
Situation Calculus Game Structures and GDL
Giuseppe De Giacomo1 and Yves Lespérance2 and Adrian R. Pearce3

Abstract. We present a situation calculus-based account of multi-
players synchronous games in the style of general game playing.
Such games can be represented as action theories of a special form,
situation calculus synchronous game structures (SCSGSs), in which
we have a single action tick whose effects depend on the combina-
tion of moves selected by the players. Then one can express prop-
erties of the game, e.g., winning conditions, playability, weak and
strong winnability, etc. in a first-order alternating-time µ-calculus.
We discuss verification in this framework considering computational
effectiveness. We also show that SCSGSs can be considered as a first-
order variant of the Game Description Language (GDL) that supports
infinite domains and possibly non-terminating games. We do so by
giving a translation of GDL specifications into SCSGSs and showing
its correctness. Finally, we show how a player’s possible moves can
be specified in a Golog-like programming language.

1 Introduction
Many types of problems can be viewed as games, where one or more
agents interact to ensure that certain objectives hold no matter how
the environment and other agents behave, e.g., contingent planning,
service orchestration, controller synthesis, etc. Moreover, general
game playing [13], where artificial agents compete in games that are
not known in advance, is an important emerging AI testbed. Logics
for reasoning about game settings, e.g., [35, 16, 24], has been an ac-
tive area, with Alternating-Time Temporal Logic (ATL) [1] a popular
choice. Model checking techniques have been used to verify proper-
ties of games specified in ATL and to synthesize strategies that agents
can use to force temporal properties to hold [21]. However, such log-
ics are usually propositional or limited to finite domains. Moreover,
the game settings are usually specified using low-level automata-like
languages. One exception is the Game Description Language (GDL)
[13, 22] developed for the general game playing competition, which
is based on logic programming, and allows for a quite high level rep-
resentation of games. Typically, however, GDL is intended to repre-
sent games with finite domains in a declarative way, with a semantics
based on “negation as failure” [13, 22, 27].

Within the situation calculus (SitCalc) [23, 26], a well known for-
malism for reasoning about action based on first-order logic (FOL)
(with a second-order axiom to specify the domain of situations), [11]
proposes an expressive logical framework for specifying and solving
game-like problems. Game settings are specified as a special kind
of SitCalc action theory. It is assumed that in any given state, only
one agent may act next, and thus the approach is concerned with

1 Dip. di Ingegneria Informatica, Automatica e Gestionale, Sapienza – Uni-
versità di Roma, Rome, Italy, email: degiacomo@dis.uniroma1.it

2 Dept. of Electrical Engineering and Computer Science, York University,
Toronto, ON, Canada, email: lesperan@cse.yorku.ca

3 Dept. of Computer Science and Software Engineering, University of Mel-
bourne, Victoria, Australia, email: adrianrp@unimelb.edu.au

turn-taking games. Complex temporal properties of games can be
expressed in a first-order (FO) variant of alternating-time µ-calculus.
Methods for verification and synthesis based on fixpoint approxima-
tion and regression are developed.

In this paper, inspired by [11], we develop a SitCalc-based spec-
ification and verification framework, which deals with multi-players
synchronous games, and is similar in spirit to GDL. Games are rep-
resented as action theories of a special form called situation calcu-
lus synchronous game structures (SCSGSs), where we have a single
action tick whose effects depend on the combination of moves se-
lected by the players (see Sec. 3). A FO variant of alternating-time
µ-calculus is used to specify and verify properties of the game (see
Sec. 5), including winning conditions, playability, weak and strong
winnability, etc.

The paper’s main contributions are:

1. We develop a truly first-order framework that can be used to spec-
ify games/systems that involve infinite domains and infinite sets of
states.

2. Games can be specified at a high level, using SitCalc action theo-
ries [26].

3. SCSGSs amounts to a variant of GDL where states are repre-
sented by first-order theories: we give a translation of GDL spec-
ifications into SCSGSs and show its soundness and completeness
(see Sec. 4).

4. Reasoning techniques developed for the SitCalc can be used to
verify properties of games, which can help in analyzing them and
developing better players. These includes sound but incomplete
techniques that apply to the general setting [11, 17], and tech-
niques that are sound and complete for the decidable “bounded
fluent extension” setting [8] (see Sec. 5).

5. Also agent moves can be specified procedurally in a variant of the
SitCalc-based programming language Golog [19] (see Sec. 6).

6. Recent verification techniques developed for Golog and
ConGolog programs, e.g., [10], can be applied (see again Sec. 6).

Like the original GDL formalism, our account assumes that agents
have full observability of the state and all past moves. Handling par-
tial observability, as in GDL-II [33, 30], is left for future work.

2 Preliminaries
The situation calculus (SitCalc) is a sorted predicate logic language
for representing and reasoning about dynamically changing worlds
[23, 26]. It includes three sorts, Actions, Situations and Objects. All
changes to the world are the result of actions, which are terms in the
logic. A possible world history is represented by a term called a sit-
uation. The constant S0 is used to denote the initial situation where
no actions have yet been done. Sequences of actions are built using
the function symbol do, where do(a, s) denotes the successor situa-
tion resulting from performing action a in situation s. Predicates and

functions whose value varies from situation to situation are called flu-
ents, and are denoted by symbols taking a situation term as their last
argument (e.g., Holding(x, s)). Actions and fluents (except for the
last argument) can only take arguments of sort Objects. Notice that
we allow the object domain to be infinite. Within this language, we
can formulate action theories that describe how the world changes as
the result of actions. Here, we concentrate on basic action theories
as proposed in [26]. A basic action theory D is the union of the fol-
lowing disjoint sets: the foundational, domain independent, axioms
of the SitCalc (Σ); unique name axioms for actions; precondition
axioms stating when actions can be legally performed (Dposs); suc-
cessor state axioms describing how fluents change between situations
(Dssa); and axioms describing the initial configuration of the world
(DS0). A special predicate Poss(a, s) is used to state that action a is
executable in situation s; precondition axioms in Dposs characterize
this predicate. We say that a situation s (corresponding to a sequence
of actions) is executable, written Executable(s), if every action per-
formed in reaching s is possible in the situation it occurred [26]. In
turn, successor state axioms encode the causal laws of the domain;
they take the place of the so-called effect axioms and provide a solu-
tion to the frame problem.

3 Synchronous Game Structures

We focus on games where there are n players/agents each of whom
chooses a move at every time step. All such moves are executed syn-
chronously and determine the next state of the game. At each time
step, the state of the game is fully observable by all agents, as are all
past moves of every agent. This is in agreement with the assumptions
built into GDL [13, 22]. To represent such multi-player synchronous
games, we define a special class of basic action theories, called sit-
uation calculus synchronous game structures (SCSGSs), which are
defined as follows.

Agents A SCSGS involves a finite set of n agents, and we introduce a
subsort Agents of Objects which includes these finitely many agents
Ag1, . . . ,Agn, each denoted by a constant, and for which unique
names Agi 6= Agj for i 6= j and domain closure Agent(x) ≡ x =
Ag1 ∨ · · · ∨ x = Agn hold.

Moves. We also introduce a second subsort Moves of Objects, rep-
resenting the possible moves of the agents. These come in finitely
many types, represented by function symbols Mi(~x), which are
parametrized by objects ~x and we have Move(m) ≡

∨
i ∃~x.m =

Mi(~x). Given that the parameters range over Objects, each agent
may have an infinite number of possible moves at each time step.
We have unique name and domain closure axioms (parametrized
by objects) for these functions Mi(~x) 6= Mj(~y) for i 6= j, and
Mi(~x) = Mi(~y) ⊃ ~x = ~y.

Actions. In SCSGSs, there is only one action type,
tick(m1, . . . ,mn), which represents the execution of a joint
move by all the agents at a given time step. The action tick has
exactly n parameters, m1, . . . ,mn, one per agent, which are of sort
Moves and corresponds to the simultaneous choice of the move to
perform by the n different agents.

Legal moves. A key component of a SCSGS is a characterization
of the legal moves available to each agent in a given situation. This
is specified formally using a special predicate LegalM , which is de-
fined by statements of the following form (one for each agent Agi

and move type Mi):

LegalM (Ag i,Mi(~x), s)
.
= ΦAgi,Mi(~x, s)

meaning that agent Agi can legally perform move Mi(~x) in situa-
tion s if and only if ΦAgi,Mi(~x, s) holds. Technically LegalM is an
abbreviation for ΦAgi,Mi(~x, s), which is a uniform formula (i.e., a
formula that only refers to a single situation s).
Precondition axioms. The precondition axiom for the action tick is
fixed and specified in terms of LegalM as follows:

Poss(tick(m1, . . . ,mn), s) ≡
∧

i=1,...,n

LegalM (Agi,mi, s)

This states that action tick(m1, . . . ,mn), denoting the joint move
of all agents, can be performed if and only if each selected move mi

is a legal move for agent Ag i in situation s. Since we only have one
action type tick , this is the only precondition axiom in Dposs.
Successor state axioms. We have successor state axioms Dssa,
specifying the effects and frame conditions of the joint moves
tick(m1, . . . ,mn) on the fluents. Such axioms, as usual in basic ac-
tion theories, are domain specific, and characterize the actual game
under consideration. Within such axioms, the agent moves, which oc-
cur as parameters of tick , determine how fluents change as the result
of joint moves.4

Initial situation description. Finally, the initial state of the game
is axiomatized in the initial situation description D0 as usual, in a
domain specific way.

Example 1 Consider the following example drawn from [29]. There
are two guard agents, Ag1 and Ag2, that cooperatively try to catch
a third agent, Ag3, who is trying to escape, in a 5 × 5 grid world.
Ag3 is initially at location (5, 5) and can escape after reaching any
of the other corners. Initially, Ag1 is at location (1, 1) and Ag2 at
(1, 5). At each time step, the agents can all move synchronously to an
adjacent square. Ag3 is caught and loses the game if he ends up on
the same square as one of the guards or if he crosses path with one
of them in a simultaneous move. We can specify this game as follows.
We have 3 possible moves, with the following definitions:

LegalM (ag ,move(d), s)
.
= ∃u, v, x, y.¬Terminal(s) ∧

At(ag , u, v, s) ∧Adj (u, v, d, x, y)

LegalM (ag ,Stay , s)
.
= ∃x, y.At(ag , x, y, s)

LegalM (ag ,Exit , s)
.
=

ag = Ag3 ∧ ¬Terminal(s) ∧AtExit(Ag3, s)

Thus an agent ag may perform move move(d) in s to move one step
in direction d provided that the game is not yet finished and moving
in direction d is possible given ag’s position in s. An agent may also
perform move Stay in a situation s to remain where he is provided
that he is on the grid in s. Finally an agent may perform move Exit
in s to exit the grid provided he is Ag3, the game is not yet finished,
and he is at an exit position in s. Terminal(s), meaning that the
game is finished in situation s, holds if Ag3 is at the same position
as one of the other agents in s and is “captured”, in which case Ag1

and Ag2 win, or if Ag3 has “exited” the grid in s, in which case Ag3

wins, and is defined as:

Terminal(s)
.
= ∃x, y.At(Ag1, x, y, s) ∧At(Ag3, x, y, s) ∨

∃x, y.At(Ag2, x, y, s) ∧At(Ag3, x, y, s) ∨
¬∃x, y.At(Ag3, x, y)

Wins(ag , s)
.
= Terminal(s) ∧

ag = Ag3 ∧ ¬∃x, y.At(Ag3, x, y, s) ∨
ag 6= Ag3 ∧ ∃x, y.At(Ag3, x, y, s) ∧At(ag, x, y, s)

4 In many cases, moves don’t interfere with each other and the effects are just
the union of those of each move. One can also exploit previous work on
axiomatizing parallel actions to generate successor state axioms [26, 25].

2

AtExit(ag , s)
.
=

At(ag , 1, 1, s) ∨At(ag , 5, 1, s) ∨At(ag , 1, 5, s)

The following successor state axiom specifies how the game state
changes:

At(ag , x, y, do(a, s)) ≡ ∃u, v.MovesTo(ag , u, v, x, y, a, s) ∨
At(ag , x, y, s) ∧ ¬∃u, v.MovesTo(ag , x, y, u, v, a, s) ∧
¬∃m1,m2.(a = tick(m1,m2,Exit) ∧ ag = Ag3)

MovesTo(ag , u, v, x, y, a, s)
.
= ∃m1,m2,m3, d.

a = tick(m1,m2,m3) ∧At(ag , u, v, s) ∧Adj (u, v, d, x, y) ∧
[ag = Ag1 ∧m1 = move(d) ∨ ag = Ag2 ∧m2 = move(d) ∨
ag = Ag3 ∧m3 = move(d) ∧ ¬Capturing(Ag3,m3,Ag1,

m1, s) ∧ ¬Capturing(Ag3,m3,Ag2,m2, s)]

Capturing(ag ,m, ag ′,m′, s)
.
= ∃x, y, u, v, d, d′.ag = Ag3 ∧

At(Ag3, x, y, s) ∧ (ag ′ = Ag1 ∨ ag ′ = Ag2) ∧
At(ag ′, u, v, s) ∧m = move(d) ∧m′ = move(d′) ∧
Adj (x, y, d, u, v) ∧Adj (u, v, d′, x, y)

The successor state axiom for At essentially says that agent ag
moves to position (x, y) in situation do(a, s) if a is a tick joint move
where ag performs a move in direction d, from a position (u, v),
which is adjacent from (x, y) in direction d, and moreover if ag is
Ag3, then he is not “being captured” by one of the other agents (see
below). Otherwise, ag remains at the position where he was in situa-
tion s except if ag is Ag3 and he performs move Exit , in which case
he will no longer be at any position on the grid. The axiom uses a de-
fined fluent (an abbreviation), Capturing(ag ,m, ag ′,m′, s), mean-
ing that ag ′ performing move m′ is capturing agent ag performing
move m in situation s, which holds if and only if ag is Ag3 and ag ′

is one of the other agents, and ag and ag ′ are performing moves that
overlap, i.e., where the starting position of one move is the ending
position of another.

The following axioms define the non-fluent predicates that we use:

Agent(ag) ≡ ag = Ag1 ∨ ag = Ag2 ∨ ag = Ag3

Move(m) ≡ ∃d.Dir(d) ∧m = move(d) ∨
m = Stay ∨m = Exit

Dir(d) ≡ d = N ∨D = E ∨ — directions
d = S ∨ d = W

Co(x) ≡ x = 1 ∨ x = 2 ∨ — coordinates
x = 3 ∨ x = 4 ∨ x = 5

Succ(x, y) ≡ — y is successor of x
x = 1 ∧ y = 2 ∨ x = 2 ∧ y = 3 ∨
x = 3 ∧ y = 4 ∨ x = 4 ∧ y = 5

Adj (x, y, d, x′, y′) ≡ — (x′, y′) is adjacent from (x, y)
d = N ∧ x′ = x ∧ Co(x) ∧ Succ(y, y′) ∨ in direction d
d = S ∧ x′ = x ∧ Co(x) ∧ Succ(y′, y) ∨
d = E ∧ y′ = y ∧ Co(y) ∧ Succ(x, x′) ∨
d = W ∧ y′ = y ∧ Co(y) ∧ Succ(x′, x)

The initial state is specified as follows:

At(ag , x, y, S0) ≡ ag = Ag1 ∧ x = 1 ∧ y = 1 ∨
ag = Ag2 ∧ x = 5 ∧ y = 1 ∨ ag = Ag3 ∧ x = 1 ∧ y = 5

The precondition axiom for the tick action is as discussed earlier. We
also have unique names for moves, agents, directions, and positions.

Note that it easy to obtain an infinite states version of this game,
for instance, by using an infinite grid, with positions (x, y) for all
x, y ∈ N. Then Ag3 can run away to avoid getting caught and the
others cannot corner her. We can then say that the game ends if the

guards catch Ag3 or if Ag3 gets North and East of both guards past
a given area (they can’t catch up if he keeps going North-East).

Let’s now consider another simple example which has infinite
states. It is not a game in the traditional sense, but we can analyse
what properties agents can enforce in it.

Example 2 We have a repair shop where items arrive, are repaired,
and then shipped. Items are denoted by a countably infinite set of
constants Item1, Item2, . . . , for which we have unique name axioms.
Ag1 represents the environment, Ag2 is a repairing robot, and Ag3

is a shipper agent. We have the following legal move axioms:

LegalM (ag,Wait , s)
.
= True

LegalM (ag , arrive(i), s)
.
=

ag = Ag1 ∧ Item(i) ∧ ¬InShop(i, s)

LegalM (ag , repair(i), s)
.
=

ag = Ag2 ∧ InShop(i, s)

LegalM (ag , ship(i), s)
.
=

ag = Ag3 ∧ Repaired(i, s)

and the following successor state axioms:

InShop(i, do(a, s)) ≡ ∃m,m′.a = tick(arrive(i),m,m′)
∨ InShop(i, s) ∧ ¬∃m,m′.a = tick(m,m′, ship(i))

Repaired(i, do(a, s)) ≡ ∃m,m′.a = tick(m, repair(i),m′)
∨ Repaired(i, s) ∧ ¬∃m,m′.a = tick(arrive(i),m,m′)

Shipped(i, do(a, s)) ≡ ∃m,m′.a = tick(m,m′, ship(i))
∨ Shipped(i, s) ∧ ¬∃m,m′.a = tick(arrive(i),m,m′)

We also have initial state axioms saying that initially no items are in
the shop, or have been repaired or shipped. Clearly, the domain is
infinite, as is the number of moves.

4 Relationship with GDL
SCSGSs are closely related to GDL specifications. We show that
GDL game descriptions where auxiliary predicates are “acyclic” or
“hierarchical” (without direct or indirect recursion) [20] can be trans-
lated into SCSGSs. Notice that formalisms in which the state descrip-
tion is based on first-order logic (FOL), such as the situation calculus,
cannot capture predicates on state defined recursively.

We first define a translation function τa,s for translating the bodies
of the rules for defining the initial situation, next situation, and legal
moves; only true, does atoms and auxiliary predicates aux(~x) can
occur in bodies:

τa,s(true) = true

τa,s(true(F (~t))) = F (~t)[s]
τa,s(does(R,M))) = ∃m1 . . .∃mR−1∃mR+1 . . .∃mn

a = tick(m1, . . . ,mR−1,M,mR+1, . . . ,mn)
τa,s(aux(~x)) = ∃~y.τa,s(bodyaux(~x, ~y))
τa,s(α1 ∧ α2) = τa,s(α1) ∧ τa,s(α2)

τa,s(¬α) = ¬τa,s(α)

where bodyaux(~x, ~y) denotes the body of the rule for aux(~x) (which
may involve disjunctions).
Initial situation. In GDL, the initial situation is specified by a set
of clauses of the form init(F (~t)) ← body(~t, ~y), where body(~t, ~y)
includes only true atoms and auxiliary predicates (facts are repre-
sented as init(F (~t)← true), involving terms ~t and additional ex-
istential variables ~y. In the SitCalc, we capture this through a set of
FOL formulas:

F (~x, S0) ≡
∨

init(F (~t))←body(~t,~y)

~x = ~t ∧ ∃~y.τ ,S0(body(~t, ~y))

3

This is the familiar completion of the set of init clauses, which
captures their semantics given that the set of clauses is acyclic. Note
that since the bodies of these clauses cannot contain does atoms, the
action parameter of τ is irrelevant. We have a complete specification,
so there is a single model.
Effects. In GDL, the next state resulting from moves is specified by
a set of clauses of the form next(F (~t)) ← body(~t, ~y), where body
includes only true and does atoms, and auxiliary predicates. In the
SitCalc, we capture this description through successor state axioms
of the form:

F (~x, do(a, s)) ≡
∨

next(F (~t))←body(~t,~y)

~x = ~t ∧ ∃~y.τa,s(body(~t, ~y))

Preconditions and legality. In GDL, the legality conditions for a
move M by a role R are expressed by a set of clauses of the form
legal(R,M(~t))← body(~t, ~y), where body contains only true and
auxiliary predicates. In the SitCalc, we capture this through axioms
of the form:

LegalM (R,M(~x), s) ≡
∨

legal(R,M(~t))←body(~t,~y)

~x = ~t ∧ ∃~y.τ ,s(body(~t, ~y))

The preconditions of the tick joint move action are specified by the
action precondition axiom given earlier.
Goals and terminal states. For GDL goals, we have clauses of the
form goal(R, V) ← body(~t, ~y), where body includes only true

and auxiliary predicates. In the SitCalc, we have:

Goal(r, v, s) ≡
∨

goal(R,V)←body(~t,~y)

r = R ∧ v = V ∧ ∃~y.τ ,s(body(~t, ~y))

Similarly for defining termination, we have in GDL clauses of the
form, terminal ← body(~y), where body includes only true and
auxiliary predicates. So we have:

Terminal(s) ≡
∨

terminal←body(~y)

∃~y.τ ,s(body(~y))

Unique name and domain closure for objects. We additionally
need to impose the unique name assumption and domain closure for
the object sort in the SitCalc to conform to the GDL assumption that
object terms are interpreted as themselves. In the SitCalc this corre-
sponds to assuming we have standard names for objects [18].

We can now show that the above mapping is correct.

Theorem 3 For any GDL specification that uses acyclic auxiliary
predicates only, the above translation is correct, i.e., it produces a
SCSGS whose only model is bisimilar to the transition system asso-
ciated with the GDL specification.

Proof (sketch). Notice that we have complete information. This
means the resulting SCSGS D has only one SitCalc model M (up
to isomorphism). We can associate to such a modelM a transition
system TM = 〈∆,S, S0,→M, LM〉 induced byM where:

• ∆ is the object domain of M, which is isomorphic to the set of
all ground object terms since we have unique name and domain
closure for objects.

• S is the set of possible states formed by all situations;
• S0 ∈ S is the initial state, where S0 is the initial situation;
• →M ⊆ S × S is the transition relation s.t. s →M s′ iff there

exists some a s.t. s′ = doM(a, s) and (a, s) ∈ PossM; note that
a will be some instantiation of the tick action type for some move
arguments;

• LM : S 7→ IntM is the labeling function associating each
state/situation s with a first-order (FO) interpretation I = LM(s)
s.t. F I = {~o | M |= F (~o, s)}, for every predicate fluent.

On the other hand, one can use the techniques in [29] to generate
a transition system for the GDL specification G. We can associate
to such a game description G a transition system TG = 〈∆, Q, q0,
→G, LG〉 where:

• ∆ is the set of all ground object terms.
• Q is the set of possible states formed by all possible finite subsets

of ground “fluent” atoms;
• q0 = {F (~t)|G |= init(F (~t))};
• →G ⊆ Q × Q is the transition relation s.t. q →G q′ iff

there exists some ground move terms M1, . . .Mn s.t. G ∪ q |=
does(Agi,Mi) (for i = 1, . . . , n) and q′ = {F (~t)|G ∪ q ∪
{does(Ag1,M1), . . . , does(Agn,Mm)} |= next(F (~t))};

• LG : Q 7→ IntG is the labeling function associating each state q
with a FO interpretation I = LG(q) s.t.

– GoalI = {(Agi, v) | G ∪ q |= goal(Agi, v)},
– TerminalI = true iff G ∪ q |= terminal}, and

– F I = {~t | G ∪ q |= F (~t)} for all other predicates.

The two transition systems TM and TG are bisimilar. Indeed there
is a relation B including (S0, qO) such that if (s, q) ∈ B then: (i)
LM(s) is isomorphic to LG(q); (ii) for all s′ such that s →M s′,
there exists a q′ such that q →G q′ and (s′, q′) ∈ B; (iii) for all
q′ such that q →G q′, there exists a s′ such that s →M s′ and
(s′, q′) ∈ B. One can check that one such relation is the isomor-
phism between state labeling of the transitions systems: i.e. B =
{(s, q) | LM(s) is isomorphic to LG(q)}. Given the bisimilarity-
invariance of the µ-calculus, we get that the two transition systems
satisfy the same µATL-FO formulas (see Sec. 5).

Notice that [34] shows trace-equivalence between GDL specifica-
tions and their translation into the C+ action language [14]. Remem-
ber that bisimilarity implies trace-equivalence. GDL also requires
that game specifications be stratified, “allowed”, and satisfy some
restrictions on recursion that ensure that the specification is equiva-
lent to a finite set of ground clauses [34]. In principle, when the game
is finite state as assumed in [13], we could drop the acyclicity restric-
tion and capture GDL in its entirety at the cost of compositionality.

5 Verification
To express properties about SCSGSs, we introduce a specific logic
µATL-FO, inspired by alternating-time µ-calculus, µATL, which is a
well-known generalization of ATL [1]. Our logic is a first-order vari-
ant of the µ-calculus [2] that works on games, by suitably consider-
ing coalitions acting towards the realization of a temporally extended
goal, as in µATL. The key building block in these kinds of logics is
the so-called force-next operator, which in our case is:

〈〈G〉〉 © ϕ ≡
∃mg1 , . . . ,mgk .

∧
{gi,...,gk}=G LegalM (gi,mgi ,now) ∧

∃mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G LegalM (gi,mgi ,now) ∧

∀mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G LegalM (gi,mgi ,now)

⊃ ϕ(do(tick(mg1 , . . . ,mgn),now))

Above, ϕ is a situation suppressed formula, i.e., one with situation
arguments in fluents suppressed (syntactically replaced by a place-
holder now). We denote by ϕ[s] the formula obtained by restoring

4

the suppressed situation argument s into all fluents in ϕ. Here, we
quantify existentially on legal moves when the agent is in the coali-
tionG, and universally when it is not. We are looking for some move
for each agent in the coalitionG, such that for all moves by the agents
not in the coalition, ϕ becomes true next. Notice that in any case both
agents in the coalition and agents outside it must have a legal move.

Then, following [11], we define the logic µATL-FO as:

Ψ← ϕ | Z | ¬Ψ | Ψ1 ∧Ψ2 | ∃x.Ψ | 〈〈G〉〉 ©Ψ | µZ.Ψ(Z)

where ϕ is an arbitrary, possibly open, situation-suppressed SitCalc
uniform formula, Z is a predicate variable of a given arity, and
〈〈G〉〉 © Ψ is as defined above. µZ.Ψ(Z) is the least fixpoint con-
struct from the µ-calculus, which denotes the least fixpoint of the
formula Ψ(Z) (we use this notation to emphasize that Z may oc-
cur free, i.e., not quantified by µ in Ψ). Similarly νZ.Ψ(Z), defined
as ¬µZ.¬Φ[Z/¬Z] (where we denote with Φ[Z/¬Z] the formula
obtained from Φ by substituting each occurrence of Z with ¬Z), de-
notes the greatest fixpoint of Ψ(Z). We also use the usual abbrevia-
tions for first-order logic such as disjunction (∨) and universal quan-
tification ∀. Moreover we denote by [[G]]©Ψ the dual of 〈〈G〉〉©Ψ,
i.e., [[G]]©Ψ

.
= ¬〈〈G〉〉 © ¬Ψ.

As usual in the µ-calculus, formulas of the form µZ.Ψ(Z) (and
νZ.Ψ(Z)) must obey the syntactic monotonicity of Ψ(·) w.r.t. Z,
which states that every occurrence of the second-order variable Z
in Ψ(Z) must be within the scope of an even number of negation
symbols. This ensures that both the least fixpoint µZ.Ψ(Z) and the
greatest fixpoint νZ.Ψ(Z) always exist.

The least fixpoint formula µZ.Ψ is true in a situation if and only
if it belongs to the least set of situations Z that satisfy the temporal
formula Ψ(Z), where Z is a second-order predicate variable ranging
over sets of situations (a formal semantics is given below). Similarly,
the greatest fixpoint formula νZ.Ψ holds in a situation if it belongs
to the largest set of situations Z that satisfy Ψ(Z). Using these least
and greatest fixpoint constructs, we can express the ability of forcing
arbitrary temporal and dynamic properties. For instance, to say that
group G has a strategy to force achieving ϕ(~x) eventually, where
ϕ(~x) is a situation suppressed formula with free variables ~x, we use
the following least fixpoint formula:

µZ. ϕ(~x) ∨ 〈〈G〉〉 © Z

In a first-order ATL, this could be expressed as 〈〈G〉〉3ϕ(~x). Simi-
larly, we use the greatest fixpoint construct to express the ability of a
coalition G to force maintaining property ϕ:

νZ.ϕ(~x) ∧ 〈〈G〉〉 © Z

In a first-order ATL, this could be expressed as 〈〈G〉〉2ϕ(~x).
The formal semantics of µATL-FO is based on characterizing how

to evaluate µATL-FO formulas in a SitCalc modelM. To do so, since
µATL-FO contains formulas with both individual and predicate free
variables, we need to introduce an individual variable valuation v,
and a predicate variable valuation V , i.e., a mapping from predicate
variables Z to subsets of the set of all situations S. Then, we assign
meaning to formulas by associating to M, v, and V an extension
function (·)Mv,V , which maps formulas to subsets of S, and is defined
inductively as follows:

(ϕ)Mv,V = {s ∈ S | M |= ϕ[s]}
(¬Ψ)Mv,V = S − (Ψ)Mv,V
(Ψ1 ∧Ψ2)Mv,V = (Ψ1)Mv,V ∩ (Ψ2)Mv,V
(∃x.Ψ)Mv,V = {s ∈ S | exists t s.t. s ∈ (Ψ)Mv[x/t],V }
(〈〈G〉〉 ©Ψ)Mv,V = {s ∈ S | s ∈ Pre(G, (Ψ)Mv,V)}
(Z(~t)Mv,V) = V (Z)
(µZ.Ψ)Mv,V =

⋂
{E ⊆ S | (Ψ)Mv,V [Z/E] ⊆ E}

where:

Pre(G, E) = {s ∈ S |
∃mg1 , . . . ,mgk .

∧
{gi,...,gk}=G(M |= LegalM (gi,mgi , s)) ∧

∃mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G(M |= LegalM (gi,mgi , s)) ∧

∀mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G(M |= LegalM (gi,mgi , s))

⊃ do(tick(mg1 , . . . ,mgn), s) ∈ E}

Note that given a valuation V and a predicate variable Z and a set
of situations E we denote by V [Z/E] the valuation obtained from V
by changing the value of Z to E . Similarly for v. Notice also that
when a µATL-FO formula Ψ is closed (w.r.t. individual and predicate
variables), its extension (Ψ)Mv,V does not depend on the valuations v
and V , and we denote the extension of Ψ simply by (Ψ)M. We say
that a closed formula Ψ holds in the SitCalc modelM, denoted by
M |= Ψ, if S0 ∈ (Ψ)M.

Example 4 Several key properties of games [13] can easily be ex-
pressed in µATL-FO, for example:

• Playability, i.e., at every step which is not terminal there exists a
legal joint move:

νZ.Terminal ∨ 〈〈ALL〉〉 © Z

• Termination, i.e., there is a way of playing the game that eventu-
ally leeds to termination:

µZ.Terminal ∨ 〈〈ALL〉〉 © Z

• Weak Winnability (by agent Ag), i.e., there is a way for agent Ag
to win if the others cooperate:

µZ.Terminal ∧ ∃v.Goal(Ag , v) ∧
(
∧

Ag′ 6=Ag ∃v
′.Goal(Ag ′, v′) ∧ v′ ≤ v) ∨ 〈〈ALL〉〉 © Z

• Strong Winnability (by agent Ag), i.e., there is a way for agent
Ag to win no matter what the others do:

µZ.Terminal ∧ ∃v.Goal(Ag , v) ∧
(
∧

Ag′ 6=Ag ∃v
′.Goal(Ag ′, v′) ∧ v′ ≤ v) ∨ 〈〈{Ag}〉〉 © Z

• Well-formed: if terminating, playable and weakly winnable.

In Example 1, one can check that the game is weakly winnable for all
agents, and that it becomes strongly winnable for either Ag3 or for
the coalition {Ag1,Ag2} starting from certain initial configurations
(where we change the initial position of some players). In Example 2,
one can check that Ag2 can ensure that all items that arrive are even-
tually repaired, and that Ag2 and Ag3 together can ensure that all
are eventually shipped.

Let us now discuss how one can effectively verify µATL-FO for-
mulas against a SCSGS in three key cases.

5

Propositional case. The propositional case is the one where the
object domain is assumed to be finite. If this is the case, actions are
also finite (we have finite moves types and only one action type).
Hence, the only domain that remains infinite is that of situations
(though now the situation tree is only finitely branching). However
successor state axioms ensure that fluents in a given situation depend
only on the values of the fluents in the previous situation (not the
history). Hence in the presence of a finite object domain, one can ab-
stract situations into “states”, which are the interpretation of the flu-
ents for that situation [32]. Consequently one can show that there is
a finite transition system bisimilar to the SitCalc model, for example
along the lines of [8]. Given the invariance with respect to bisimula-
tion of the µ-calculus, one can use such a finite transition system for
the evaluation, or model checking, of the µATL-FO formulas (notice
also that first-order quantification can be eliminated because of the
finite object domain). Thus we have the following result:

Theorem 5 Let D be a SCSGS with a finite object domain and Ψ a
µATL-FO formula. Then checking whether D |= Ψ is decidable.

In practice µATL-FO reduces to standard alternating-time µ-calculus
(µATL) [1], and one can use standard algoritms and tools for the ver-
ification. In fact such tools can also be used for synthesis by consid-
ering that strategies can be extracted from the existential choices in
the 〈〈G〉〉 © ϕ operators as discussed in [1]. Verification techniques
for propositional GDL descriptions have been proposed in [27].

Bounded first-order case. We say that a SitCalc theory is
bounded if in spite of having an infinite object domain, it allows only
a bounded number of object tuples in the extension of fluents in each
situation [8]. Intuitively this is like saying that we have a bookshelf
of a fixed size in which we can freely add, remove and replace books
as long as we remain within the fixed size of the bookshelf. For in-
stance, we can obtain an infinite-states bounded version of Example 2
as follows: we make the arrive(i) move illegal if there are already k
items in the shop; we make Repaired become false when an item is
shipped, so it is also bounded by k; finally we replace Shipped(i, s)
by JustShipped(i, s), which only holds in the situation that follows
the ship(i) action, i.e., for at most one item (Move(m) and Item(i)
can be viewed as abbreviations, the latter standing for anything that is
not an agent or move). Such bounded action theories are known to be
decidable for model checking a first-order variant of the µ-calculus
without first-order quantification across situations [8] as well as with
quantification across [8, 15, 3]. Such results can be adapted to show
that µATL-FO model checking against SCSGSs is decidable:

Theorem 6 Let D be a SCSGS that is a bounded action theory and
Ψ a µATL-FO formula. Then checking whether D |= Ψ is decidable.

Proof (sketch). If Ψ does not include first-order quantification across
situations, we can apply the techniques in [8] which allow for build-
ing a finite transition system that is bisimilar to the one induced by
the SitCalc theory model (which is essentially unique if we assume
complete information). If quantification across is allowed, we cannot
use the techniques in [8] in general, but we can still use a similar
finite faithful abstraction if the quantification is over objects in the
active domain and is restricted to be persistence-preserving [9]. Fi-
nally if we allow unrestricted quantification, we can still generate
a finite faithful abstraction, which however, in this case depends on
the number of variables in Ψ as well [3, 4]. The key to adapting the
original proofs to our case is to suitably reformulate the preimage
construction used in evaluating µATL-FO formulas, so has to handle
the coalition existentially and the adversaries universally.

Synthesis can be done as in the propositional case.

General first-order case. In the general case, model checking of
µATL-FO in SCSGSs is undecidable. For example it is immediate to
reconstruct the undecidability result in [15] using very simple SCS-
GSs and µATL-FO formulas. In this case, we can adopt the approach
of [11], and base the verification method on two main ingredients:
(i) regression [26], and (ii) fixpoint approximates and the classical
Knaster and Tarski results [31].

Regarding regression, note that with LegalM defined as in Sec-
tion 3, if ϕ is regressable then 〈〈G〉〉 © ϕ is also regressable, and in
fact its (one step) regression is:

R(〈〈G〉〉 © ϕ)
.
=

∃mg1 , . . . ,mgk .
∧
{gi,...,gk}=G LegalM (gi,mgi ,now)) ∧

∃mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G LegalM (gi,mgi ,now) ∧

∀mgk+1 , . . . ,mgn .
∧
{gk+1,...,gn}=G LegalM (gi,mgi ,now)

⊃ R(ϕ(do(tick(mg1 , . . . ,mgn),now)))

The second element is the ability, in some cases, to compute fix-
point approximates. Suppose that we want to verify a least fixpoint
formula µZ.Ψ(Z), where Z occurs free in Ψ. We can try to evaluate
this formula using the general technique of iterated fixpoint approx-
imates, which guarantees that for some transfinite ordinal we get the
fixpoint [31]. The technique goes as follows. The approximates for a
least fixpoint of the form µZ.Ψ(Z) are as follows:

Z0
.
= Ψ(False)

Z1
.
= Ψ(Z0)

Z2
.
= Ψ(Z1)

. . .

Observe that all of these formulas Zi are situation suppressed which
means that they all talk about the same situation, say now.

At limit transfinite ordinals ω we have that:

Zω =
∨
i

Zi

Notice that in order to express this approximate we need infinitary
disjunction (for least fixpoint as here, and conjunctions for great-
est fixpoint).5 However, this technique becomes effective only when
such a fixpoint can be reached within a finite number of iterations.
For an in-depth discussion, see [11].

6 Golog-Based Players
We can also use programs to specify the possible behaviors of the
agents playing the game. In particular, we can assume that each agent
Ag i is following a program δi specifying her possible moves at each
step. For this, we use programs in a variant of the Golog program-
ming language [19] where instead of atomic actions, we use moves.
Such programs cannot be run in isolation; they must be executed con-
currently with all agents moving synchronously. Programs constructs
are the following:

m atomic move
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration

5 By the way, notice that the fixpoint formulas in the µ-calculus are not con-
tinuous, so going above limit ordinals is in general necessary.

6

TransM(m, s, δ′,m′) ≡ m′ = m ∧ δ′ = nil

TransM(ϕ?, s, δ′,m′) ≡ False

TransM(δ1; δ2, s, δ
′,m′) ≡

∃δ′1.TransM(δ1, s, δ
′
1,m

′) ∧ δ′ = δ′1; δ2 ∨
FinalM(δ1, s) ∧ TransM(δ2, s, δ

′,m′)

TransM(if ϕ then δ1 else δ2, s, δ′,m′) ≡
ϕ[s] ∧ TransM(δ1, s, δ

′,m′) ∨
¬ϕ[s] ∧ TransM(δ2, s, δ

′,m′)

TransM(while ϕ do δ, s, δ′,m′) ≡
ϕ[s] ∧ ∃δ′′.TransM(δ, s, δ′′,m′) ∧ δ′ = δ′′; (while ϕ do δ)

TransM(δ1|δ2, s, δ′,m′) ≡
TransM(δ1, s, δ

′,m′) ∨ TransM(δ2, s, δ
′,m′)

TransM(πz.δ, s, δ′,m′) ≡ ∃z.TransM(δ, s, δ′,m′)

TransM(δ∗, s, δ′,m′) ≡ ∃δ′′.TransM(δ, s, δ′′,m′) ∧ δ′ = δ′′; δ∗

TransM(nil , s, δ′,m′) ≡ False

FinalM(m, s) ≡ False

FinalM(ϕ?, s) ≡ ϕ[s]

FinalM(δ1; δ2, s) ≡ FinalM(δ1, s) ∧ FinalM(δ2, s)

FinalM(if ϕ then δ1 else δ2, s) ≡
ϕ[s] ∧ FinalM(δ1, s) ∨ ¬ϕ[s] ∧ FinalM(δ2, s)

FinalM(while ϕ do δ, s) ≡
ϕ[s] ∧ FinalM(δ, s) ∨ ¬ϕ[s]

FinalM(δ1|δ2, s) ≡ FinalM(δ1, s) ∨ FinalM(δ2, s)

FinalM(πx.δ, s) ≡ ∃x.FinalM(δ, s)

FinalM(δ∗, s) ≡ True

FinalM(nil , s) ≡ True

Figure 1. Axioms specifying TransM and FinalM

In the above, m is a term that represents a move, possibly with pa-
rameters, and ϕ is situation-suppressed SitCalc formula. Program
δ1|δ2 allows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeterministic
choice of a legal binding for variable x (observe that such a choice
is, in general, unbounded). δ∗ performs δ zero or more times. Note
that we leave out recursive procedures.

To assign semantics to such programs we use notions analogous
to Trans and Final from ConGolog’s transition semantics [6]. In
particular we introduce the predicate TransM(δ, s, δ′,m) to mean
that the program δ in situation s can perform move m leaving δ′

as the remaning program to execute, and the predicate FinalM(δ, s)
to mean that program δ can be considered terminated in situation s.
The definiton of these predicates appears in Figure 1. We can read
these axioms as follows: A program consisting of an atomic move
m can only perform move m with the remaining program being the
“empty” program nil . A test program ϕ? can never perform a move.
A sequence δ1; δ2 can perform move m in situation s if δ1 can per-
form it with the remaining program being what remains of δ1 fol-
lowed by δ2 or if δ1 can be considered completed in s and δ2 can
perform move m in s with the remaining program being what re-
mains of δ2. An if ϕ then δ1 else δ2 can perform move m in s if
δ1 can when ϕ is true, and if δ2 can when ϕ is false; the remaining
program is what remains of the selected branch. A “while” program
can perform move m in s if its condition is true in s and its body can
perform m; the remaining program is what remains of the body fol-
lowed by the “while” program itself. A nondeterministic branch can
perform move m in s if either one of its branches can, the remaining
program being what remains of the chosen branch. A nondetermin-
istic choice of argument πx.δ can perform move m in s if δ can
perform it for some value of variable x, which may occur in δ; the
remaining program is what remains of δ for this value. A nondeter-
ministic iteration δ∗ can perform move m in s if δ can perform it;
the remaining program is what remains of δ followed by δ∗ again.
Finally, the empty program nil can never perform a move.

For FinalM we have the following: A program consisting of an
atomic move m is never considered terminated. A test program ϕ?
is considered terminated in situation s if and only if ϕ holds in s. A
sequence δ1; δ2 is considered terminated in situation s if both δ1 and

δ2 are terminated in s. An if ϕ then δ1 else δ2 is terminated if δ1 is
when ϕ is true, and if δ2 is when ϕ is false. A “while” program is
terminated if its condition is false or if its condition is true and its
body is terminated. A nondeterministic branch is terminated if either
one of its branches is. A nondeterministic choice of argument πx.δ is
terminated if δ is terminated for some value of variable x, which may
occur in δ. A nondeterministic iteration δ∗ can always be considered
terminated, as it can execute 0 times. Lastly, the empty program nil
is always considered terminated.

Actually, we require that the agents’ behavior programs be move
determined.6 That is, we require that the step-by-step execution of
such programs be fully determined at each step by the selected move.
In other words, we cannot have nondeterminism in the program once
the move is selected. E.g., program m1; (m2 | m3) is move deter-
mined, but (m1;m2) | (m1;m3) is not; with the latter, the remaining
program after performing m1 could be either m2 or m3. We impose
this requirement because we use programs to specify the set of avail-
able moves for each agent in every game state. Using TransM we can
formalize that a program δ is move determined in a situation s as:

MoveDet(δ, s) .
=

∀m, δ′, δ′′.TransM(δ, s, δ′,m) ∧ TransM(δ, s, δ′′,m) ⊃ δ′ = δ′′

An agent Agi is move determined in a game if its (remaining) pro-
gram is move determined in every situation that the game can reach.7

We can then define LegalM in terms of such programs by intro-
ducing a special fluent CurrProg(Agi, δi, s) that stores the reman-
ing program of each agent in the situation:

LegalM (Ag i,m, s)
.
=

CurrProg(Agi, δi, s) ∧ ∃δ′i.TransM(δi, s, δ
′
i,m)

where the successor state axiom for CurrProg is as follows:

CurrProg(Agi, δ
′
i, do(tick(mi, . . . ,mn), s)) ≡

CurrProg(Ag i, δi, s) ∧ TransM(δi, s, δ
′
i,mi)

6 The notion of move-determined program is similar to that of situation-
determined program from [7].

7 Using CurrProg introduced here, this can be specified as follows:
∀s.∀δi.Executable(s) ∧ CurrProg(Agi, δi, s) ⊃ MoveDet(δi, s).

7

That is, a move m is legal for agent Ag i in situation s if her current
remaining program δi in s can perform m, and when a joint move
tick(mi, . . . ,mn) is performed, the current remaining program of
each agent Agi is updated to be what remains of her current program
after her move mi.

Example 7 For the game of Example 1, we can define the legal
moves of Ag3 using the following program:

CurrProg(Ag3, δ, S0) ≡ δ = BehaviorAg3

where BehaviorAg3
.
=

while ¬Terminal do
([∃x, y.At(ag, x, y)?;Stay] |

[AtExit(Ag3)?;Exit] |
[πd.∃u, v, x, y.At(Ag3, u, v, s) ∧Adj (u, v, d, x, y)?;move(d)])

For the guard agents Ag1 and Ag2, the program is similar, except
that the Exit move is not allowed:

while ¬Terminal do
([∃x, y.At(ag, x, y)?;Stay] |
[πd.∃u, v, x, y.At(ag, u, v) ∧Adj(u, v, d, x, y)?;move(d)])

We can also specify more constrained behaviors/strategies, e.g.,
one where Ag3 never moves in a direction where he may be captured:

BehaviorAg3
.
=

while ¬Terminal do
([∃x, y.At(Ag3, x, y)?;Stay] |
[AtExit(Ag3)?;Exit] |
[πd.∃u, v, x, y.At(Ag3, u, v) ∧Adj (u, v, d, x, y) ∧

¬∃m.Capturing(Ag3,move(d),Ag1,m) ∧
¬∃m.Capturing(Ag3,move(d),Ag2,m)?;

move(d)])

When we do this, we verify properties of the system under the as-
sumption that agents behave as specified. We should of course en-
sure that all moves allowed by such a specialized behavior are legal
and that the agent always has some move it can make until the game
ends. The latter is just playability, which we discussed earlier. The
former requires establishing a simulation relation between the tran-
sition systems induced by the specialized and the orignal program,
cf. [28]; we leave this for future work.

The verification techniques of Sec. 5 can be adapted to handle
LegalM defined through programs.

Propositional case. The propositional case is straightforward.

Theorem 8 Let D be a SCSGS with a finite object domain, with
LegalM and CurrProg defined through programs. Then, for every
µATL-FO formula Ψ, checking whether D |= Ψ is decidable.

Proof (sketch). Since the domain is bounded, the number of possible
remaining programs within every computation is finite. Hence every
fluent, including LegalM and CurrProg has a finite extension (and
hence can be represented propositionally). Thus we can define a finite
transition system that is bisimilar to the model of the action theory
and check the property Ψ over it.

Bounded first-order case. For the bounded first-order case, we
can leverage on recent work [10]. The difficulty when the domain is
infinite is that the number of possible remaining programs within a
computation is infinite in general. Moreover their inductive structure
guides the definition of TransM and FinalM and hence ultimately of

LegalM and CurrProg . The results in [10] however, show that in the
absence of recursion, the source of having infinitely many program
terms is the pick operator π. Now, when the number of action types
is finite (and in our framework, moves (and hence actions) come in
finitely many move types), we can capture such programs as a pair
formed by a program schema (with pick variables uninstantiated) and
a separate set of variable substitutions, one for each pick variable in
the original program, which in turn can be assumed to range over
objects only w.l.o.g. In this way, the number of remaining program
schemas that are generated during a computation is finite (they act as
a program counter) while the number of possible substitutions is infi-
nite (they can get all possible values from the infinite object domain).
The point is that the number of pick variables in a program is syntac-
tically determined by the original program alone (not the remaining
programs that can be generated) and hence is naturally bounded.

As a final result [10] shows that for situation-determined pro-
grams, execution, as defined by Trans and Final, can be captured
using new suitable predicate fluents, which are bounded. The same
kind of reasoning can indeed be applied in our case to show that for
move-determined programs, TransM and FinalM can be captured us-
ing new predicate fluents, which are bounded. This, in turn, makes
the extension of LegalM and CurrProg bounded and hence we can
apply Theorem 6 to get decidability. Thus we get:

Theorem 9 Let D be a SCSGS that is a bounded action theory ex-
cept for LegalM and CurrProg defined through programs as above.
Then for every µATL-FO formula Ψ, checking whether D |= Ψ is
decidable.

General first-order case. For the general first-order case, we can
only obtain sound (but generally incomplete) methods, e.g., resort-
ing to the techniques in [11] based on program characteristic graphs
[5] or compilation techniques such as [12] and in [10] for situation-
determined (in our case move-determined) programs.

7 Conclusion
In this paper, we have defined a logical framework, SCSGSs, for rep-
resenting synchronous games-like systems and verifying temporal
properties over them. We have also shown that under some common
assumptions, GDL games can be represented as SCSGSs. Perhaps
more significantly our framework allows for representing first-order
GDL games in standard situation calculus, and thus allows one to
leverage on the wide literature on such a formalism for analyzing the
game, in particular for FO-temporal verification. Indeed, a key point
is that our framework is truly first-order and can be used to spec-
ify games/systems that involve infinite domains and an infinite set
of states. Further, when the SCSGS is “propositional” or “bounded”,
verification of large classes of temporal formulas are decidable. Even
in the general case, reasoners for our framework can be developed. A
prototype verifier that uses the iterated fixpoint approximation tech-
nique is discussed in [17]. Such reasoners could be used to verify
properties of interest in general game playing. One important as-
sumption in our framework is that the game state is fully observable
and no agent can any have private information. We would like to
generalize it to accomodate partially observable game settings.

ACKNOWLEDGEMENTS
We acknowledge the support of Sapienza 2015 project “Immersive
Cognitive Environments” and the National Science and Engineering
Research Council of Canada.

8

REFERENCES

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman, ‘Alternating-
time temporal logic’, J. ACM, 49(5), 672–713, (2002).

[2] Julien Bradfield and Colin Stirling, ‘Modal mu-calculi’, in Handbook
of Modal Logic, volume 3, 721–756, Elsevier, (2007).

[3] Diego Calvenese, Giuseppe De Giacomo, , Marco Montali, and Fabio
Patrizi, ‘On first-order µ-calculus over situation calculus action theo-
ries’, in Proc. of KR, (2016).

[4] Diego Calvenese, Giuseppe De Giacomo, Marco Montali, and Fabio
Patrizi, ‘First-order µ-calculus over generic transition systems and ap-
plications to the situation calculus’. Submitted.

[5] Jens Claßen and Gerhard Lakemeyer, ‘A logic for non-terminating
Golog programs’, in Proc. of KR, pp. 589–599, (2008).

[6] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque,
‘ConGolog, a concurrent programming language based on the situation
calculus’, Artificial Intelligence, 121(1–2), 109–169, (2000).

[7] Giuseppe De Giacomo, Yves Lespérance, and Christian J. Muise, ‘On
supervising agents in situation-determined ConGolog’, in Proc. of AA-
MAS, pp. 1031–1038, (2012).

[8] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi, ‘Bounded
situation calculus action theories and decidable verification’, in Proc.
of KR, (2012).

[9] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi, ‘Bounded
situation calculus action theories’, Artificail Intelligence, 237, 172–203,
(2016).

[10] Giuseppe De Giacomo, Yves Lespérance, Fabio Patrizi, and Sebastian
Sardina, ‘Verifying ConGolog programs on bounded situation calculus
theories’, in Proc. of AAAI, (2016).

[11] Giuseppe De Giacomo, Yves Lespérance, and Adrian R Pearce, ‘Sit-
uation calculus based programs for representing and reasoning about
game structures.’, in Proc. of KR, (2010).

[12] Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith, ‘ConGolog,
Sin Trans: Compiling ConGolog into basic action theories for planning
and beyond’, in Proc. of KR, pp. 600–610, (2008).

[13] Michael R. Genesereth, Nathaniel Love, and Barney Pell, ‘General
game playing: Overview of the AAAI competition’, AI Magazine,
26(2), 62–72, (2005).

[14] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman Mc-
Cain, and Hudson Turner, ‘Nonmonotonic causal theories’, Artificial
Intelligence, 153(1–2), 49–104, (2004).

[15] Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin
Deutsch, and Marco Montali, ‘Verification of relational data-centric dy-
namic systems with external services’, in Proc. of PODS, pp. 163–174,
(2013).

[16] Andreas Herzig, Emiliano Lorini, Frédéric Moisan, and Nicolas Tro-
quard, ‘A dynamic logic of normative systems’, in Proc. of IJCAI,
(2011).

[17] Slawomir Kmiec and Yves Lespérance, ‘Infinite states verification in
game-theoretic logics: Case studies and implementation’, in Proc. of
EMAS. Springer, (2014).

[18] Hector J. Levesque and Gerhard Lakemeyer, The Logic of Knowledge
Bases, MIT Press, 2001.

[19] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl, ‘GOLOG: A logic programming language for dy-
namic domains’, J. Logic Programming, 31, 59–84, (1997).

[20] John W. Lloyd, Foundations of Logic Programming, 2nd Edition,
Springer, 1987.

[21] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi, ‘MCMAS: A
model checker for the verification of multi-agent systems’, in Proc. of
CAV, pp. 682–688, (2009).

[22] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and
Michael Genesereth, ‘General game playing: Game description lan-
guage specification’. Tech. Rept. LG-2006-01, Stanford University,
2006.

[23] J. McCarthy and P. J. Hayes, ‘Some Philosophical Problems From the
Standpoint of Artificial Intelligence’, Machine Intelligence, 4, 463–
502, (1969).

[24] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi, ‘Reasoning
about strategies’, in Proc. of FSTTCS, pp. 133–144, (2010).

[25] Javier Pinto, ‘Concurrent actions and interacting effects’, in Proc. of
KR, pp. 292–303, (1998).

[26] Ray Reiter, Knowledge in Action. Logical Foundations for Specifying
and Implementing Dynamical Systems, MIT Press, 2001.

[27] Ji Ruan, Wiebe van der Hoek, and Michael Wooldridge, ‘Verification
of games in the game description language’, J. Log. Comput., 19(6),
1127–1156, (2009).

[28] Sebastian Sardina and Giuseppe De Giacomo, ‘Composition of Con-
Golog programs’, in Proc. of IJCAI, pp. 904–910, (2009).

[29] Stephan Schiffel and Michael Thielscher, ‘A multiagent semantics for
the game description language’, in Agents and Artificial Intelligence,
volume 67 of CCIS, pp. 44–55. Springer, (2010).

[30] Stephan Schiffel and Michael Thielscher, ‘Representing and reasoning
about the rules of general games with imperfect information’, J. Artif.
Intell. Res. (JAIR), 49, 171–206, (2014).

[31] Alfred Tarski, ‘A lattice-theoretical fixpoint theorem and its applica-
tions’, Pacific J. of Mathematics, 5(2), 285–309, (1955).

[32] Eugenia Ternovskaia, ‘Automata theory for reasoning about actions’, in
Proc. of IJCAI, pp. 153–159, (1999).

[33] Michael Thielscher, ‘A general game description language for incom-
plete information games’, in Proc. of AAAI, (2010).

[34] Michael Thielscher, ‘Translating general game descriptions into an
action language’, in Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning, volume 6565 of LNCS, pp. 300–314.
Springer, (2011).

[35] Wiebe van der Hoek and Michael Wooldridge, ‘On the logic of cooper-
ation and propositional control’, Artif. Intell., 164(1-2), 81–119, (2005).

9

