program (wait actionsand if/while
conditions) astheprogram isinterpreted. The action preconditionsaxiomsare used
(withthe other axioms) to check whether the next primitiveactionispossiblein the
situation reached so far. Golog programs are often nondeterministic and a failed
precondition or test action causes the interpreter to backtrack and try a different
path through the program. For example, given the program (a; ¢7) | (b;¢), the
Golog interpreter might determine that « ispossiblein theinitial situation Sy, but
upon noticing that ¢ isfalsein do(a, Sp), backtrack and return the final situation
do(e, do(b, Sp)) after confirming that b ispossibleinitialy and that ¢ is possiblein
dO(b, SO) .

Thusin away, the Gologinterpreter isautomatically maintainingamodel of the
world statefor the programmer using theaxioms. If aprogramisgoing to maintain
amodel of itsenvironment, it seems that having it done automatically from declar-
ative specifications is much more convenient and less error prone than having to
program such model updating from scratch. The Golog programmer can work at a
much higher level of abstraction.

And to reiterate the main idea, Golog aims for a middle ground between run-
time planning and explicit programming down to the last detail. It supports search
for appropriate actions through nondeterminism as well as explicit programming.
Thus for example, the program

while 3b ONTABLE(b) do wb. REMOVE(b) endWhile

leaves it to the Golog interpreter to find alega sequence of actionsthat clears the
table.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 13

5 CONCURRENT ACTIONS AND CONGOLOG

To implement multiple agents in a single program, we need concurrent processes.
In[2, 3], an extended version of Golog that incorporates a rich account of concur-
rency isdeveloped. Thisextended languageiscalled ConGolog. Let usnow review
the syntax and semantics of ConGolog (this section is a quasi-verbatim reproduc-
tion of part of [2]). The ConGolog account of concurrency issaid to be ‘rich’ be-
cause it handles:

e concurrent processes with possibly different priorities,
o high-level interrupts,
o arbitrary exogenous actions.

Asiscommonly donein other areas of computer science, concurrent processes are
modeled as interleavings of the primitive actions in the component processes. A
concurrent execution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion. So in fact, there is never more than
one primitiveaction happening at the ssmetime. Asdiscussedin [3, 22], to model
actions that intuitively could occur simultaneoudly, e.g. actions of extended dura
tion, one can use instantaneous start and stop (i.e. clipping) actions, where once
again interleaving is appropriate.

Animportant concept in understanding concurrent execution is that of a process
becoming blocked. If a deterministic process o is executing, and reaches a point
where it is about to do a primitive action « in a situation s but where Poss(a, s)
isfalse (or await action ¢7, where ¢(s) isfase), then the overall execution need
not fail asin Golog. In ConGolog, the current interleaving can continue success-
fully provided that a process other than ¢ executes next. The net effect isthat o is
suspended or blocked, and execution must continue e sewhere.®

The ConGolog language is exactly like Golog except with the following addi-
tional constructs:

(o1]| 02), concurrent execution
(o1)) 02), concurrency with different priorities
al, concurrent iteration
<¢p— o>, interrupt.

(01 || o2) denotes the concurrent execution of the actions oy and o. (o1) 02)
denotes the concurrent execution of the actions ¢; and o5 with o7 having higher
priority than o». Thisrestricts the possible interleavings of the two processes. -
executes only when o, is either done or blocked. The next construct, o, islike

9Just as actionsin Golog are external (e.g. there is no internal variable assignment), in ConGolog,
blocking and unblocking also happen externally, via Poss and wait actions. Internal synchronization
primitives are easily added.

14 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

nondeterministic iteration, but where the instances of are executed concurrently
rather than in sequence. Finally, < ¢ — ¢ > isaninterrupt. It hastwo parts: atrig-
ger condition¢ and abody, . Theideaisthat thebody o will execute some number
of times. If ¢ never becomestrue, o will not executeat al. If theinterrupt gets con-
trol from higher priority processes when ¢ istrue, then o will execute. Once it has
completed its execution, the interrupt is ready to be triggered again. This means
that ahigh priority interrupt can take compl ete control of the execution. For exam-
ple, < TRUE — ringBell > at the highest priority would ring abell and do nothing
else. With interrupts, one can easily write agent programs that can stop whatever
task they are doing to handlevarious concerns asthey arise. They are, dare we say,
more reactive.

Let usnow explain how Final and Transare extended to handl e these constructs.
(Interrupts are handled separately below.) For Final, the extension is straightfor-
ward:

Final([o1 || 02],5) & Final(o1,s) A Final(o2, s)
Final([o1)) 02],5) < Final(o1,s) A Final(o2, s)
Final(sl, s) & TRUE

Observe that the |ast clause says that it is legal to execute the o in ol zero times.
For Trans, we have the following:

Trans([o1 || 02],5,6,s") &
38'.8 = (8" || o2)ATrang o1, 5,68, 8")vé = (o1 || ')ATrang(o2, 5,4', s')
Trang([o1) 02],5,4,s") &
38'.8 = (8") 02) A Trang(o1, 5,8", ') Vv
5= (o1) 8")ATrang(o2, 5,8’, s YA=38", " . Trang(o1, 5,8", s")
TI’aI’ISA(cr"7 5,6,8) & 38.8 = (8| cr") A Trang(s, 5,6, s")

In other words, you single step (o1 || o2) by single stepping either o, or o2 and
leaving the other process unchanged. The (o }) o) construct isidentical, except
that you are only alowed to single step o5 if thereis no legal step for o;.2° This
ensures that o7 will execute as long as it is possible for it to do so. Finaly, you
single step ol by single stepping o, and what is |ft is the remainder of o as well
as ol itsdlf. This alowsan unbounded number of instances of o to be running.

Exogenous actions are primitive actions that may occur without being part of a
user-specified program. It is assumed that in the background theory, the user de-
clares using a predicate Exo which actions can occur exogenously. A special pro-
gram is defined for exogenous events:

Spxo 2 (ra.Exo(a)?;a)”

101t is true, though not immediately obvious, that Trans* remains properly defined even with these
axioms containing negative occurrencesof Trans. See [4] for details.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 15

Executing this program involves performing zero, one, or more nondeterministi-
cally chosen exogenous events. Then, the user’s program is made to run concur-
rently withédgxo:

dpxo ||

This alows exogenous actions whose preconditions are satisfied to occur during
the execution of the user’s program.

Finally, regarding interrupts, it turnsout that these can be explained using other
congtructs of ConGolog:

<¢ = o> Z while Interrupts_running do
if ¢ then o else FALSE?

To see how this works, first assume that the specia fluent Interrupts_running
is dways true. When an interrupt < ¢ — o > gets control, it repeatedly executes
o until ¢ becomes fase, a which point it blocks, releasing control to anyone else
ableto execute. Notethat according to the above definition of Trans, no transition
occurs between the test conditionin a while-loop or an if-then-else and the body.
In effect, if ¢ becomes false, the process blocks right at the beginning of the loop,
until some other action makes ¢ true and resumes the loop. To actually terminate
the loop, one uses a special primitive action stop_interrupts, whose only effect
isto make Interrupts_running fase. Thus, to execute a program o containing
interrupts, one would actually execute the program

{start_interrupts; (o)) stop_interrupts)}

which has the effect of stopping all blocked interrupt loopsin o at the lowest pri-
ority, i.e. when there are no more actionsin o that can be executed.

6 COMMUNICATION IN CONGOLOG

Multi-agent applications usually require some kind of inter-agent communication
facility. A popular choiceisthe KQML communication language [5] and its asso-
ciated tools. However according to Cohen and Levesque[1], the KQML definition
has many deficiencies, in particular the lack of aformal semantics. One of our ob-
jectivesisto show that ConGolog is suitable for various implementation tasks, so
here we define our own simple communication toolkit. The specification can be
viewed as a generic package that can be included into specific applications. We
first specify aset of basic message passing actions; later, some abstract communi-
cation actions are defined in terms of the primitives. Inagiven situation, each agent
istaken to have aset of messages it hasreceived and not yet processed; thisis mod-
eled using the predicate fluent MSGRCVD(agt, sender, msgld, msg, s), meaning
that in situation s, agt has received a message msg with message ID msg/d from
sender (whichit has yet to process). Note that thisismore genera than asimple

16 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

gueue; the agent need not process the messages in the order in which they arrive.
We assume that message | Ds are generated using a global message counter repre-
sented by thefunctiond fluent MSGCTR(s) (it is straightforward to generdize this
to use agent-relative IDs). There are three primitive action types that operate on
these fluents:

e SENDMSG(agt, recipient, msg): agt sends message msg to recipient; the
current val ue of the message counter is used as message 1D and the message
isadded to the set of messages recipient hasreceived and not yet processed;
the vaue of the message counter is also incremented;

e SENSEMSGS(agt): agt senses what messages he has received and not yet
processed; and

o RMVMSG(agt, msgld): agt removes themessage with ID msgId fromhis
set of messages received and not yet processed.

The preconditions of these actions are as follows: RMVMSsG(agt, msgld) ispos-
sihlein s iff agt has received a message with the given ID and not yet processed it
ins:

Poss(RMVMSG(agt, msgld), s) <

Jdsender, msg MSGRCVD(agt, sender, msgld, msg, s).

SENDMSG(agt, rept, msg) and SENSEMSG(agt) are always possible (we leave
out the formal statements).

The effects of these actions are as described above, which yields the following
successor state axioms for the MsGRcvD and MSGCTR fluents:

Poss(a, s) =
[MSGRcvD(agt, sndr, mId, m,do(a, s)) <
dm(a = SENDMSG(sndr, agt, m) A MSGCTR(s) = mlId
V MsSGRcvD(agt, sndr, mlId, m,s) A a # RMVMSG(agt, mId)].

Poss(a, s) =

[MSGCTR(do(a, s)) = n <

Jagt, agt’, m(a = SENDMSG(agt, agt’, m) AMSGCTR(s) = n <1
V MSGCTR(s) = n A —3agt, agt’, m a = SENDMSG(agt, agt’, m)].

Given these primitives, we can now define some useful abstract communication
actions:

proc INFORM (agt, agt’, ¢)
Know(agt, ¢)?7; SENDMSG(agt, agt’,l INFORM (¢)1)
end

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 17

proc INFORMWHETHER (agt, agt’, ¢)
INFORM (agt, agt’,) | INFORM (agt, agt’, —¢)
| INFORM (agt, agt’, "KWhether (agt, ¢))
end

proc REQUEST (agt, agt’, o)
SENDMSG(agt, agt’,l REQUEST (o)1)
end

proc QUERY WHETHER(agt, agt’, ¢)
REQUEST (agt, agt’', INFORMWHETHER(agt’, agt, ¢))
end

Note that the above definitions use quotation.

Wecan show that theINFORM abstract communi cation act behaves as onewould
expect. Let ustake SINCERE(sender, rept, s) as meaning that up to situation s,
every INFORM message sent to rept by sender wastruthfully sent:

SINCERE(sender, rept, s) e
Vs’ [do(SENDM SG(sender, rept, INFORM (4)1),5) < s =
Know(sender, ¢, s')].

Then, we can show that after an agent sends an INFORM (¢) message to someone
and the recipient senses his messages, the recipient will know that at some prior
time the sender knew that ¢, provided that the recipient knowsthat he had no mes-
sages initialy and that the sender has been sincere with him over that period:

Proposition

Know(rept, =3sndr, mId, m MSGRCVD(rept, sndr, mId, m,now), Sp) A
Know(rept, SINCERE(sndr, rept, NOW),

do(SENSEM sGS(rcpt), do(SENDM SG (sndr, rept,l INFORM (6)1), Sp))) =
Know(rept, 3s'[s" < now A Know(sndr, ¢, s')],

do(SENSEM SGS(rcpt), do(SENDM SG (sndr, rept,l INFORM (6)1), 50)))

It is not possible to prove useful genera results about REQUEST, because we
have not provided a formalization of goals and intentions. Such aformaizationis
developed in[28, 29]. Inthe next section, we show that the simple communication
tools specified above are sufficient for devel oping interesting applications. We are
in the process of refining the specification and extending it to handl e other types of
communicative acts. Eventually, we would like to have a comprehensive commu-
ni cation package that handles most applications.

18 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

proc ORGANIZEMEETING(agt, organizer, Participant, period)
for p : Participant(p) do
REQUEST(agt, SCHEDULEMANAGER(p), ADDTOSCHEDULE(
SCHEDULEMANAGER(p), p, period, MEETING, organizer));
QUERYWHETHER(agt, SCHEDULEMANAGER(p),
AGREEDTOMEET(p, agt, period, organizer))
endFor;
while =KWhether (agt, Vp[Participant(p) =
AGREEDTOMEET(p, agt, pertod, organizer)]) do
SENSEM SG(agt);
for mId: 3sn, m MSGRcvD(agt, sn, mId,m) do RMVMSG(agt, mId) endFor
endWhile;
INFORMWHETHER(agt, organizer,
Vp[Participant(p) = AGREEDTOMEET(p, agt, period, organizer)]);
if =Vp[Participant(p) = AGREEDTOMEET(p, agt, period, organizer)] then
% rel ease participants from commitment
for p : Participant(p) do
REQUEST(agt, SCHEDULEMANAGER(p),
RMV FROM SCHED(SCHEDULEMANAGER(p), p, period))
endFor
endlf
endProc

Figure 1. Procedure run by the “meeting organizer” agents.

7 MEETING SCHEDULING AGENTS IN CONGOLOG

To define our simple meeting scheduling system, we first have to complete our
specification of theprimitiveactionsthat manipulateusers’ scheduledatabases. The
precondition axiom for ADDTOSCHED was given earlier (1).

For RMVFROM SCHED, we take it to be possiblefor an agent to remove the ac-
tivity scheduled for auser at a period iff the agent is the user’s schedule manager
and thereis currently something on the user’s schedule for that period:

Poss(RMVFROM SCHED (agt, user, period), s) <
agt = SCHEDULEMANAGER (user) A
Jactiv, org SCHEDULE(user, period, activ, org, s)

The effects of these actions on the SCHEDULE fluent are captured in the successor
state axiom given earlier (4).

We are now ready to use ConGolog to define the behavior of our agents. We
start with the “meeting organizer” agents. These will be running the procedurein
figure 1. The procedure uses two abbreviations. Firgt, it uses an iteration construct
for & : ¢(z) dod(z) endFor that performsé(x) for all z’ssuch that ¢ () holds(at

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 19

the beginning of the loop).'* Secondly, it uses the abbreviation:

AGREEDTOMEET(participant, requester, period, organizer, s) ¢ 3s'(
do(ADDTOSCHEDULE(SMP, participant, period, MEETING, organizer), s') < s
A Know(smp,
ImId MSGRCVD(SMP, requester, mId,! REQUEST(SMP,
ADDTOSCHEDULE(SMP, participant, period, MEETING, orgcmi,zer))]7
now),

),

where sMPZ SCHEDULEMANAGER(participant).

Thus, we take the participant to have agreed to a meeting request iff at some prior
situation, the participant’s schedul e manager added the meeting to his’her schedule
while knowing that it had received the request.'?

Meanwhile, users “schedule manager” agents run the procedure in figure 2*3.
Because these agents are “event-driven”, we program them as a set of interrupts
running concurrently. Interruptshandling“more urgent” eventsare assigned ahigher
priority. For instanceinthe example, requeststo remove an activity from the sched-
uleare handled at the highest priority in order to minimizethe chance of scheduling
conflicts. Note that the procedure given does not handle cases where a user wants
to be released from a commitment.

To run ameeting scheduling system, one could, for example, givethe following
program to the ConGolog interpreter:

MANAGESCHEDULE(SM1, USER1) ||
MANAGESCHEDULE(SM3, USER2) ||
MANAGESCHEDULE(SM3, USER3) ||
ORGANIZEMEETING(MOy, USER;, {USER;, USER3 }, NOON) ||
ORGANIZEMEETING(MO3, USER2, {USER2, USER3 }, NOON).

Here, the meeting organizerswill both try to obtain USER3's agreement for ameet-
ing at noon; therewill thusbetwo types of execution sequences, depending on who
obtai ns this agreement.

Lfor 2 : ¢(x) do §(z) endFor is defined as:

[proc P(Q) [* where P isanew predicate variable */
if 3y Q(y) then ry, R[Q(y) AVz(R(2) & Q(z) Az # y)7?;6(y); P(R)] endl
endProc;

TQ[V2(Q(z) & ¢(2))% P(Q)]]

L2This is quite a simplistic way of modeling agreement to a request. We should for instance, talk
about the most recent instance of the request.
def

BHere we usethe abbreviation { & : ¢ — o)=(37 ¢ — 7 &.[$7;0]).

20 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

proc MANAGESCHEDULE(agt, user)
(requester, msgld, period :
Know(agt, MSGRCVD(agt, requester, msgld,
[REQUEST(RMVFROMSCHEDUL E(agt, user, period))!)) — |
if agt = SCHEDULEMANAGER(user) A
Jactiv SCHEDULE(user, period, activ, OWNER(requester))
then RMV FROM SCHEDUL E(agt, user, period) endlf;
RMVMSG(agt, msgld)])
D)
(requester, msgld, period, activ, organizer :
Know(agt, MSGRCVD(agt, requester, msgld, REQUEST(
ADDTOSCHEDULE(agt, user, period, activ, orgcmizer))])) =
if PERMITTEDTOADDTOSCHED(agt, organtzer) A
Poss(ADDTOSCHEDULE(agt, user, period, activ, organizer))
then ADDTOSCHEDULE(agt, user, period, activ, organizer) endlf;
RMVMSG(agt, msgld)])
||
(queryer, msgld,p :
Know(agt, MSGRcvVD(agt, queryer, msgld,! QUERYWHETHER(p)])) =
INFORMWHETHER(agt, queryer, p);
RMVMSG(agt, msglg)])
||
(Finformer, msgld, p
Know(agt, MSGRCVD(agt, in former, msgld,! INFORM(p)])) =
% if messageis INFORM(p), nothing to do
RMVMSG(agt, msgld)])
D)
(True—[%if nonew messages
SENSEM SGS agt)])
endProc

Figure 2. Procedure run by the “schedule manager” agents.

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 21

8 IMPLEMENTATION AND EXPERIMENTATION

Prototype interpreters have been implemented in Prolog for both Golog [14] and
ConGolog [3]. The implementations require that the program’s precondition ax-
ioms, successor state axioms, and axioms about the initial situation be expressible
as Prolog clauses. Thisisalimitation of the implementations, not the theory.

For programsthat are embedded inreal environmentsand runfor long periodsor
perform sensing, it is often advantageous tointerleave theinterpretation of the pro-
gram with its execution. In the current implementation, whenever the interpreter
reaches a sensing action, it commits to the primitive actions generated so far and
executes them, performsthe sensing action, and generates exogenous actionsto ap-
propriately update the values of the sensed fluent. One can aso add directivesto
programsto forcetheinterpreter tocommit when it getstothat pointin the program.
Aswell, whenever theinterpreter commits and executes part of the program, it rolls
itsdatabase forward to refl ect the execution of the actions, and the situationreached
behaves like anew initia situation [16].14

Note however, that committing to a sequence of action as soon as a sensing ac-
tionisreached couldlead to problemswhen the program to be executed isnondeter-
ministic. Perhapswe are on abranch that doesnot lead to afinal situation. To avoid
this, we need to lookahead over sensing actions and generate a kind of conditional
plan that is guaranteed to lead to afina situation no matter how the sensing turns
out. A prototypeinterpreter that doesthiskind of |ookahead has beenimplemented.
The account of planningin the presence of sensing developed in[13] clarifiesthese
issues. A general account of when an agent knows how to execute a program (i.e.,
of the knowledge preconditions of actions) has aso been developed [10]. There
are still some discrepancies between the Golog implementation and our theory of
agency intheway knowledge, sensing, exogenous events, and the rel ation between
planning and execution are treated. We are working to bridge this gap.

Experimentsin the use of Golog and ConGologto devel op various applications
have been conducted. Our longest running application project isin the area of ro-
botics. High-level controllers have been programmed in Golog and ConGolog to
get arobot to perform mail delivery in an office environment [9, 12]. These have
been used to drive RWI-B21 robotsat the University of Toronto and the University
of Bonn and RWI-B12 and Nomad200 robots at York University.

Our first multi-agent application involved a personal banking assistant system
[11, 26]. Users can perform transactions (in asimulated financial environment) us-
ing the system and have it monitor their financial situation for particular conditions
and take action when they arise, either by notifyingthem or by performing transac-
tionson their behaf. The system was implemented as a collection of Golog agents

1470 evaluate whether a condition holds in a given situation, Golog regresses the condition to the
initial situation and then uses the axioms about theinitial situation to evaluate the regressed condition.
This becomes less efficient as the number of action grows. After awhile it becomes necessary to roll
the database forward.

22 Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

that communicate using TCP/IP.

A version of the meeting scheduling application described in thispaper has aso
been implemented. The agents are redlized as a set of processes in a single Con-
Golog program. Associated Tcl/Tk processes are used to implement the agents
user interfaces. The behavior of the implemented meeting organizer agent ismore
sophisticated than that of the simplemeeting organi zer inthe previoussection. When
ameeting request isrejected by oneof the participants’ agent, the meeting organi zer
agent will collect information about the schedule of al usersinvolved in the con-
flict and plan a set of rescheduling actions that would resolveit; if aplanisfound,
the meeting organizer will then request the agentsinvolved to actualy perform the
rescheduling actions.

Another project under way involves devel oping ConGol og-based tool sfor mod-
eling businessand organi zational processes[33]. |n contrast to theoperationa view
of conventional modeling tools, ConGolog takes alogical view of processes. This
should prove advantageous when it comes to modeling system behavior under in-
completely known conditions and proving properties about the system. So far we
have used ConGolog to model a simple mail order business, as well as a section
of anuclear power plant; in the latter we model potentia faults that can occur and
how the operators deal with them.

9 DISCUSSION

One project that is closely related to oursiswork on the AGENT-0 programming
language[30]. Butitishard to do a systematic comparison between ConGol og and
AGENT-0 as there are numerous differences. The latter includes a model of com-
mitments and capabilities, and has simple communication acts built-in; its agents
all have ageneric rule-based architecture; thereisalso aglobal clock and all beliefs
are about time-stamped propositions. However, thereis no automati c maintenance
of the agents' beliefs based on a specification of primitiveactions asin ConGolog
and only a few types of complex actions are handled; there also seems to be less
emphasis on having a complete formal specification of the system.

Another agent language based on alogicis Concurrent MetateM [6]. Here, each
agent’s behavior is specified in a subset of temporal logic. The specifications are
executed using iterativemodel generation techniques. A limitationof the approach
isthat neither the interactions between agents nor their menta states are modeled
within thelogic. In[31], Wooldridge proposes a richer logical language where an
agent’sknowledge and choi ces coul d be specified; heal so sketches how model gen-
eration techniques could be used to synthesize automata satisfying the specifica-
tions. Thisfollowsthe situated automata view of Rosenschein and Kaelbling [25],
which alows knowledge to be attributed to agents without any commitment to a
symbolic architecture.

We believe that much of the brittleness of current Al systems derives from a

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 23

failure to provide an adequate theoretica account of the task to be accomplished.
Accordingly, we are trying to devel op agent design toolsthat are based on a solid
theoretical foundation. We think the framework we have developed so far repre-
sent asignificant step towardsthisobjective. But clearly, morework isrequired on
both implementation issues and the underlying theory. As mentioned earlier, we
are examining various ways of supporting deliberation in the presence of sensing
and exogenous actions, as well as the interleaving of deliberation with execution.
We are also looking a mechanisms to facilitate the use of Golog nondeterminism
for planning. Also under investigation are i ssues such as handling uncertainty and
belief revision, aswell as agent-rel ative (indexical) representationsfor robotics. A
version of Golog that supportstemporal constraints has also been devel oped [23].

Intermsof itssupport for multi-agentinteraction, thecurrent framework israther
limited. When agents interact with others without having complete knowledge of
the situation, it is advantageous for them to view other agents as having godls, in-
tentions, commitments, and abilities, and as making rational choices. Thisalows
them to anticipate and influence the behavior of other agents, and cooperate with
them. It a so supportsan abstract view of communication acts as actionsthat affect
other agents' mental states as opposed to mere message passing. We have started
extending our framework to model goals, intentions, ahility, and rational choice
[28, 29, 10], and considering possible implementation mechanisms. Communica-
tion raisesnumerousissues; How far should agent design toolsgoin handlingintri-
cacies that arise in human communication (e.g., deception, irony)? What's a good
set of communication primitivesand how do we implement them? With respect to
coordination, what sort of infrastructure should we provide? Can we come up with
aset of general purpose coordination policies? We hopeto examine all these ques-
tions. Of courseintheend, the usefulness of our approach will haveto beevaluated
empiricaly.

10 ACKNOWLEDGMENTS

This paper is a much revised version of “Foundations of a Logical Approach to
Agent Programming” which appeared in Intelligent Agents Volume || — Proceed-
ingsof the1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-
95). Thework described involved contributionsby many people over anumber of
years, in particular, Giuseppe De Giacomo, Fangzhen Lin, Daniel Marcu, Richard
Scherl, and David Tremaine. This research received financial support from the In-
formation Technol ogy Research Center (Ontario, Canada), the I nstitutefor Robotics
and Intelligent Systems (Canada), and the Natural Science and Engineering Re-
search Council (Canada). Many of our team’s papers are available at:

http://ww. cs. toronto. edu/ ~cogrobo/ .

24

(1

(2

(3l

(4
(5]
(6]

(7

(8]
(9

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

Y. LESPERANCE, H. J. LEVESQUE, AND R. REITER

REFERENCES

Philip R. Cohen and Hector J. Levesgue. Communicative actions for artificial agents. In Victor
Lesser and Les Gasser, editors, Proceedings of the First International Conference on Multiagent
Systems, San Francisco, CA, June 1995. AAAI PressMIT Press.

GiuseppeDe Giacomo, Yves Lespérance, and Hector J. Levesgue. Reasoning about concurrent exe-
cution, prioritized interrupts, and exogenousactionsin the situation calculus. In Proceedingsof the
Fifteenth International Joint Conferenceon Artificial Intelligence, pp. 1221-1226, Nagoya, August,
1997.

Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a Concurrent Pro-
gramming Language based on the Situation Calculus: Language and Implementation. Submitted,
1998.

Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a Concurrent Pro-
gramming Language based on the Situation Calculus: Foundations. Submitted, 1998.

ARPA Knowledge Sharing Initiative External Interfaces Working Group. Specification of the
KQML agent-communication language. Working Paper, June 1993.

M. Fisher. A survey of Concurrent M ETATEM — thelanguageandits applications. In D. M. Gabbay
and H. J. Ohlbach, editors, Temporal Logic — Proceedings of the First International Conference
(LNAI Volume 827), pages480-505. Springer-Verlag, July 1994.

C.C. Green. Theorem proving by resolution asabasisfor question-answeringsystems. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 4, pages 183-205. American Elsevier, New
York, 1969.

M. Hennessy. The Semantics of Programming Languages. John Wiley & Sons, 1990.

Yves Lespérance, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Raymond Reiter, and
Richard B. Scherl. A logical approachto high-level robot programming—a progressreport. In Ben-
jamin Kuipers, editor, Control of the Physical World by Intelligent Agents, Papers from the 1994
AAAI Fall Symposium, pages 109-119, New Orleans, LA, November 1994.

Yves Lespérance, Hector J. Levesgue, Fangzhen Lin, and Richard B. Scherl. Ability and knowing
how in the situation calculus. Unpublished manuscript, 1997.

YvesLespérance, Hector J. Levesgue, and Shane J. Ruman. An experiment in using Golog to build
apersonal banking assistant. In Lawrence Cavedon, Anand Rao, and Wayne Wobcke, editors, Intel-
ligent Agent Systems: Theoretical and Practical |ssues (Based on a Workshop Held at PRICAI ’ 96
Cairns, Australia, August 1996), volume 1209 of LNAI, pages 27—43. Springer-Verlag, 1997.
Yves Lespérance, Kenneth Tam, and Michael Jenkin. Reactivity in a Logic-Based Robot Program-
ming Framework. In Cognitive Robotics—Papersfromthe 1998 AAAI Fall Symposium, pp. 98-105,
Orlando, FL, October, 1998, Technical Report FS-98-02, AAAI Press.

Hector J. Levesque. What is planning in the presence of sensing? In Proceedings of the Thirteenth
National Conferenceon Artificial Intelligence, pages 1139-1146, Portland, OR, August 1996.
Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl.
GOLOG: A logic programming language for dynamic domains. Journal of Logic Programming,
31, 59-84,1997.

Fangzhen Lin and Raymond Reiter. State constraintsrevisited. Journal of Logic and Computation,
4(5):655-678, 1994,

FangzhenLin and Raymond Reiter. How to progressadatabase. Artificial Intelligence, 92, 131-167,
1997.

John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors, Machinelntelligence, volume 4, pages 463-502.
Edinburgh University Press, Edinburgh, UK, 1979.

Robert C. Moore. A formal theory of knowledge and action. In J. R. Hobbs and Robert C. Moore,
editors, Formal Theories of the Common SenseWorld, pages 319-358. Ablex Publishing, Norwood,
NJ, 1985.

G. Plotkin. A structural approachto operational semantics. Technical Report DAIMI-FN-19, Com-
puter Science Dept. Aarhus Univ. Denmark, 1981.

Raymond Reiter. The frame problemin the situation calculus: A simple solution (sometimes) and
a completenessresult for goal regression. In Vladimir Lifschitz, editor, Artificial Intelligence and

A SITUATION CALCULUS APPROACH TO MODELING AND PROGRAMMING AGENTS 25

Mathematical Theory of Computation: Papersin Honor of John McCarthy, pages 359-380. Aca-
demic Press, San Diego, CA, 1991.

[21] Raymond Reiter. Proving propertiesof statesin the situation calculus. Artificial Intelligence, pages
337-351, December 1993.

[22] RaymondReiter. Natural actions, concurrency and continuoustimein thesituation calculus. In Proc.
of the 5thInt. Conf. on Principlesof Knowl edge Representationand Reasoning (KR 96), pages2-13,
1996.

[23] Raymond Reiter. Sequential, temporal GOLOG. In A.G. Cohn and L.K. Schubert, editors, Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the Sixth International Confer-
ence (KR 98), pages 547-556, Trento, Italy, Morgan Kaufmann, 1998.

[24] D. Riecken (editor). Communicationsof the ACM 37 (7), special issue on intelligent agents, July
1994.

[25] Stanley J. Rosenscheinand Leslie P. Kaelbling. A situated view of representation and control. Ar-
tificial Intelligence, 73:149-173,1995.

[26] ShaneJ. Ruman. GOLOG as an agent-programminglanguage: Experimentsin developing banking
applications. Master’s thesis, Department of Computer Science, University of Toronto, 1996.

[27] RichardB. Scherl and Hector J. Levesque. The frame problem and knowledge-producingactions. In
Proceedings of the Eleventh National Conference on Artificial Inteligence, pages 689695, Wash-
ington, DC, July 1993. AAAI Press’The MIT Press.

[28] Steven Shapiro, YvesLespérance, and Hector J. Levesque. Goalsand rational actionin thesituation
calculus— apreliminary report. In Working Notesof the AAAI Fall Symposiumon Rational Agency:
Concepts, Theories, Models, and Applications, pages 117-122, Cambridge, MA, November 1995.

[29] Steven Shapiro, YvesLespérance, and Hector J. Levesque. Specifying Communicative Multi-Agent
Systemswith ConGolog. In Working Notes of the AAAI Fall 1997 Symposium on Communicative
Action in Humans and Machines, Cambridge, MA, November, 1997, AAAI Press.

[30] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993.

[31] Michael J. Wooldridge. Time, knowledge, and choice. In M. Wooldridge, J. P Mller, and
M. Tambe, editors, Intelligent Agents \Volume || —Proceedingsof the 1995 Workshop on Agent The-
ories, Architectures, and Languages (ATAL-95), Lecture Notesin Artificial Intelligence. Springer-
Verlag, 1996.

[32] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2), 1995.

[33] EricK.S. Yu, John Mylopoulos,and YvesLespérance. Al modelsfor businessprocessreengineering.
|EEE Expert, 11:16-23, August 1996.

