
Efficient Reasoning in Multiagent Epistemic Logics
Gerhard Lakemeyer1 and Yves Lespérance2

Abstract. In many applications, agents must reason about what
other agents know, whether to coordinate with them or to come out
on top in a competitive situation. However in general, reasoning in a
multiagent epistemic logic such as Kn has high complexity. In this
paper, we look at a restricted class of knowledge bases that are sets
of modal literals. We call these proper epistemic knowledge bases
(PEKBs). We show that after a PEKB has been put in prime impli-
cate normal form (PINF), an efficient database-like query evaluation
procedure can be used to check whether an arbitrary query is entailed
by the PEKB. The evaluation procedure is always sound and some-
times complete. We also develop a procedure to convert a PEKB into
PINF. As well, we extend our approach to deal with introspection.

1 Introduction

In many applications, agents must reason about what other agents
know, whether to coordinate with them or to do well in a competitive
situation. For example, if Bob has forgotten which client he is sup-
posed to call, but knows that his secretary Alice knows, then it makes
sense for him to ask her; it makes no sense for him to ask someone
whom he knows does not know. A popular approach is to use multi-
agent modal logic [4] to model such scenarios. However, reasoning
in such logics is intractable in general. For example, in the case of
Kn it is PSPACE-complete [11].

As the intractability problem already arises in the single-agent
case and even without explicit modalities, a number of ways of deal-
ing with this issue have been investigated. One approach for gaining
efficiency is to consider weaker logics where beliefs are no longer
closed under modus ponens, e.g. [17, 9, 14, 15, 8]. Removing modus
ponens altogether from the inference mechanism turns out to be
rather drastic. For this reason, Lakemeyer and Levesque [16] and
later Liu et al. [19] considered a tractable form of inference which
allowed unit propagation and a bounded number of applications of
modus ponens. Unfortunately, the underlying semantics is rather in-
volved and cumbersome, making it hard to analyze what actually
follows from a knowledge base.

An interesting alternative is to restrict the form of the knowledge
base in addition to limiting the inference mechanism. In particular,
Levesque [18] considered what he calls proper knowledge bases,
which correspond to (possibly infinite) sets of ground literals. This
enables the definition of a very simple and efficient query evalua-
tion mechanism, which is always sound, and is even complete for an
interesting class of queries.

Note that while some of the work mentioned above is first-
order, none deals with the multiagent case. In fact with few ex-
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ceptions [14, 8], none considers nested beliefs. In this paper, we
will remain propositional, but consider multiagent modal logic with
arbitrary nesting of epistemic operators. Our work is inspired by
Levesque’s investigation of proper knowledge bases. Instead of hav-
ing just literals in the KB, we consider belief literals, which are
sequences of �i and ♦j modalities followed by a literal such as
�1♦2¬p, i.e. agent 1 believes that agent 2 thinks that p may not
hold. We call knowledge bases consisting of belief literals proper
epistemic knowledge bases (PEKBs). We will then propose a simple
query evaluation mechanism for PEKBs, which reduces to the one by
Levesque in the non-modal case. Besides soundness we also estab-
lish completeness for queries in a certain normal form, which again
reduces to the normal form introduced by Levesque in the non-modal
case.

As it turns out, belief literals introduce a non-trivial complication
not present in the original proper knowledge bases. There it is trivial
to decide whether a KB is satisfiable by simply checking whether the
KB contains complementary literals. For PEKBs this is not so easy.
For example, consider the following:

{ �♦p, ♦�p, ��¬p }

This KB is unsatisfiable in logic K, yet it takes some effort to dis-
cover this as one needs to realize that ♦♦p follows from the first
two belief literals. While the example is simple, the problem turns
out to be NP-complete in general. This was proved in [6] in the case
of a fragment of the description logic ALC, which is known to be
a notational variant of Kn [21]. In order to cope with this com-
plexity, we will employ results by Bienvenu [2, 3], who considers
prime implicates for modal logics. The idea is to transform a PEKB
into prime implicate normal form (PINF), for which the satisfiability
problem is again trivial, and define the query evaluation mechanism
for such KBs. While the transformation into PINF leads to a double-
exponential blowup for arbitrary theories, we will see that this is not
the case for sets of belief literals.

There are many applications where the kind of epistemic KBs and
reasoning procedure that we propose are useful. Consider a collabo-
rative filtering [20] application where agents make movie recommen-
dations to users based on the evaluation of other users with similar
tastes. We assume a peer to peer setting where agents have incom-
plete information, and may only communicate directly (and share
some information) with their immediate acquaintances. They store
this information as nested belief literals in their KB, for example
�2♦3Likes(M1, 4), i.e., agent 2 believes that agent 3 considers it
possible that agent 4 likes movie M1. In such a setting, it is easy to
provide examples of epistemic queries that agents may want to ask:

• If there is some movie m such that Favorite(m, 1) ∧
♦2♦3Likes(m, 4), i.e., m is one of agent 1’s favorites and agent
2 considers it possible that agent 3 considers it possible that agent



4 likes m, then agent 4 may be considered as a source of informa-
tion/recommendations for agent 1; agent 1 may want to evaluate
such a query; note that an agent may want to consider similar more
deeply nested queries.

• If for all movies m, Favorite(m, 1) ⊃ �2�3�4Likes(m, 5)
and there exists M1 such that ¬Seen(1,M1) ∧
�2�3�4Likes(m, 5), then M1 is a good recommendation
for agent 1.

• If agent 1 shares tastes with agent 3, and ♦1�2Likes(M1, 3),
i.e., agent 1 considers it possible that agent 2 believes that agent
3 likes a movie M1, then agent 1 may want to ask agent 2
whether it actually believes that agent 3 likes M1. Similarly, if
♦1♦2♦4Likes(M1, 3), then agent 1 may want to ask agent 2
whether agent 4 believes that agent 3 likes M1.

There are many other applications where this kind of reasoning is
useful, e.g., games, social networks, etc.

The rest of the paper goes as follows. In the next section, we re-
view the basics of logic Kn and Bienvenu’s work on using prime
implicates to reason in this logic. In Section 3, we define proper
epistemic knowledge bases, present our algorithm for transforming
them into prime implicate normal form, and show its correctness and
complexity. In the following section, we present our query evalua-
tion algorithm, show its soundness, show completeness for queries
in a particular normal form, and discuss complexity. In Section 5, we
extend our approach to deal with introspection. In the conclusion, we
review our results and discuss future work.

2 Background

We first briefly review the basics of modal logic Kn. We assume
that there is a finite set of agents A = {1, . . . , n}; we use i and j,
possibly with decorations, to range over them. Formulas in Kn are
built from a set of propositional variables V (we use p, possibly with
decorations, to range over these), the standard logical connectives (¬,
∧, and ∨), and the modal operators �i and ♦i, for i ∈ A. We use φ,
possibly with decorations, to range over formulas ofKn. �iφmeans
that agent i believes that φ and ♦iφ means that agent i thinks that φ
is possibly true. ♦i is the dual of �i and ♦iφ ≡ ¬�i¬φ is valid in
the logic. The language is defined as follows using BNF notation (>
stands for True and ⊥ for False):

φ ::= > | ⊥ | p | ¬φ | φ ∧ φ | φ ∨ φ | �iφ | ♦iφ

By the depth of a formula φ we mean the maximum number of nest-
ings of modal operators within φ.

The semantics of the logic is formally defined in terms of Kripke
structures [13, 12]. A Kripke structure for n agents is a tuple M =
(W,π,R1, . . . , Rn), where W is a set of states or possible worlds,
π is a mapping from V to 2W , and Ri ⊆ W ×W for i ∈ A. Ri
is the belief accessibility relation for agent i and Ri(w,w′) means
that world w′ is compatible with agent i’s beliefs in world w. We
define satisfaction/truth of a formula φ in a structure M and world
w, written M,w |= φ, as follows:

M,w |= >
M,w 6|= ⊥
M,w |= p iff w ∈ π(p)
M,w |= ¬φ iff M,w 6|= φ
M,w |= φ ∧ φ′ iff M,w |= φ and M,w |= φ′

M,w |= φ ∨ φ′ iff M,w |= φ or M,w |= φ′

M,w |= �iφ iff M,w′ |= φ
for all w′ ∈ Ri(w,w′)

M,w |= ♦iφ iff M,w′ |= φ
for some w′ ∈ Ri(w,w′)

φ is valid iff for all structures M and worlds w ∈ W , M,w |= φ. φ
entails φ′, i.e., φ |= φ′, iff for all structures M and worlds w ∈ W ,
if M,w |= φ, then M,w |= φ′. As mentioned earlier, reasoning in
Kn has high complexity: checking satisfiability/validity/entailment
is PSPACE-complete [11].

A non-modal literal is a propositional variable or the negation of
a propositional variable. We say that a formula is in negation normal
form (NNF) if in it, negation only appears in front of propositional
variables. Note that there is a linear-time algorithm to transform any
formula into an equivalent formula in NNF (see [3]).

Following Bienvenu [3], we define the notions of modal literal l,
clause c, and term t as follows:

l ::= > | ⊥ | p | ¬p | �iψ | ♦iψ
c ::= l | c ∨ c
t ::= l | t ∧ t

(in the above ψ ranges over arbitrary Kn formulas in NNF). Note
that according to this definition, a clause (term) may contain con-
junctions (disjunctions resp.) as long as they are in the scope of a
modal operator. Bienvenu has shown that this definition (unlike some
alternatives) has many nice properties and can be used to define well
behaved notions of (prime) implicates. A clause c is an implicate of a
formula φ iff φ |= c (throughout |= denotes entailment inKn, unless
stated otherwise). A clause c is a prime implicate of a formula φ iff
c is an implicate of φ and for all c′, if c′ is an implicate of φ and
c′ |= c, then c |= c′.

As defined in [2], a formula φ is in prime implicate normal form
(PINF) if and only if it satisfies one of the following conditions:

1. φ = ⊥
2. φ = >
3. φ is satisfiable and falsifiable and φ = c1 ∧ . . . ∧ cp where

(a) ci 6|= cj for i 6= j

(b) each prime implicate of φ is equivalent to some ci

(c) every ci is a prime implicate of φ such that (i) if d is a disjunct
of ci, then 6|= ci ≡ ci \ {d}, (ii) for every agent j, there is at
most one disjunct of ci of the form ♦jφ′, (iii) for every disjunct
d of ci of the form �jφ′ or ♦jφ′ for some j, φ′ is in PINF, and
(iv) if there are disjuncts ♦jφ′ and �jφ′′ of ci for some j, then
φ′ |= φ′′.

Bienvenu [2] defines a procedure PINF(φ) that takes any formula
φ and returns a formula in PINF that is equivalent to φ. She also
shows that in general, the smallest formula in PINF that is equivalent
to φ may have a length double-exponential in the length of φ, |φ|.

Bienvenu [2] also defines a procedure Π-Subsume(φ1, φ2) to de-
cide whether a PINF formula φ1 entails another PINF formula φ2.
The procedure runs efficiently in quadratic time in |φ1|+ |φ2|. Thus
if one is willing to pay the price of compiling both the knowledge
base and query into PINF, one can check whether a query is entailed
by the KB very efficiently.



3 Proper Epistemic Knowledge Bases
We will now look at a class of Kn theories/knowledge bases that
support a limited form of incomplete knowledge about the epistemic
state of agents. A restricted modal literal r is a modal literal that
does not contain any ∨, ∧,>, or⊥, and where negation only appears
in front of propositional variables, i.e.:

r ::= p | ¬p | �ir | ♦ir
A proper epistemic knowledge base (PEKB) is a conjunction (or
equivalently a set) of restricted modal literals. Note that PEKBs are
always in NNF.

First, we note that:

Proposition 1 Any non-empty PEKB φ is falsifiable.

Proof: φ is falsifiable iff ¬φ is satisfiable. Take the first disjunct of
¬φ. This is a restricted modal literal which does not contain > or ⊥.
So it is straightforward to construct a structure that satisfies it, and
this structure satisfies ¬φ.

Below, we will use the following abbreviations (where t stands for
any term):

• Bi(t) = {φ | �iφ ∈ t}.
• Di(t) = {φ | ♦iφ ∈ t}.
• Prop(t) = {l | l is a non-modal literal and l ∈ t}.

Our algorithm to convert a PEKB into an equivalent simple for-
mula in prime implicate normal form is as follows:

Function PEKB2PINF(φ) : takes a non-empty PEKB φ, i.e. a con-
junction of restricted modal literals, and returns a simple formula
(see below) in PINF that is equivalent to φ

1. Let Fi(φ) =
∧
ψ∈Bi(φ) ψ.

Let ∆(φ) = Prop(φ) ∪
{♦i(ψ ∧ Fi(φ)) | ψ ∈ Di(φ) and

Bi(φ) 6= ∅} ∪
{♦i(ψ) | ψ ∈ Di(φ) and Bi(φ) = ∅} ∪
{�i(Fi(φ)) | Bi(φ) 6= ∅}.

Finally, let Σ = ∆(φ).
2. For each l ∈ Σ, if l is of the form ♦i(ψ), replace it by

♦i(PEKB2PINF(ψ)) and if l is of the form �i(ψ), replace it by
�i(PEKB2PINF(ψ)).

3. If either ♦i⊥ is in Σ or if both p and ¬p are in Σ, return ⊥, other-
wise return

∧
ψ∈Σ ψ.

This algorithm is similar to Bienvenu’s, but somewhat simpler. We
do not explicitly check whether φ is unsatisfiable or valid. Instead,
we detect unsatisfiability in step 3 (a non-empty PEKB cannot be
valid). Moreover, we do not filter out implicates of φ in Σ that are
not prime implicates, as they must all be prime implicates. Here are
some simple examples: PEKB2PINF(�ip∧♦iq) = �ip∧♦i(q∧p);
PEKB2PINF(�j(�ip ∧ ♦iq) ∧ ♦jq′) =
�j(�ip ∧ ♦i(q ∧ p)) ∧ ♦j(q′ ∧�ip ∧ ♦i(q ∧ p)).

Let us show that this algorithm is correct. First, we have:

Lemma 1 For any term t, every prime implicate of t is equivalent to
some element of ∆(t).

Proof: See [3] Lemma 16.2.

Definition 1 The set of simple formulas is the smallest set which

1. includes every non-modal literal and
2. if φ1, . . . , φn are simple formulas, then
φ1 ∧ . . . ∧ φn, �i(φ1 ∧ . . . ∧ φn) and
♦i(φ1 ∧ . . . ∧ φn) are simple formulas.

We can now show that:

Theorem 1 For any non-empty PEKB φ, PEKB2PINF(φ) termi-
nates and the formula it returns is a simple formula in prime im-
plicate normal form that is equivalent to φ, and has depth at most
that of φ.

Proof: By induction on the depth of φ. Base case, where φ has
depth 0: Then φ is a conjunction of non-modal literals. By Propo-
sition 1, φ cannot be a tautology. If φ is unsatisfiable, then it must
contain complementary literals; then, ⊥ is correctly returned at step
3. Finally, suppose that φ is both satisfiable and falsifiable. Then, the
algorithm eliminates duplicate literals and returns the conjunction of
the remaining ones, which is clearly in PINF and is a simple formula.
Inductive case: Assume that the result holds whenever φ has depth at
most k. We show it must hold if φ has depth k+1. φ is a conjunction
of restricted modal literals. By Proposition 1, it cannot be a tautol-
ogy. If φ is unsatisfiable, then it must either contain complementary
non-modal literals or the set of its modal literals is unsatisfiable. In
the former case, ⊥ is returned at step 3. For the latter case, a set of
modal literals is inconsistent iff it entails ♦i⊥ for some i. In step 1,
we set Σ to ∆(φ), which is equivalent to φ. By the above and Lemma
1, some element of Σ is equivalent to ♦i⊥ for some i. As well, for
every modal literal ♦iψ(�iψ) ∈ Σ, ψ is a non-empty PEKB. In step
2, we apply the PEKB2PINF function to these ψ, which are of depth
at most k. By the induction hypothesis the result is equivalent to φ,
is a simple formula, and the arguments of modal operators in it are
in PINF. It follows that it contains ♦i⊥. Given this, ⊥ is returned at
step 3 as required.
Finally, consider the case where φ is both satisfiable and falsifiable.
In step 1, we set Σ to ∆(φ), which is equivalent to φ. In step 2, we
apply the PEKB2PINF function to subformulas of depth at most k
which are PEKBs. By the induction hypothesis, the result is equiva-
lent to φ, is a simple formula, and has depth at most k + 1. Step 3
just conjoins the literals in Σ. Thus PEKB2PINF(φ) is equivalent to
φ, is a simple formula, and has depth at most that of φ. It remains
to show that the result is in PINF. Clearly, PEKB2PINF(φ) is a con-
junction of literals. We have already shown that Σ is equivalent to φ.
By Lemma 1, all prime implicates of φ are equivalent to some lit-
eral in Σ. In step 2, we apply PEKB2PINF to the arguments of the
modal literals in Σ, which are PEKBs of depth at most k. By the in-
duction hypothesis, the result is equivalent to φ, is a simple formula,
and every modal literal in it is in PINF. Thus every prime implicate
of φ is equivalent to some literal in PEKB2PINF(φ). No literal in
PEKB2PINF(φ) implies another as there is at most one �i for each
i and all the ♦i are obtained from distinct restricted modal literals. It
is easy to check that condition 3c holds. Thus PEKB2PINF(φ) is in
PINF.

Next, we examine the spatial complexity of the prime implicate
normal form for PEKBs, i.e. conjunctions of restricted modal literals.
First, we show that:

Theorem 2 Every conjunction of restricted modal literals φ is
equivalent to a formula in prime implicate normal form whose length
is at most exponential in the depth of φ.



Proof: Clearly, PEKB2PINF(φ) makes at most |φ| recursive
calls to PEKB2PINF with an argment of length at most |φ| which
has a depth one less than that of φ. Apart from the recursive
calls, PEKB2PINF(φ) runs in O(|φ|2). Thus the running time of
PEKB2PINF(φ) is O(|φ|d+2), where d is the modal depth of φ.

As mentioned earlier, Bienvenu has shown that for an arbitrary Kn

formula φ, the smallest formula in PINF that is equivalent to φ may
have a length double-exponential in the length of φ. So the spatial
complexity of PINF for PEKBs is much less.

We can also show that this upper bound is optimal in that there
are PEKBs for which the transformation to PINF does involve an
exponential blowup in length:

Theorem 3 There exists a conjunction of restricted modal literals φ
such that the smallest equivalent formula in prime implicate normal
form has a length which is exponential in the depth of φ.

Proof: Let φ0 = p0 and φi+1 = �(φi) ∧ ♦pi+1. The depth of
φn is n and |φn| = 4n+ 1 (where |φ| is the total number of propo-
sitional variables, connectives, and modal operators in φ). Note that
strictly speaking, φn is not a PEKB, but it can easily be transformed
into one whose length is O(n2) without affecting the depth. Then
PINF(φ0) = φ0 and PINF(φi+1) = �(PINF(φi)) ∧ ♦(pi+1 ∧
PINF(φi)). It is easy to show that |PINF(φn)| is O(2n).

4 Query Evaluation
Let us now consider a query evaluation mechanism V for arbitrary
queries in NNF and knowledge bases which consist of simple for-
mulas. Let us call such knowledge bases simple epistemic knowl-
edge bases (SEKBs). From now on we use the term query to mean
an arbitrary formula in NNF. V is inspired by the method introduced
by Levesque for (non-modal) proper knowledge bases [18]. V is a
mapping from SEKBs Σ and queries φ into {0, 1}. Calling V [Σ, φ]
amounts to asking whether Σ entails φ, and a value 1 should be in-
terpreted as yes and 0 as don’t know.3 The inference V performs is
similar to database retrieval. For instance, when the query is a dis-
junction, V returns 1 just in case it returns 1 for one of the disjuncts.
Evaluating queries in this manner is very efficient and always sound,
but incomplete in general. Later we will see that we also have com-
pleteness for interesting classes of queries, provided the SEKB is also
in PINF.

In the following we use set notation to access conjuncts of simple
formulas (or SEKBs), i.e. φ ∈ Σ means that φ is one of the conjuncts
of Σ. Since the arguments of �i and ♦i within a simple formula are
themselves simple formulas, we do this recursively. V is then defined
as follows for any SEKB Σ and query φ:

Definition 2 1. V [Σ, φ] = 1 if Σ = ⊥; otherwise:
2. V [Σ,>] = 1;
3. V [Σ,⊥] = 0;
4. If l is a non-modal literal, then

V [Σ, l] =

{
1 if l ∈ Σ
0 otherwise

5. V [Σ, φ ∨ ψ] = max(V [Σ, φ], V [Σ, ψ]);

3 Levesque used a three-valued V where 1 had the same meaning as here, 0
meant that Σ entails ¬φ and 1/2 stood for don’t know. The only difference
is that we would need to explicitly call V with both φ and ¬φ to get the
same effect.

6. V [Σ, φ ∧ ψ] = min(V [Σ, φ], V [Σ, ψ]);

7. V [Σ,�iφ] =


1 if for some �iΣ′ ∈ Σ,

V [Σ′, φ] = 1

0 otherwise

8. V [Σ,♦iφ] =


1 if for some ♦iΣ′ ∈ Σ,

V [Σ′, φ] = 1

0 otherwise
.

Note that when restricted to the non-modal case, where a SEKB
simply consists of propositional literals, V behaves essentially like
the version proposed by Levesque. To see what properties we have
in the presence of modalities, the following well-known property of
Kn will be useful:

Lemma 2 |= φ ⊃ ψ iff |= �iφ ⊃ �iψ iff |= ♦iφ ⊃ ♦iψ.

Theorem 4 (Soundness of V ) Let Σ be a SEKB and φ a query. If
V [Σ, φ] = 1 then Σ |= φ.

Proof: If Σ = ⊥ or φ = > then V returns 1, which is the correct
answer. For the other cases we proceed by induction on φ. If φ = l
for some non-modal literal l and V [Σ, l] = 1, then l ∈ Σ and, hence,
Σ |= l. If V [Σ, φ ∨ ψ] = 1 then V [Σ, φ] = 1 or V [Σ, ψ] = 1.
Therefore, by induction, Σ |= φ or Σ |= ψ, from which Σ |= φ ∨
ψ follows. The case for φ ∧ ψ is similar. If V [Σ,�iφ] = 1 then
V [Σ′, φ] = 1 for some �iΣ′ ∈ Σ. Therefore, by induction, Σ′ |=
φ and, by Lemma 2, �iΣ′ |= �iφ. Since �iΣ′ ∈ Σ, Σ |= �iφ
follows. The case for ♦iφ is completely symmetric.

From the definition of V , it is straightforward to derive an algo-
rithm to compute V in polynomial time. Indeed, a naive implementa-
tion would run in time O(n2), where n is the size of the knowledge
base.4

Since V is polynomial, it clearly must be incomplete. Here is an
example: Let Σ be the empty set and consider �ip ⊃ �i(p ∨ q),
whose NNF is φ = ♦i¬p∨�i(p∨ q). Clearly, φ is valid in Kn, that
is, Σ |= φ yet V [Σ, φ] = 0.

When both the query and the SEKB are in PINF, then V is com-
plete.

Theorem 5 Let Σ and φ be in PINF.
Then V [Σ, φ] = 1 iff Σ |= φ.

Proof: Follows from the completeness of the subsumption algo-
rithm in [2, 1]

While this theorem says that we can always get completeness by
first converting both the SEKB and φ into PINF, there is no free lunch
because, as we saw, this conversion can lead to a double-exponential
blowup of φ. As we argued earlier, having the SEKB in PINF does
not seem so bad as the exponential blowup is restricted to the depth of
belief literals in the original PEKB. So from now on, let us assume
that the SEKB is in PINF. Under this assumption, it turns out that
there are many other cases for which V is complete, even if the query
is not in PINF. A simple example is �ip∧�iq, which is not in PINF
but for which V will give the correct answer. To characterize a class
of formulas for which V is complete we again follow Levesque and
define a kind of normal formNF , which covers cases like the above
example.

4 With some indexing on the contents of the knowledge base this can be easily
reduced to O(n logn).



Definition 3 (Logical Separability) A set of formulas Γ is logically
separable iff for every satisfiable set of simple formulas L, if L ∪ Γ
is unsatisfiable, then L ∪ {φ} is unsatisfiable for some φ ∈ Γ.

Intuitively, logical separability tries to capture the property that there
are no logical puzzles hidden within the formulas of Γ. For example,
{�ip,�iq} is logically separable, while Γ = {�ip,�i(p ⊃ q)} is
not, since Γ ∪ {♦i¬q} is inconsistent yet satisfiable when only one
of the two sentences in Γ is considered.

Definition 4 NF is the least set such that

1. if φ is a propositional variable, then φ ∈ NF ;
2. if φ ∈ NF , then ¬φ ∈ NF ;
3. if φ ∈ NF , then �iφ ∈ NF ;
4. if Γ ⊆ NF , Γ is logically separable, and Γ is finite, then

∧
Γ ∈

NF .

Note that our definition ofNF differs from that of Levesque only
in two places: in the definition of logical separability Levesque uses
sets of propositional literals L and, of course, his NF does not con-
sider �i formulas. Note also that formulas in NF do not mention >
and ⊥.

The main theorem of this section is that V is correct for queries in
NF . To prove it we need two lemmas.

Lemma 3 Let Σ = {�iΣ′1,♦iΣ′2, . . . ,♦iΣ′n, l1, . . . , lm} be a con-
sistent set of formulas, where the li are non-modal literals. Then
Σ |= �iφ iff �iΣ′1 |= �iφ.

Proof: The if direction is immediate. Conversely, suppose Σ |=
�iφ yet �iΣ′1 |6= �iφ, that is, {�iΣ′1,♦i¬φ} is satisfiable. Let
M = (W,π,Rj) be a model5 such that M,w |= Σ for some
w ∈ W . Let M ′ = (W ′, π′, R′j) be a model such that W ∩W ′ =
{} and M ′, w′ |= �iΣ′1 ∧ ♦i¬φ. Then there is a w′′ such that
w′R′iw

′′ and M ′, w′′ |= Σ′1 ∧ ¬φ. Now construct a new model
M∗ = (w∗, π∗, R∗i ), whereW ∗ = W ∪W ′, π∗(p) = π(p)∪π′(p),
and R∗j is the union of Rj and R′j together with wR∗jw

′′. Since
M∗, w′′ |= Σ′1 ∧ ¬φ, it is easy to see that M∗, w |= Σ ∧ ♦i¬φ,
contradicting the assumption that Σ |= �iφ.

Lemma 4 Let Σ = {�iΣ′1,♦iΣ′2, . . . ,♦iΣ′n, l1, . . . , lm} be a con-
sistent set of simple formulas in PINF. Then Σ |= ♦iφ iff for some
♦iΣ′j ∈ Σ, ♦iΣ′j |= ♦iφ.

Proof: The if direction is immediate. Conversely, suppose Σ |=
♦iφ yet ♦iΣ′k |6= ♦iφ for all k, that is, {Σ′k,¬φ} is satisfiable for
all k. Let Mk = (W k, πk, Rkj ) be models with disjoint W k and
wk ∈ W k such that Mk, wk |= Σ′k ∧ ¬φ for each k. Construct a
new model M = (W,π,Rj), where W =

⋃
W k ∪ {w} for some

new worldw, π(p) =
⋃
πk(p) if p 6∈ Σ and π(p) =

⋃
πk(p)∪{w}

otherwise, and Rj =
⋃
Rki ∪ {wRjwk}. By the construction of

π, M,w |= l for all literals l ∈ Σ. Since Σ is in PINF, we have
Σ′k |= Σ′1 for all k and hence M,w |= �iΣ′1. Also, since wRjwk,
we have M,w |= ♦iΣ′k and since the wk are the only accessible
worlds fromw, we haveM,w |= �i¬φ. In sum,M,w |= Σ∧�i¬φ,
contradicting the assumption that Σ |= ♦iφ.

5 We use the notation M = (W,π,Rj) with j ranging over the set of all
agents A as a shorthand for M = (W,π,R1, . . . , Rn).

Theorem 6 Let Σ be a SEKB in PINF and φ a formula in NF and
in negation normal form. Then V [Σ, φ] = 1 iff Σ |= φ.

Proof: If Σ is inconsistent, then Σ = ⊥ because of the definition
of PINF. In that case, the lemma holds trivially since V [⊥, φ] = 1
and ⊥ |= φ.

If Σ is consistent, the proof is by induction on the length of φ. If
φ is a literal l, then V [Σ, l] = 1 iff l ∈ Σ iff Σ |= l.

Suppose the lemma holds for formulas of length less than n and let
φ be of length n. V [Σ, φ∧ψ] = 1 iff V [Σ, φ] = 1 and V [Σ, ψ] = 1
iff (by induction) Σ |= φ and Σ |= ψ iff Σ |= φ ∧ ψ.

Let V [Σ, φ ∨ ψ] = 1. Then V [Σ, φ] = 1 or V [Σ, ψ] = 1 and
hence (by induction) Σ |= φ or Σ |= ψ, from which Σ |= φ ∨ ψ fol-
lows. Conversely, let Σ |= φ∨ψ. Then Σ∪{¬φ,¬ψ} is inconsistent.
Since φ ∨ ψ is inNF , {¬φ,¬ψ} are logically separable. Since Σ is
equivalent to a set of simple formulas and, by the definition of logical
separability, Σ ∪ {¬φ} or Σ ∪ {¬ψ} is inconsistent, that is, Σ |= φ
or Σ |= ψ and hence, by induction, V [Σ, φ] = 1 or V [Σ, ψ] = 1,
which implies V [Σ, φ ∨ ψ] = 1.

Let V [Σ,�iφ] = 1. Then, by definition, V [Σ′, φ] = 1 for �iΣ′ ∈
Σ. If Σ′ is inconsistent, then Σ′ = ⊥ by PINF and �iΣ′ |= �iφ
and thus Σ |= �iφ. If Σ′ is consistent then V [Σ′, φ] = 1 iff
Σ′ |= φ by induction. By Lemma 2, �iΣ′ |= �iφ and then, by
Lemma 3, Σ |= �iφ. To prove the converse, let Σ |= �iφ. Again by
Lemma 3, �iΣ′ |= �iφ for �iΣ′ ∈ Σ. By Lemma 2, Σ′ |= φ. Thus
V [Σ′, φ] = 1 by induction, from which V [Σ,�iφ] = 1 follows by
the definition of V . (Note that Σ′ is itself a SEKB in PINF so that the
induction hypothesis applies.)
V [Σ,♦iφ] = 1 iff V [Σ′, φ] = 1 for some ♦iΣ′ ∈ Σ iff Σ′ |= φ

by induction iff ♦iΣ′ |= ♦iφ by Lemma 2 iff Σ |= ♦iφ by Lemma 4.
Note that Σ′ in this case must be consistent since otherwise the PINF
would have reduced ♦iΣ′ to ⊥, making Σ inconsistent.

5 Extension to K45n

In many applications, one wants to assume that agents can correctly
introspect on their own beliefs. One gets this by using the multiagent
modal logic K45n, where the following are valid:

4 : �iφ ⊃ �i�iφ
5 : ¬�iφ ⊃ �i¬�iφ

That is, if an agent believes φ, then it believes that it believes φ, and
if it does not believe φ, then it believes that it does not believe φ.

Let us see how our approach can be adapted to compute K45n
entailment. First note that in K45n, the following are valid:

�i�iφ ≡ �iφ �i♦iφ ≡ ♦iφ ∨�i⊥
♦i♦iφ ≡ ♦iφ ♦i�iφ ≡ �iφ ∧ ♦iφ

Given this, we can already eliminate any string of consecutive modal
operators with the same agent in any PEKB. In general, any formula
in K45n can be converted into a so-called reduced form so that the
K45n-validity problem for such formulas reduces to Kn-validity,
and thus our existing method V can be applied. More precisely, we
call a formula φ i-objective if all the modal operators which do not
occur in the scope of another modal operator belong to agents other
than i. In other words, i-objective formulas are about what is true in
the world and about other agents’ beliefs. For example, p∨�j¬�ip
is i-objective, but p∨�i¬�ip is not. Let us call a formula φ reduced
if for all subformulas �iψ and ♦iψ, ψ is i-objective.



Lemma 5 For any Σ and α there are Σ∗ and α∗ in reduced form
such that Σ |=K45n α iff Σ∗ |=Kn α

∗.

Proof: A proof can be found in [10].

We remark that transforming a formula into reduced form preserves
NNF. However, when given a PEKB or SEKB, its reduced form may
no longer be a PEKB or SEKB. This is because of the top right reduc-
tion rule above, which introduces a disjunction. For that reason we
need to assume that any restricted modal literal, which is added to
a knowledge base, is already in reduced form. Queries, on the other
hand, can be arbitrary to start with and then pre-processed to turn
them into reduced form. Then we obtain:

Theorem 7 Let Σ be a reduced SEKB in PINF and φ a formula in
NF and in reduced negation normal form. Then V [Σ, φ] = 1 iff
Σ |=K45nφ.

The proof is similar to the case of Kn and makes use of the fact that
the algorithm to convert a reduced PEKB into PINF is the same for
Kn and K45n, and the corresponding Lemmas 2, 3, and 4 hold in
K45n when restricted to reduced formulas.

6 Conclusion and Future Work

In this paper, we have proposed an approach to efficient reasoning
in multiagent epistemic logic. Our approach focuses on a restricted
class of knowledge bases (PEKBs) that are sets of modal literals. We
have shown that if we put a PEKB in a particular normal form (PINF)
proposed by Bienvenu, we can use an efficient database-like query
evaluation procedure (V ) to check entailment. We showed that the
procedure is always sound. Moreover for queries in a certain normal
form (NF), the evaluation procedure is complete. We also proposed
a procedure for putting PEKBs in PINF and showed its correctness.
The procedure is efficient if the modal depth of the PEKB is small
relative to its size.

We saw that complexity of reasoning in our approach depends on
modal depth. In the psychological literature, it has been claimed that
humans can only handle a limited amount of nesting in reasoning
about the mental attitudes of others [22]. If this is the case, our ap-
proach might work quite well in many practical applications. On the
other hand, work in philosophy and on distributed systems suggests
that many interesting types of deception can be characterized by dif-
ferences in beliefs at various levels of nesting [7], e.g. X believes that
p but also believes that Y believes that X believes that not p (in this
case, the difference is quite shallow, but in others it is not).

The kind of KBs considered in this paper have a very restricted
form. While it may be sufficiently expressive for some applica-
tions, for many others it will not be. One important epistemic no-
tion is knowing whether something holds, which can be expressed
as �iφ ∨ �i¬φ. It would be very useful to allow this kind of infor-
mation in our KBs, at least in the case where φ is a restricted modal
literal. Another notion that is very important in coordination is com-
mon knowledge/mutual belief. It would be very useful to support
reasoning about it. It would also be good to extend our approach to
logics such as KTn, where beliefs must be true, and KDn, where
beliefs must be consistent.

Another area for future work is first-order epistemic logic. As
mentioned in the introduction, our work was partly inspired by the
“proper KBs” approach to efficient reasoning in a first-order context.

It would be interesting to examine whether the approach we devel-
oped in this paper can be combined with the techniques proposed for
the first order case. An important consideration would be handling
“quantifying in”, e.g. X knows that Y knows who killed Z.

Also note that in general, to allow agents to reason about others
so as to coordinate or compete with them, decide whether to com-
municate and what to say, we need much more than reasoning about
beliefs. Reasoning about other agents’ goals and intentions as well as
reasoning about action is also required, for instance to model how re-
questing something from another agent can further one’s goals. For
this, one would need efficient reasoning techniques for a full logic
of rational agency, albeit one with limited expressiveness [5]. Such
techniques could then be used to develop agents that can work effec-
tively with others, without having to prescript their interactions.
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