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demanding computationally in all but simple settings. An alternative approach that isshowing promise is that of high-level program execution [20]. The idea, roughly, is thatinstead of searching for a sequence of actions that would take the agent from an initialstate to some goal state, the task is to �nd a sequence of actions that constitutes a legalexecution of some high-level non-deterministic program. As in planning, to �nd a sequencethat constitutes a legal execution of a high-level program, it is necessary to reason aboutthe preconditions and e�ects of the actions within the body of the program. However, ifthe program happens to be almost deterministic, very little searching is required; as moreand more non-determinism is included, the search task begins to resemble traditionalplanning. Thus, in formulating a high-level program, the user gets to control the searche�ort required.The hope is that in many domains, what an agent needs to do can be convenientlyexpressed using a suitably rich high-level programming language, and that at the sametime �nding a legal execution of that program will be more feasible computationally thanthe corresponding planning task. Previous work on the Golog language [20] consideredhow to reason about actions in programs containing conditionals, iteration, recursion, andnon-deterministic operators, where the primitive actions and 
uents where characterizedby axioms of the situation calculus. In this paper, we explore how to execute programsincorporating a rich account of concurrency. The execution task remains the same; whatchanges is that the programming language, which we callConGolog (for Concurrent Golog)[6], becomes considerably more expressive. One of the nice features of this language isthat it allows us to conveniently formulate agent controllers that pursue goal-orientedtasks while concurrently monitoring and reacting to conditions in their environment, allde�ned precisely in the language of the situation calculus. But this kind of expressivenessrequires considerable mathematical machinery: we need to encode ConGolog programsas terms in the situation calculus (which, among other things, requires encoding certainformulas as terms), and we also need to use second-order quanti�cation to deal withiteration and recursive procedures. It is not at all obvious that such complex de�nitionsare well-behaved or even consistent.Of course ours is not the �rst formal model of concurrency. In fact, well developed ap-proaches are available [17, 25, 4, 39]1 and our work inherits many of the intuitions behindthem. However, it is distinguished from these in at least two fundamental ways. First,it allows incomplete information about the environment surrounding the program. Incontrast to typical computer programs, the initial state of a ConGolog program need onlybe partially speci�ed by a collection of axioms. Second, it allows the primitive actions(elementary instructions) to a�ect the environment in a complex way and such changesto the environment can a�ect the execution of the remainder of the program. In con-trast to typical computer programs whose elementary instructions are simple prede�nedstatements (e.g. variable assignments), the primitive actions of a ConGolog program are1In [28, 5] a direct use of such approaches to model concurrent (complex) actions in AI is investigated.2



determined by a separate domain-dependent action theory, which speci�es the action pre-conditions and e�ects, and deals with the frame problem. Finally, it might also be notedthat the interaction between prioritized concurrency and recursive procedures presents alevel of procedural complexity which, as far as we know, has not been dealt with in anyprevious formal model.The rest of the paper is organized as follows: in Section 2 we brie
y review the situationcalculus and how it can be used to formulate the planning task. In Section 3, we reviewthe Golog programming language and in the following section, we present a variant of theoriginal speci�cation of the high-level execution task. In Section 5, we explain informallythe sort of concurrency we are concerned with, as well as related notions of prioritiesand interrupts. The section concludes with changes to the Golog speci�cation requiredto handle concurrency. In Section 6, we illustrate the use of ConGolog by going overseveral example programs. Then, in Section 7, we extend such a speci�cation to handleprocedures and recursion. Handling the interaction between the very general form ofprioritized concurrency allowed in ConGolog and recursive procedures will require a quitesophisticated approach. In Section 8 we will show general su�cient conditions that allowus to use a much simpli�ed semantics without loss of generality. In Section 9, we present aProlog interpreter for ConGolog and prove its correctness. In Section 10, we conclude bydiscussing some of the properties of ConGolog, its implementation, and topics for futureresearch.2 The Situation CalculusAs mentioned earlier, our high-level programs contain primitive actions and tests that aredomain dependent. An interpreter for such programs must reason about the preconditionsand e�ects of actions in the program to �nd legal executions. So we need a language tospecify such domain theories. For this, we use the situation calculus [24], a �rst-orderlanguage (with some second-order features) for representing dynamic domains. In thisformalism, all changes to the world are the result of named actions. A possible worldhistory, which is simply a sequence of actions, is represented by a �rst-order term calleda situation. The constant S0 is used to denote the initial situation, namely that situationin which no actions have yet occurred. There is a distinguished binary function symboldo and the term do(a; s) denotes the situation resulting from action a being performedin situation s. Actions may be parameterized. For example, put(x; y) might stand forthe action of putting object x on object y, in which case do(put(A;B); s) denotes thatsituation resulting from putting A on B when the world is in situation s. Notice thatin the situation calculus, actions are denoted by function symbols, and situations (worldhistories) are also �rst-order terms. For example,do(putDown(A); do(walk(P ); do(pickUp(A); S0)))3



is a situation denoting the world history consisting of the sequence of actions[pickUp(A); walk(P ); putDown(A)]:Relations whose truth values vary from situation to situation, called relational 
uents,are denoted by predicate symbols taking a situation term as their last argument. Forexample, Holding(r; x; s) might mean that a robot r is holding an object x in situations. Functions whose denotations vary from situation to situation are called functional
uents. They are denoted by function symbols with an additional situation argument, asin position(r; s), i.e., the position of robot r in situation s.The actions in a domain are speci�ed by providing certain types of axioms. First, onemust state the conditions under which it is physically possible to perform an action byproviding a action precondition axiom. For this, we use the special predicate Poss(a; s)which represents the fact that primitive action a is physically possible (i.e. executable)in situation s. So for example,Poss(pickup(x); s) � 8x::Holding(x; s) ^NextTo(x; s) ^ :Heavy(x)says that the action pickup(x), i.e. the agent picking up an object x, is possible insituation s if and only if the agent is not already holding something in situation s and ispositioned next to x in s and x is not heavy.Secondly, one must specify how the action a�ects the state of the world; this is doneby providing e�ect axioms. For example,Fragile(x; s) � Broken(x; do(drop(x; s)))says that dropping an object x causes it to become broken provided that x is fragile.E�ect axioms provide the \causal laws" for the domain of application.These types of axioms are usually insu�cient if one wants to reason about change.One must add frame axioms that specify when 
uents remain unchanged by actions. Forexample, dropping an object does not a�ect the color of things:colour(y; s) = c � colour(y; do(drop(x; s))) = c:The frame problem arises because the number of these frame axioms is very large, ingeneral, of the order of 2 � A � F , where A is the number of actions and F the numberof 
uents. This complicates the task of axiomatizing a domain and can make theoremproving extremely ine�cient.To deal with the frame problem, we use an approach due to Reiter [31]. The basic ideabehind this is to collect all e�ect axioms about a given 
uent and make a completenessassumption, i.e. assume that they specify all of the ways that the value of the 
uent maychange. A syntactic transformation can then be applied to obtain a successor state axiom4



for the 
uent, for example:Broken(x; do(a; s)) �a = drop(x) ^ Fragile(x; s)_9b:(a = explode(b) ^NextTo(b; x; s))_Broken(x; s) ^ a 6= repair(x):This says that an object x is broken in the situation resulting from action a being per-formed in s if and only if a is dropping x and x is fragile, or a involves a bomb explodingnext to x, or x was already broken in situation s prior to the action and a is not theaction of repairing x. This approach yields a solution to the frame problem { a parsimo-nious representation for the e�ects of actions. Note that it relies on quanti�cation overactions. This discussion ignores the rami�cation and quali�cation problems; a treatmentcompatible with the approach described has been proposed by Lin and Reiter [21].So following this approach, a domain of application will be speci�ed by a theory ofthe following form:� Axioms describing the initial situation, S0.� Action precondition axioms, one for each primitive action a, characterizingPoss(a; s).� Successor state axioms, one for each 
uent F , stating under what conditionsF (~x; do(a; s)) holds as function of what holds in situation s:� Unique names axioms for the primitive actions.� Some foundational, domain independent axioms.The latter foundational axioms include unique names axioms for situations, and an in-duction axiom. They also introduce the relation < over situations. s < s0 holds if andonly if s0 is the result of some sequence of actions being performed in s, where each actionin the sequence is possible in the situation in which it is performed; s � s0 stands fors < s0 _ s = s0. Since the foundational axioms play no special role in this paper, we omitthem. For details, and for some of their metamathematical properties, see Lin and Reiter[21] and Reiter [32].For any domain theory of the sort just described, we have a very clean speci�cationof the planning task, which dates back to the work of Green [13]:Classical Planning: Given a domain theory D as above, and a goal formula�(s) with a single free-variable s; the planning task is to �nd a sequence ofactions ~a such that: D j= Legal(~a; S0) ^ �(do(~a; S0))5



where do([a1; : : : ; an]; s) is an abbreviation fordo(an; do(an�1; : : : ; do(a1; s) : : :));and where Legal([a1; : : : ; an]; s) stands forPoss(a1; s) ^ : : : ^ Poss(an; do([a1; : : : ; an�1]; s)):In other words, the task is to �nd a sequence of actions that is executable (each actionis executed in a context where its precondition is satis�ed) and that achieves the goal(the goal formula � holds in the �nal state that results from performing the actions insequence).3 GologAs presented in [20], Golog is a logic-programming language whose primitive actions arethose of a background domain theory. It includes the following constructs (�, possiblysubscripted, ranges over Golog programs):a, primitive action�?, wait for a condition2(�1; �2), sequence(�1 j �2), nondeterministic choice between actions�v:�, nondeterministic choice of arguments��, nondeterministic iterationfproc P1(~v1) �1 end; : : :proc Pn(~vn) �n end; �g, proceduresIn the �rst line, a stands for a situation calculus action where the special situation constantnow may be used to refer to the current situation (i.e. that where a is to be executed). Sim-ilarly, in the line below, � stands for a situation calculus formula where now may be usedto refer to the current situation, for example OnTable(block; now). a[s] (�[s]) will denotethe action (formula) obtained by substituting the situation variable s for all occurrencesof now in functional 
uents appearing in a (functional and predicate 
uents appearingin �). Moreover when no confusion can arise, we often leave out the now argument from
uents altogether; e.g. write OnTable(block) instead of OnTable(block; now). In suchcases, the situation suppressed version of the action or formula should be understood asan abbreviation for the version with now.2Because there are no exogenous actions or concurrent processes in Golog, waiting for � amounts totesting that � holds in the current state.
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Let's examine a simple example to see some of the features of the language. Here's aGolog program to clear the table in a blocks world:fproc removeAblock�b: [OnTable(b; now)?; pickUp(b); putAway(b)]end;removeAblock�;:9b: OnTable(b; now)? gHere we �rst de�ne a procedure to remove a block from the table using the nondeter-ministic choice of argument operator �. �x: [�(x)] is executed by nondeterministicallypicking an individual x, and for that x, performing the program �(x). The wait actionOnTable(b; now)? succeeds only if the individual chosen, b, is a block that is on the tablein the current situation. The main part of the program uses the nondeterministic itera-tion operator; it simply says to execute removeAblock zero or more times until the tableis clear. Note that Golog's other nondeterministic construct, (�1 j �2), allows a choicebetween two actions; a program of this form can be executed by performing either �1 or�2. In its most basic form, the high-level program execution task is a special case of theabove planning task:Program Execution: Given a domain theory D as above, and a program �,the execution task is to �nd a sequence of actions ~a such that:D j= Do(�; S0; do(~a; S0))where Do(�; s; s0) means that program � when executed starting in situation shas s0 as a legal terminating situation.Note that since Golog programs can be nondeterministic, there may be several terminatingsituations for the same program and starting situation.In [20], Do(�; s; s0) was simply viewed as an abbreviation for a formula of the situationcalculus. The following inductive de�nition of Do was provided:1. Primitive actions: Do(a; s; s0) def= Poss(a[s]; s) ^ s0 = do(a[s]; s)2. Wait/test actions: Do(�?; s; s0) def= �[s] ^ s = s03. Sequence: Do(�1; �2; s; s0) def= 9s00: Do(�1; s; s00) ^ Do(�2; s00; s0)7



4. Nondeterministic branch:Do(�1 j �2; s; s0) def= Do(�1; s; s0) _ Do(�2; s; s0)5. Nondeterministic choice of argument:Do(�x:�(x); s; s0) def= 9x:Do(�(x); s; s0)6. Nondeterministic iteration:Do(��; s; s0) def= 8P:f8s1: P (s1; s1) ^ 8s1; s2; s3:[P (s1; s2) ^ Do(�; s2; s3) � P (s1; s3)] g� P (s; s0):In other words, doing action � zero or more times takes you from s to s0 if and onlyif (s; s0) is in every set (and therefore, the smallest set) such that:(a) (s1; s1) is in the set for all situations s1.(b) Whenever (s1; s2) is in the set, and doing � in situation s2 takes you to situations3, then (s1; s3) is in the set.The above de�nition of nondeterministic iteration is the standard second-order wayof expressing this set. Some appeal to second-order logic appears necessary herebecause transitive closure is not �rst-order de�nable, and nondeterministic iterationappeals to this closure.We have left out the expansion for procedures, which is somewhat more complex; see [20]for the details.4 A Transition SemanticsBy using Do, programs are assigned a semantics in terms of a relation, denoted by theformulas Do(�; s; s0), that given a program � and a situation s, returns a situation s0resulting from executing the program starting in the situation s. Semantics of this formare sometimes called evaluation semantics (see [15, 26]), since they are based on the(complete) evaluation the program.When concurrency is taken into account it is more convenient to adopt semanticsof a di�erent form: the so-called transition semantics or computation semantics (seeagain [15, 26]). Transition semantics are based on de�ning single steps of computation incontrast to directly de�ning complete computations.In the present case, we are going to de�ne a relation, denoted by the predicateTrans(�; s; �0; s0), that associates to a given program � and situation s, a new situation s0that results from executing a primitive action or test action and a new program �0 that8



represents what remains of the program after having performed such an action. In otherwords, Trans denotes a transition relation between con�gurations. A con�guration is apair formed by a program (the part of the initial program that is left to perform) and thea situation (representing the current situation).We are also going to introduce a predicate Final(�; s), meaning that the con�guration(�; s) is a �nal one, that is, where the computation can be considered completed (noprogram remains to be executed). The �nal situations reached after a �nite numberof transitions from a starting situation coincide with those satisfying the Do relation.Complete computations are thus de�ned by repeatedly composing single transitions untila �nal con�guration is reached.It worth noting that if a program does not terminate, then no �nal situation willsatisfy the Do relation (indeed evaluation semantics are typically used for terminatingprograms), while we can still keep track of the various transitions performed by meansof Trans. Indeed, nonterminating programs do not need any special treatment withintransition semantics, while they typically remain unde�ned in evaluation semantics.In general, both evaluation semantics and transition semantics belong to the familyof structural operational semantics introduced by Plotkin in [27]. Both of these forms ofsemantics are operational since they do not assign a meaning directly to the programs(as denotational semantics), but instead see programs simply as speci�cations of compu-tations (or better as syntactic objects that specify the control 
ow of the computation).They are abstract semantics since, in contrast to concrete operational semantics, theydo not de�ne a speci�c machine on which the operations are performed, but instead onlyde�ne an abstract relation (such as Do or Trans) which denotes the possible computations(either complete computations for evaluation semantics, or single steps of computationsfor transition semantics). In addition, both such form of semantics are structural sinceare are de�ned on the structure of the programs.4.1 Encoding programs as �rst-order termsIn the simple semantics using Do, it was possible to avoid introducing programs explicitlyinto the logical language, since Do(�; s; s0) was only an abbreviation for a formula �(s; s0)that did not mention the program � (or any other programs). This was possible essentiallybecause it was not necessary to quantify over programs.Basing the semantics on Trans however does require quanti�cation over programs.To allow for this, we develop an encoding of programs as �rst-order terms in the logicallanguage (observe that programs as such, cannot in general be �rst-order terms, since onone hand, they mention formulas in tests, and on the other, the operator � in �x:� is aquanti�er).Encoding programs as �rst-order terms, although it requires some care (e.g. intro-ducing constants denoting variables and de�ning substitution explicitly in the language),9



does not pose any major problem3. In the following we abstract from the details of theencoding as much as possible, and essentially use programs within formulas as if theywere already �rst-order terms. The full encoding is given in Appendix A.4.2 Trans and FinalLet us formally de�ne Trans and Final, which intuitively specify what are the possibletransitions between con�gurations (Trans), and when a con�guration can be considered�nal (Final).It is convenient to introduce a special program nil, called the empty program, to denotethe fact that nothing remains to be performed (legal termination). For example, considera program consisting solely of a primitive action a. If it can be executed (i.e. if the action ispossible in the current situation), then after the execution of the action a nothing remainsof the program. In this case, we say that the program remaining after the execution ofaction a is nil.Trans(�; s; �0; s0) holds if and only if there is a transition from the con�guration (�; s)to the the con�guration (�0; s0), that is, if by running program � starting in situation s,one can get to situation s0 in one elementary step with the program �0 remaining to beexecuted. As mentioned, every such elementary step will either be the execution of anatomic action (which changes the current situation) or the execution of a test (which doesnot). As well, if the program is nondeterministic, there may be several transitions thatare possible in a con�guration. To simplify the discussion, we postpone the introductionof procedures to Section 7.The predicate Trans for programs without procedures is characterized by the follow-ing set of axioms T (here as in the rest of the paper, free variables are assumed to beuniversally quanti�ed):1. Empty program: Trans(nil; s; �0; s0) � False2. Primitive actions: Trans(a; s; �0; s0) �Poss(a[s]; s) ^ �0 = nil ^ s0 = do(a[s]; s)3. Wait/test actions: Trans(�?; s; �0; s0) � �[s] ^ �0 = nil ^ s0 = s3Observe that, we assume that formulas that occur in tests never mention programs, so it is impossibleto build self-referential sentences. 10



4. Sequence: Trans(�1; �2; s; �0; s0) �9
:�0 = (
; �2) ^ Trans(�1; s; 
; s0) _Final(�1; s) ^ Trans(�2; s; �0; s0)5. Nondeterministic branch:Trans(�1 j �2; s; �0; s0) �Trans(�1; s; �0; s0) _ Trans(�2; s; �0; s0)6. Nondeterministic choice of argument:Trans(�v:�; s; �0; s0) � 9x:Trans(�vx; s; �0; s0)7. Iteration: Trans(��; s; �0; s0) �9
:(�0 = 
; ��) ^ Trans(�; s; 
; s0)The assertions above characterize when a con�guration (�; s) can evolve (in a singlestep) to a con�guration (�0; s0). Intuitively they can be read as follows:1. (nil; s) cannot evolve to any con�guration.2. (a; s) evolves to (nil; do(a[s]; s)), provided that a[s] is possible in s. After havingperformed a, nothing remains to be performed and hence nil is returned. Notethat in Trans(a; s; �0; s0), a stands for the program term encoding the correspondingsituation calculus action, while Poss and do take the latter as argument; we takethe function �[�] as mapping the program term a into the corresponding situationcalculus action a[s], as well as replacing now by the situation s. The details of howthis function is de�ned are in Appendix A.3. (�?; s) evolves to (nil; s), provided that �[s] holds, otherwise it cannot proceed. Notethat the situation remains unchanged. Analogously to the previous case, we take thefunction �[�] as mapping the program term for condition � into the correspondingsituation calculus formulas �[s], as well as replacing now by the situation s (seeAppendix A for details).4. (�1; �2; s) can evolve to (�01; �2; s0), provided that (�1; s) can evolve to (�01; s0). More-over it can also evolve to (�02; s0), provided that (�1; s) is a �nal con�guration and(�2; s) can evolve to (�02; s0). 11



5. (�1j�2; s) can evolve to (�0; s0), provided that either (�1; s) or (�2; s) can do so.6. (�v:�; s) can evolve to (�0; s0), provided that there exists an x such that (�vx; s) canevolve to (�0; s0). Here �vx is the program resulting from � by substituting v with thevariable x.47. (��; s) can evolve to (�0; ��; s0) provided that (�; s) can evolve to (�0; s0). Observethat (��; s) can also not evolve at all, (��; s) being �nal by de�nition (see below).Final(�; s) tells us whether a program � can be considered to be already in a �nalstate (legally terminated) in the situation s. Obviously we have Final(nil; s), but alsoFinal(��; s) since �� requires 0 or more repetitions of � and so it is possible to not execute� at all, the program completing immediately.The predicate Final for programs without procedures is characterized by the set ofaxioms F :1. Empty program: Final(nil; s) � True2. Primitive action: Final(a; s) � False3. Wait/test action: Final(�?; s) � False4. Sequence: Final(�1; �2; s) �Final(�1; s) ^ Final(�2; s)5. Nondeterministic branch:Final(�1 j �2; s) �Final(�1; s) _ Final(�2; s)6. Nondeterministic choice of argument:Final(�v:�; s) � 9x:Final(�vx; s)7. Iteration: Final(��; s) � True4To be more precise, v is substituted by a term of the form nameOf(x), where nameOf is used to convertsituation calculus objects/actions into program terms of the corresponding sort (see Appendix A).12



The assertions above can be read as follows:1. (nil; s) is a �nal con�guration.2. (a; s) is not �nal, indeed the program consisting of the primitive action a cannot beconsidered completed until it has performed a.3. (�?; s) is not �nal, indeed the program consisting of the test action �? cannot beconsidered completed until it has performed the test �?.4. (�1; �2; s) can be considered completed if both (�1; s) and (�2; s) are �nal.5. (�1j�2; s) can be considered completed if either (�1; s) or (�2; s) is �nal.6. (�v:�; s) can be considered completed, provided that there exists an x such that(�vx; s) is �nal, where �vx is obtained from � by substituting v with x.7. (��; s) is a �nal con�guration, since by �� is allowed to execute 0 times.In the following we denote by C be the set of axioms for Trans and Final plus those neededfor the encoding of programs as �rst-order terms.4.3 Trans� and DoThe possible con�gurations that can be reached by a program � starting in a situations are those obtained by repeatedly following the transition relation denoted by Transstarting from (�; s), i.e. those in the re
exive transitive closure of the transition relation.Such a relation, denoted by Trans�, is de�ned as the (second-order) situation calculusformula: Trans�(�; s; �0; s0) def= 8T:[: : : � T (�; s; �0; s0)]where : : : stands for the conjunction of the universal closure of the following implications:True � T (�; s; �; s)Trans(�; s; �00; s00) ^ T (�00; s00; �0; s0) � T (�; s; �0; s0)Using Trans� and Final we can give a new de�nition of Do as:Do(�; s; s0) def= 9�0:Trans�(�; s; �0; s0) ^ Final(�0; s0):In other words, Do(�; s; s0) holds if it is possible to repeatedly single-step the program �,obtaining a program �0 and a situation s0 such that �0 can legally terminate in s0.For Golog programs such a de�nition for Do coincides with the one given in [20].Formally, we can state the the following result:13



Theorem 1: Let Do1 be the original de�nition of Do in [20], presented in Section 3, andDo2 the new one given above. Then for each Golog program �:C j= 8s; s0:Do1(�; s; s0) � Do2(�; s; s0)Proof: See Appendix B. 2The theorem also holds for Golog programs involving procedures when the treatment inSection 7 is used.Let us note that a Trans-step which brings the state of a computation from one con-�guration (�; s) to another (�0; s0) need not change the situation part of the con�guration,i.e., we may have s = s0. In particular, test actions have this property. If we want toabstract from such computation steps that only change the state of the program, wecan easily de�ne a new relation, TransSit, that skips transitions that do not change thesituation: TransSit(�; s; �0; s) def= 8T 0:[: : : � T 0(�; s; �0; s0)]where : : : stands for the conjunction of the universal closure of the following implications:Trans(�; s; �0; s0) ^ s0 6= s � T 0(�; s; �0; s0)Trans(�; s; �00; s) ^ T 0(�00; s; �0; s0) � T 0(�; s; �0; s0):5 ConcurrencyWe are now ready to de�ne ConGolog, an extended version of Golog that incorporates arich account of concurrency. We say `rich' because it handles:� concurrent processes with possibly di�erent priorities,� high-level interrupts,� arbitrary exogenous actions.As is commonly done in other areas of computer science, we model concurrent processes asinterleavings of the primitive actions in the component processes. A concurrent executionof two processes is one where the primitive actions in both processes occur, interleavedin some fashion. So in fact, we never have more than one primitive action happening atany given time. This assumption might appear problematic when the domain involvesactions with extended duration (e.g. �lling a bathtub). In section 6.4, we return to thisissue and argue that in fact, there is a straightforward way to handle such cases.An important concept in understanding concurrent execution is that of a processbecoming blocked. If a deterministic process � is executing, and reaches a point whereit is about to do a primitive action a in a situation s but where Poss(a; s) is false (or await action �?, where �[s] is false), then the overall execution need not fail as in Golog.14



In ConGolog, the current interleaving can continue successfully provided that a processother than � executes next. The net e�ect is that � is suspended or blocked, and executionmust continue elsewhere.5The ConGolog language is exactly like Golog except with the following additionalconstructs:if � then �1 else �2, synchronized conditionalwhile � do �, synchronized loop(�1 k �2), concurrent execution(�1 ii �2), concurrency with di�erent priorities�jj, concurrent iteration<�! �>, interrupt.The constructs if � then �1 else �2 and while � do � are the synchronized versions ofthe usual if-then-else and while-loop. They are synchronized in the sense that testingthe condition � does not involve a transition per se: the evaluation of the condition andthe �rst action of the branch chosen are executed as an atomic unit. So these constructsbehave in a similar way to the test-and-set atomic instructions used to build semaphoresin concurrent programming [1].6The construct (�1 k �2) denotes the concurrent execution of the actions �1 and �2.(�1 ii �2) denotes the concurrent execution of the actions �1 and �2 with �1 having higherpriority than �2. This restricts the possible interleavings of the two processes: �2 executesonly when �1 is either done or blocked. The next construct, �jj, is like nondeterministiciteration, but where the instances of � are executed concurrently rather than in sequence.Just as �� executes with respect to Do like nil j � j (�; �) j (�; �; �) j : : :, the program �jjexecutes with respect to Do like nil j � j (� k �) j (� k � k �) j : : :. See Section 6.3 for anexample of its use.Finally, <�! �> is an interrupt. It has two parts: a trigger condition � and a body,�. The idea is that the body � will execute some number of times. If � never becomestrue, � will not execute at all. If the interrupt gets control from higher priority processeswhen � is true, then � will execute. Once it has completed its execution, the interrupt isready to be triggered again. This means that a high priority interrupt can take completecontrol of the execution. For example, <True! ringBell> at the highest priority wouldring a bell and do nothing else. With interrupts, we can easily write controllers that canstop whatever task they are doing to handle various concerns as they arise. They are,dare we say, more reactive.5Just as actions in Golog are external (e.g. there is no internal variable assignment), in ConGolog,blocking and unblocking also happen externally, via Poss and wait actions. Internal synchronizationprimitives are easily added.6In [20], non-synchronized versions of if-then-elses and while-loops are introduced by de�ning:if � then �1 else �2 def= [(�?; �1) j (:�?; �2)] and while � do � def= [(�?; �)�;:�?]. The synchronizedversions of these constructs introduced here behave essentially as the non-synchronized ones in absenceof concurrency. However the di�erence is striking when concurrency is allowed.15



We now show how Trans and Final need to be extended to handle these constructs.(We handle interrupts separately below.) Trans and Final for synchronized conditionalsand loops are de�ned as follows:Trans(if � then �1 else �2; s; �0; s0) ��[s] ^ Trans(�1; s; �0; s0) _ :�[s] ^ Trans(�2; s; �0; s0)Trans(while � do �; s; �0; s0) �9
:(�0 = 
;while � do �) ^ �[s] ^ Trans(�; s; 
; s0)Final(if � then �1 else �2; s) ��[s] ^ Final(�1; s) _ :�[s] ^ Final(�2; s)Final(while � do �; s) �:�[s] _ Final(�; s)That is (if � then �1 else�2; s) can evolve to (�0; s0), if either �[s] holds and (�1; s) cando so, or :�[s] holds and (�2; s) can do so. Similarly, (while � do �; s) can evolve to(�0;while � do �; s0), if �[s] holds and (�; s) can evolve to (�0; s0). (if � then �1 else �2; s)can be considered completed, if either �[s] holds and (�1; s) is �nal, or if :�[s] holds and(�2; s) is �nal. Similarly, (while � do �; s) can be considered completed if either :�[s]holds or (�; s) is �nal.For the constructs for concurrency the extension of Final is straightforward:Final(�1 k �2; s) � Final(�1; s) ^ Final(�2; s)Final(�1 ii �2; s) � Final(�1; s) ^ Final(�2; s)Final(�jj; s) � True:Observe that the last clause says that it is legal to execute the � in �jj zero times. ForTrans, we have the following:Trans(�1 k �2; s; �0; s0) �9
:�0 = (
 k �2) ^ Trans(�1; s; 
; s0) _9
:�0 = (�1 k 
) ^ Trans(�2; s; 
; s0)Trans(�1 ii �2; s; �0; s0) �9
:�0 = (
 ii �2) ^ Trans(�1; s; 
; s0) _9
:�0 = (�1 ii 
) ^ Trans(�2; s; 
; s0) ^ :9�; s00:Trans(�1; s; �; s00)Trans(�jj; s; �0; s0) �9
:�0 = (
 k �jj) ^ Trans(�; s; 
; s0)16



In other words, you single step (�1 k �2) by single stepping either �1 or �2 and leaving theother process unchanged. The (�1 ii �2) construct is identical, except that you are onlyallowed to single step �2 if there is no legal step for �1. This ensures that �1 will executeas long as it is possible for it to do so. Finally, you single step �jj by single stepping �, andwhat is left is the remainder of � as well as �jj itself. This allows an unbounded numberof instances of � to be running.Observe that with (�1 k �2), if both �1 and �2 are always able to execute, the amountof interleaving between them is left completely open. It is legal to execute one of themcompletely before even starting the other, and it also legal to switch back and forthafter each primitive or wait action. It is not hard to de�ne, however, new concurrencyconstructs kmin and kmax that require the amount of interleaving to be minimized ormaximized respectively. We omit the details.Regarding interrupts, it turns out that these can be explained using other constructsof ConGolog: <�! �> def= while Interrupts running doif � then � else False?To see how this works, �rst assume that the special 
uent Interrupts running is iden-tically True. When an interrupt <�! �> gets control, it repeatedly executes � until �becomes false, at which point it blocks, releasing control to anyone else able to execute.Note that according to the above de�nition of Trans, no transition occurs between thetest condition in a while-loop or an if-then-else and the body. In e�ect, if � becomes false,the process blocks right at the beginning of the loop, until some other action makes �true and resumes the loop. To actually terminate the loop, we use a special primitiveaction stop interrupts, whose only e�ect is to make Interrupts running false. Thus, weimagine that to execute a program � containing interrupts, we would actually execute theprogram fstart interrupts ; (� ii stop interrupts)g which has the e�ect of stopping allblocked interrupt loops in � at the lowest priority, i.e. when there are no more actions in� that can be executed.Finally, let us consider exogenous actions. These are primitive actions that may occurwithout being part of a user-speci�ed program. We assume that in the background theory,the user declares, using a predicate Exo, which actions can occur exogenously. We de�nea special program for exogenous events:�EXO def= (� a:Exo(a)?; a)�Executing this program involves performing zero, one, or more nondeterministically cho-sen exogenous events.7 Then we make the user-speci�ed program � run concurrently with�EXO: � k �EXO7Observe the use of �: the program nondeterministically chooses an action a, tests that this a is anexogenous event, and executes it. 17



In this way we allow exogenous actions whose preconditions are satis�ed to asynchronouslyoccur (outside the control of �) during the execution of �.5.1 Formal properties of Trans and Final without proceduresWe are going to show that the axioms for Trans and Final for the whole of ConGolog arede�nitional, in the sense that they completely characterize Trans and Final for programswithout procedures.Lemma 1: For any ConGolog program term �(~x) containing only variables ~x of sortobject or action, there exist two formulas �(~x; s; �; s0) and 	(~x; s), where ~x; s; �0; s0 and~x; s are the only free variables in � and in 	 respectively, that do not mention Final andTrans, and are such that:C j= 8~x; s; �0; s0: Trans(�(~x); s; �0; s0) � �(~x; s; �0; s0) (1)C j= 8~x; s: Final(�(~x); s) � 	(~x; s) (2)Proof: For both (1) and (2), the proof is similar; it is done by induction on the programstructure considering as base cases programs of the form nil, a, and �?. Base cases: thethesis is an immediate consequence of the axioms of Trans and Final since the right-hand side of the equivalences does not mention Trans and Final. Inductive cases: byinspection, all the axioms have on the right-hand side simpler program terms, whichcontain only variables of sort object or action, as the �rst argument to Trans and Final,hence the thesis is a straightforward consequence of the inductive hypothesis. 2It follows from the lemma that the axioms in T and F , together with the axiomsfor encoding of programs as �rst-order terms, completely determine the interpretation ofthe predicates Trans and Final on the basis of the interpretation of the other predicates.That is T and F implicitly de�ne the predicates Trans and Final. Formally, we have thefollowing theorem:Theorem 2: There are no pair of models of C that di�er only in the interpretation ofthe predicates Trans and Final.Proof: By contradiction. Suppose that there are two models M1 and M2 of C that agreein the interpretation of all non-logical symbols (constant, function, predicates) other thaneither Trans or Final. Let's say that they disagree on Trans, i.e. there is a tuple of domainvalues (�̂; ŝ; �̂0; ŝ0) such that (�̂; ŝ; �̂0; ŝ0) 2 TransM1 and (�̂; ŝ; �̂0; ŝ0) =2 TransM2. Consideringthe structure of the sort programs (see Appendix A), we have that for every value of thedomain of sort programs �̂ there is a program term �(~x), containing only variables ~x ofsort object or action, such that for some assignment � to ~x, �M1;� = �M2;� = �̂. Now let usconsider three variables s; �0; s0 and an assignment �0 such that �0(~x) = �(~x), �0(s) = ŝ,18



�0(�0) = �̂0, and �0(s0) = ŝ0. By Lemma 1, there exists a formula � such that neither Transnor Final occurs in � and:Mi; �0 j= Trans(�; s; �0; s0) i� Mi; �0 j= �(~x; s; �0; s0) i = 1; 2:Since, M1; �0 j= �(~x; s; �0; s0) i� M2; �0 j= �(~x; s; �0; s0), we get a contradiction. 26 Some Examples6.1 Two Robots Lifting a TableOur �rst example involves a simple case of concurrency: two robots that jointly lift atable. Test actions are used to synchronize the robots' actions so that the table does nottip so much that objects on it fall o�. Two instances of the same program are used tocontrol the robots.� Objects:Two agents: 8r: Robot(r)� r = Rob1 _ r = Rob2:Two table ends: 8e: TableEnd(e)� e = End1 _ e = End2:� Primitive actions:grab(rob; end)release(rob; end)vmove(rob; z) move robot arm up or down by z units� Primitive 
uents:Holding(rob; end; s)vpos(end; s) = z height of the table end� Initial state:8r; e::Holding(r; e; S0)8e: vpos(e; S0) = 0� Precondition axioms:Poss(grab(r; e); s) � 8r0::Holding(r0; e; s) ^ 8e0::Holding(r; e0; s)Poss(release(r; e); s) � Holding(r; e; s)Poss(vmove(r; z); s) � True� Successor state axioms:Holding(r; e; do(a; s)) �a = grab(r; e) _Holding(r; e; s) ^ a 6= release(r; e)vpos(e; do(a; s)) = p �9r; z:(a = vmove(r; z) ^Holding(r; e; s) ^ p = vpos(e; s) + z) _19



9r: a = release(r; e) ^ p = 0 _p = vpos(e; s) ^ :9r; z:(a = vmove(r; z) ^Holding(r; e; s)) ^:9r: a = release(r; e)The goal here is to get the table up, but to keep it su�ciently level so that nothing fallso�. We can de�ne these as follows:TableUp(s) def= vpos(End1; s) � H ^ vpos(End2; s) � H(both ends of the table are higher than some threshold H)Level(s) def= jvpos(End1; s)� vpos(End2; s)j � Tol(both ends are at the same height to within a threshold Tol).So the goal is Goal(s) def= TableUp(s) ^ 8s0:s0 � s � Level(s0)and the claim is that this goal can be achieved by having Rob1 and Rob2 each concurrentlyexecute the same procedure ctrl de�ned as:proc ctrl(rob)� e:[TableEnd(e)?; grab(rob; e)];while :TableUp(now) doSafeToLift(rob; now)?;vmove(rob; Amount)endwhere Amount is some constant such that 0 < Amount < Tol; and SafeToLift is de�nedby SafeToLift(rob; s) def= 9e; e0: e 6= e0 ^ TableEnd(e) ^ TableEnd(e0)^Holding(rob; e; s) ^ vpos(e) � vpos(e0) + Tol � Amount.Here, we use procedures simply for convenience and the reader can take them as abbre-viations. A formal treatment for procedures will be provided in section 7.So formally, the claim is:8C [ D j= 8s:Do(ctrl(Rob1)kctrl(Rob2); S0; s)� Goal(s):Here is an informal sketch of a proof. Do holds if and only if there is a �nite sequenceof transitions from the initial con�guration (ctrl(Rob1)kctrl(Rob2); S0) to a con�gurationthat is Final. A program involving two concurrent processes can only get to a Final8Actually, proper termination of the program is also guaranteed. However, stating this condition for-mally, in the case of concurrency, requires additional machinery, since 9s:Do(ctrl(Rob1)kctrl(Rob2); S0; s)is too weak. 20



con�guration by reaching a con�guration that is Final for both processes. The processesin our program involve while-loops, which only reach a �nal con�guration when the loopcondition becomes is false. So the table must be high enough in the �nal situation.It remains to be shown that the table stayed level. Let vi stand for the actionvmove(robi; Amount): Suppose to the contrary that the table went too high on End1held by Rob1; and consider the �rst con�guration where this became true. This situationin this con�guration is of the form do(v1; s) wherevpos(End1; do(v1; s)) > vpos(End2; do(v1; s)) + Tol:However, at some earlier con�guration, we had to have SafeToLift(Rob1; s0) with nointervening actions by Rob1; otherwise the last v1 would not have been executed. Thismeans that we havevpos(End1; s0) � vpos(End2; s0) + Tol � Amount:However, if all the actions between s0 and s are by Rob2; since Rob2 can only increase thevalue of vpos(End2); it follows thatvpos(End1; s) � vpos(End2; s) + Tol � Amount;that is, that SafeToLift was also true just before the �nal v1 action. This contradictsthe assumption that v1 only adds Amount to the value of vpos(End1):6.2 A Reactive Multi-Elevator ControllerOur next example involves a reactive controller for a bank of elevators; it illustrates theuse of interrupts and prioritized concurrency. The example will use the following terms(where e stands for an elevator):� Ordinary primitive actions:goDown(e) move elevator down one 
oorgoUp(e) move elevator up one 
oorbuttonReset(n) turn o� call button of 
oor ntoggleFan(e) change the state of elevator fanringAlarm ring the smoke alarm� Exogenous primitive actions:reqElevator(n) call button on 
oor n is pushedchangeTemp(e) the elevator temperature changesdetectSmoke the smoke detector �rst senses smokeresetAlarm the smoke alarm is reset21



� Primitive 
uents:floor(e; s) = n the elevator is on 
oor n, 1 � n � 6temp(e; s) = t the elevator temperature is tFanOn(e; s) the elevator fan is onButtonOn(n; s) call button on 
oor n is onSmoke(s) smoke has been detected� De�ned 
uents:TooHot(e; s) def= temp(e; s) > 1TooCold(e; s) def= temp(e; s) < �1We begin with the following basic action theory for the above primitive actions and 
uents:� Initial state:floor(e; S0) = 1 :FanOn(S0) temp(e; S0) = 0ButtonOn(3; S0) ButtonOn(6; S0)� Exogenous actions:8a:Exo(a) � a = detectSmoke _ a = resetAlarm _a = changeTemp(e) _ 9n:a = reqElevator(n)� Precondition axioms:Poss(goDown(e); s) � floor(e; s) 6= 1Poss(goUp(e); s) � floor(e; s) 6= 6Poss(buttonReset(n); s) � TruePoss(toggleFan(e); s) � TruePoss(ringAlarm) � TruePoss(reqElevator(n); s) � (1 � n � 6) ^ :ButtonOn(n; s)Poss(changeTemp; s) � TruePoss(detectSmoke; s) � :Smoke(s)Poss(resetAlarm; s) � Smoke(s)� Successor state axioms:floor(e; do(a; s)) = n �(a = goDown(e) ^ n = floor(e; s)� 1) _(a = goUp(e) ^ n = floor(e; s) + 1) _(n = floor(e; s) ^ a 6= goDown(e) ^ a 6= goUp(e))temp(e; do(a; s)) = t �(a = changeTemp(e) ^ FanOn(e; s) ^ t = temp(e; s)� 1) _(a = changeTemp(e) ^ :FanOn(e; s) ^ t = temp(e; s) + 1) _(t = temp(e; s) ^ a 6= changeTemp(e))FanOn(e; do(a; s)) �(a = toggleFan(e) ^ :FanOn(e; s)) _22



(FanOn(e; s) ^ a 6= toggleFan(e))ButtonOn(n; do(a; s)) �a = reqElevator(n) _(ButtonOn(n; s) ^ a 6= buttonReset(n))Smoke(do(a; s)) �a = detectSmoke _(Smoke(s) ^ a 6= resetAlarm)Note that many 
uents are a�ected by both exogenous and programmed actions. Forinstance, the 
uent ButtonOn is made true by the exogenous action reqElevator (i.e.someone calls for an elevator) and made false by the programmed action buttonReset (i.e.when an elevator serves a 
oor).Now we are ready to consider a basic elevator controller for an elevator e. It might bede�ned by something like:while 9n:ButtonOn(n) do�n:fBestButton(n)?; serveF loor(e; n)g;while floor(e) 6= 1 do goDown(e)The 
uent BestButton would be de�ned to select among all buttons that are currentlyon, the one that will be served next. For example, it might choose the button that hasbeen on the longest. For our purposes, we can take it to be any ButtonOn. The procedureserveF loor(e; n) would consist of the actions the elevator would take to serve the requestfrom 
oor n. For our purposes, we can use:proc serveF loor(e; n)while floor(e) < n do goUp(e);while floor(e) > n do goDown(e);buttonReset(n)endWe have not bothered formalizing the opening and closing of doors, or other nasty com-plications like passengers.As with Golog, we try to prove an existential and look at the bindings for the s. Theywill be of the form do(~a; S0) where ~a are the actions to perform. In particular, using thiscontroller program �, we would get execution traces likeC [ D j= Do(� k �EXO; S0; do([u; u; b3; u; u; u; b6; d; d; d; d; d]; S0))C [ D j= Do(� k �EXO; S0; do([u; r4; u; b3; u; b4; u; u; r2; b6; d; d; d; d; b2; d]; S0)): : :where u= goUp(e), d= goDown(e), bn= buttonReset(n), rn= reqElevator(n), and D isthe basic action theory speci�ed above. In the �rst run there were no exogenous actions,while in the second, two elevator requests were made.23



This controller does have a big drawback, however: if no buttons are on, the �rst loopterminates, the elevator returns to the �rst 
oor and stops, even if buttons are pushed onits way down. It would be better to structure it as two interrupts:<9n:ButtonOn(n)!�n:fBestButton(n)?; serveF loor(e; n)g><floor(e) 6= 1! goDown(e)>with the second at lower priority. So if no buttons are on, and you're not on the �rst
oor, go down a 
oor, and reconsider; if at any point buttons are pushed exogenously,pick one and serve that 
oor, before checking again. Thus, the elevator only quits whenit is on the �rst 
oor with no buttons on.With this scheme, it is easy to handle emergency or high-priority requests. We wouldadd <9n:EButtonOn(n)!�n:fEButtonOn(n)?; serveEF loor(e; n)g>as an interrupt with a higher priority than the other two (assuming suitable additionalactions and 
uents).To deal with the fan, we can add two new interrupts:<TooHot(e) ^ :FanOn(e)! toggleFan(e)><TooCold(e) ^ FanOn(e)! toggleFan(e)>These should both be executed at the very highest priority. In that case, while serving a
oor, whatever that amounts to, if the temperature ever becomes too hot, the fan will beturned on before continuing, and similarly if it ever becomes too cold. Note that if we didnot check for the state of the fan, this interrupt would loop repeatedly, never releasingcontrol to lower priority processes.Finally, imagine that we would like to ring a bell if smoke is detected, and disruptnormal service until the smoke alarm is reset exogenously. To do so, we add the interrupt:<Smoke! ringAlarm>with a priority that is less than the emergency button, but higher than normal service.Once this interrupt is triggered, the elevator will stop and ring the bell repeatedly. It willhandle the fan and serve emergency requests, however.
24



Putting all this together, we get the following controller:(<TooHot(e) ^ :FanOn(e)! toggleFan(e)> k<TooCold(e) ^ FanOn(e)! toggleFan(e)>) ii<9n:EButtonOn(n)!�n:fEButtonOn(n)?; serveEF loor(e; n)g>ii<Smoke! ringAlarm> ii<9n:ButtonOn(n)!�n:fBestButton(n)?; serveF loor(e; n)g>ii<floor(e) 6= 1! goDown(e)>Using this controller �r, we would get execution traces likeC [ D j= Do(�r k �EXO; S0; do([u; u; b3; u; u; u; b6; d; d; d; d; r5; u; u; u; b5; d; d; d; d]; S0))C [ D j= Do(�r k �EXO; S0; do([u; u; b3; u; z; a; a; a; a; h; u; u; b6; d; d; d; d; d]; S0))C [ D j= Do(�r k �EXO; S0; do([u; t; u; b3; u; t; f; u; t; t; u; t; b6; d; t; f; d; t; d; d; d]; S0)): : :where z = detectSmoke, a = ringAlarm, h = resetAlarm, t = changeTemp, and f =toggleFan. In the �rst run, we see that this controller does handle requests that come inwhile the elevator is on its way to retire on the bottom 
oor. The second run illustrateshow the controller reacts to smoke being detected by ringing the alarm. The third runshows how the controller reacts immediately to temperature changes while it is serving
oors. Note that this elevator controller uses 5 di�erent levels of priority. It could havebeen programmed in Golog without interrupts, but the code would have been a lot messier.Now let us suppose that we would like to write a controller that handles two inde-pendent elevators. In ConGolog, this can be done very elegantly using (�1 k �2), where�1 is the above program with e replaced by Elevator1 and �2 is the same program with ereplaced by Elevator2. This allows the two processes to work completely independently(in terms of priorities).9 For n elevators, we would use (�1 k � � � k �n).6.3 A Client-Server SystemIn some applications, it is useful to have an unbounded number of instances of a processrunning concurrently. For example in an FTP server, we may want an instance of amanager process for each active FTP session. This can be programmed using the �jjconcurrent iteration construct.Let us give a high-level sketch of how this might be done. Suppose that there is anexogenous action newClient(cid) that occurs when a new client with the ID cid �rst9Of course, when an elevator is requested on some 
oor, both elevators may decide to serve it. It iseasy to program a better strategy that coordinates the elevators: when an elevator decides to serve a
oor, it immediately makes a 
uent true for that 
oor, and the other elevator will not serve a 
oor forwhich that 
uent is already true. 25



requests service. Also assume that a procedure serve(cid) has been de�ned, which imple-ments the behavior required for the server for a given client. To set up the system, werun the program: [� cid: acquire(cid); serve(cid)]jj;:9cid: (ClientWaiting(cid))?Here, we assume that when the exogenous action newClient(cid) occurs, it makes the
uent ClientWaiting(cid) true. Then, the only way the computation can be completedis by generating a new process that �rst acquires the client by doing acquire(cid), andthen serves it. We formalize this as follows:Poss(acquire(cid); s) � ClientWaiting(cid)ClientWaiting(cid; do(a; s)) �a = newClient(cid) _ ClientWaiting(cid; s) ^ a 6= acquire(cid)]Then, only a single process can acquire a given client, since acquire is only possiblewhen ClientWaiting(cid) is true and performing it makes this 
uent false. The wholeprogram can only reach a �nal con�guration if it forks exactly the right number of serverprocesses: at least one for each client because a server can only acquire one client, and nomore than one for each client because servers can be activated only if they can acquire aclient.6.4 Actions with Extended DurationOne possible criticism of our approach to concurrency is that it does not work when weconsider actions that have extended duration. Consider singing while �lling the bathtubwith water, for example. If one of the actions involved is \�lling the bathtub," and theother actions are \singing do," \singing re," and \singing mi," say, then there are exactlyfour possible interleavings, [filling ; do ; re ; mi];[do ; filling ; re ; mi];[do ; re ; filling ; mi];[do ; re ; mi ; filling];but none of them capture the idea of singing and �lling the tub at the same time. More-over, the prospect of replacing the �lling action by a large number of component actions(that could be interleaved with the singing ones) is even less appealing.To deal with this type of case, we recommend the following approach (see [33] for adetailed presentation): instead of thinking of �lling the bathtub as an action or group ofactions, think of it as a state that an agent could be in, extending possibly over manysituations. The idea is that the agent can be in many such states simultaneously, includinglistening to the radio, walking, and chewing gum. For each such state, we need two26



primitive actions and a 
uent; for the bathtub, they are startF illing, which puts the agentinto the state, and endF illing, which terminates it, as well as the 
uent FillingTub, whichholds in those situations where the agent is �lling the tub. Formally, we would expressthis with a successor state axiom as follows:FillingTub(do(a; s)) �a = startF illing _ FillingTub(s) ^ a 6= endF illing:Since the startF illing and endF illing actions can be taken to be instantaneous, theinterleaving account is once again plausible. If we de�ne a complex actionFillTheTub def= [startF illing ; endF illing]and run it concurrently with the singing, then we get these possible interleavings:[startF illing ; endF illing ; do ; re ; mi];[startF illing ; do ; endF illing ; re ; mi];[startF illing ; do ; re ; endF illing ; mi];[startF illing ; do ; re ; mi ; endF illing];[do ; startF illing ; endF illing ; re ; mi];[do ; startF illing ; re ; endF illing ; mi];[do ; startF illing ; re ; mi ; endF illing];[do ; re ; startF illing ; endF illing ; mi];[do ; re ; startF illing ; mi ; endF illing];[do ; re ; mi ; startF illing ; endF illing]:A better model would be something likeFillTheTub def= [startF illing ; (waterLevel > H)? ; endF illing]which would rule out interleavings where the �lling stops too soon. The most natural wayof modeling the water level is as a continuous function of time: l = L0 +R� t; where L0is the initial level, R is the rate of �lling (taken to be constant), and t is the elapsed time.One simple way to accommodate this idea within the situation calculus is to assume thatevery action has a duration dur(a) (which we could also make dependent on the situationthe action is performed in). Actions such as startF illing can have duration 0, but theremust be some action, if only a timePasses, with a non-0 duration. We then describe thewaterLevel functional 
uent by:waterLevel(do(a; s)) = waterLevel(s) + waterRate(s)� dur(a)waterRate(do(a; s)) = if FillingTub(s) then R else 0:So as long as a situation is in a �lling-the-tub state, the water level rises according to theabove equation. In terms of concurrency, the result is that the only allowable interleavings27



would be those where enough actions of su�cient duration occur between the startF illingand stopF illing.Of course, this model of the continuous process of water entering the bathtub doesnot allow us to predict the eventual outcome, for example, the water over
owing if a tapis not turned o�, etc. A more complex program, typically involving interrupts, would berequired, so that suitable \trajectory altering" actions are triggered under the appropriateconditions.7 Extending the Transition Semantics to Proce-duresWe now extend the transition semantics introduced above to deal with procedures. Be-cause a recursive procedure may do an arbitrary number of procedure calls before itperforms a primitive action or test, and such procedure calls are not viewed as transi-tions, we must use a second-order de�nition of Trans and Final. In doing so, great carehas to be put in understanding the interaction between recursive procedures and the verygeneral form of prioritized concurrency allowed in ConGologLet proc P1(~v1)�1 end; : : : ;proc Pn(~vn)�n end be a collection of procedure de�nitions.We call such a collection an environment and denote it by Env. In a procedure de�nitionproc Pi(~vi)�i end, Pi is the name of the i-th procedure in Env; ~vi are its formal pa-rameters; and �i is the procedure body, which is a ConGolog program, possibly includingboth procedure calls and new procedure de�nitions. We use call-by-value as the parameterpassing mechanism, and lexical (or static) scope as the scoping rule.Formally we introduce three program constructs:� P (~t) where P is a procedure name and ~t actual parameters associated to the pro-cedure P ; as usual we replace the situation argument in the terms constituting ~tby now. P (~t) denotes a procedure call, which invokes procedure P on the actualparameters ~t evaluated in the current situation.� fEnv; �g, where Env is an environment and � is a program extended with procedurescalls. fEnv; �g binds procedures calls in � to the de�nitions given in Env. The usualnotion of free and bound apply, so for e.g. in fproc P1() a end;P2();P1()g, P1 isbound but P2 is free.� [Env : P (~t)], where Env is an environment, P a procedure name and ~t actualparameters associated to the procedure P . [Env : P (~t)] denotes a procedure callthat has been contextualized: the environment in which the de�nition of P is to belooked for is Env.
28



We de�ne the semantics of ConGolog programs with procedures by de�ning both Transand Final by a second-order formula (instead of a set of axioms).10 Trans is de�ned asfollows: Trans(�; s; �0; s0) � 8T:[ : : : � T (�; s; �0; s0)]where : : : stands for the conjunction of T TransT { i.e. the set of axioms T modulo textualsubstitution of Trans with T { and (the universal closure of) the following two assertions:T (fEnv; �g; s; �0; s0) � T (�Pi(~t)[Env:Pi(~t)]; s; �0; s0)T ([Env : P (~t)]; s; �0; s0) � T (fEnv; �P~vP~t[s]g; s; �0; s0)where �Pi(~t)[Env:Pi(~t)] denotes the program � with all procedures bound by Env and free in �replaced by their contextualized version (this gives us the lexical scope), and where �P~vP~t[s]denotes the body of the procedure P in Env with formal parameters ~v substituted by theactual parameters ~t evaluated in the current situation.Similarly, Final is de�ned as follows:Final(�; s) � 8F:[ : : : � F (�; s)]where : : : stands for the conjunction of FFinalF { i.e. the set of axioms F modulo textualsubstitution of Final with F { and (the universal closure of) the following assertions:F (fEnv; �g; s) � F (�Pi(~t)[Env:Pi(~t)]; s)F ([Env : P (~t)]; s) � F (fEnv; �P~vP~t[s]g; s)Note that no assertions for (uncontextualized) procedure calls are present in the de�nitionsof Trans and Final. Indeed a procedure call which cannot be bound to a procedurede�nition neither can do transitions nor can be considered successfully completed.Observe also the two uses of substitution to deal with procedure calls. When a pro-gram with an associated environment is executed, for all procedure calls bound by Env,we simultaneously substitute the corresponding procedure calls, contextualized by theenvironment of the procedure in order to deal with further procedure calls according tothe static scope rules. Then when a (contextualized) procedure is actually executed, theactual parameters are �rst evaluated in the current situation, and then are substitutedfor the formal parameters in the procedure bodies11, thus yielding call-by-value parameterpassing.The following example program �StSc illustrates ConGolog's static scoping:10For compatibility with the formalization in Section 4, we treat Trans and Final as predicates, althoughit is clear that they could be understood as abbreviations for the second-order formulas.11To be more precise, every formal parameter v is substituted by a term of the form nameOf(t[s]), whereagain nameOf is used to convert situation calculus objects/actions into program terms of the correspondingsort (see Appendix A). 29



f proc P1()aend;proc P2()P1()end;proc P3()f proc P1()bend;P2();P1()gend;P3()gOne can show that for this program, the sequence of atomic actions performed will be afollowed by b (assuming that both a and b are always possible):8s:[Poss(a; s) ^ Poss(b; s)] �8s; s0:[Do(�StSc; s; s0) � s0 = do(b; do(a; s))]To see this consider the following. LetEnv1 def= proc P1() a end;proc P2() P1() end;proc P3() fEnv2;P2();P1()g end;Env2 def= proc P1() b end;Then it is easy to see that:Trans(�StSc; s; �0; s0)� Trans(fEnv1;P3()g; s; �0; s0)� Trans([Env1 : P3()]; s; �0; s0)� Trans(fEnv1; fEnv2;P2();P1()gg; s; �0; s0)� Trans(fEnv2; [Env1 : P2()];P1()g; s; �0; s0)� Trans([Env1 : P2()]; [Env2 : P1()]; s; �0; s0)� Trans(fEnv1;P1()g; [Env2 : P1()]; s; �0; s0)� Trans([Env1 : P1()]; [Env2 : P1()]; s; �0; s0)� Trans(a; [Env2 : P1()]; s; �0; s0)� Poss(a; s) ^ s0 = do(a; s) ^ �0 = (nil; [Env2 : P1()]):Similarly, one can show that: Trans([Env2 : P1()]; do(a; s); nil; do(b; do(a; s)))and Final(nil; do(b; do(a; s))), which yields the thesis.Our next example illustrates ConGolog's call-by-value parameter passing:30



f proc P (n)if (n = 1) then nilelse goDown;P (n� 1)end;P (floor)gIntuitively, this program is intended to bring an elevator down to the bottom 
oor ofa building. If we run the program starting in situation S0, the procedure call P (floor)invokes P with the value of the functional 
uent floor in S0, i.e. P is called with floor[S0],the 
oor the elevator is on in S0, as actual parameter. If ConGolog used call-by-nameparameter passing, P would be invoked with the term \floor" as actual parameter, andthe elevator would only go halfway to the bottom 
oor. Indeed at each iteration of theprocedure the call P (n� 1) would be evaluated by textually replacing n by floor, whichat that moment has already decreased by 1.As mentioned earlier, the need for a second-order de�nition of Trans(�; s; �0; s0) andFinal(�; s) when procedures are introduced comes from recursive procedures. The second-order de�nition allows us to assign a formal semantics to every such procedure, includingviciously circular ones. The de�nition of Trans disallows the execution of such ill-formedprocedures. At the same time the de�nition of Final considers them not to have com-pleted (non-�nal). For example, the program fproc P ()P () end;P ()g does not have anytransitions, but it is not �nal for any situation s.127.1 Formal properties of Trans and Final with proceduresWe observe that the second-order de�nitions of Trans and Final can easily be put in thefollowing form:Trans(�; s; �0; s0) �8T:[8�1; s1; �2; s2:�Trans(T; �1; s1; �2; s2) � T (�1; s1; �2; s2)]� T (�; s; �0; s0)Final(�; s; �0; s0) �8F:[8�1; s1:�Final(F; �1; s1) � F (�1; s1)]� F (�; s)where �Trans and �Final are obtained by rewriting each of the assertions in the de�nitionof Trans and Final so that only variables appear in the left-hand part of the equations,12Note that both Golog and ConGolog do not allow for boolean procedures to be used in tests. Intro-ducing such kind of procedures requires particular care to avoid counterintuitive implications.31



i.e.: T (�; s; �0; s0) � �t(T; �; s; �0; s0) F (�; s) � �f(F; �; s)and then getting the disjunction of all right-hand sides, which are mutually exclusive sinceeach of them deals with programs of a speci�c form.From such de�nitions, natural \induction principles" emerge (cf. the discussion onextracting induction principles from inductive de�nitions in [34]). These are principlessaying that to prove that a property P holds for instances of Trans and Final, it su�cesto prove that the property P is closed under the assertions in the de�nition of Trans andFinal, i.e.: �Trans(P; �1; s1; �2; s2) � P (�1; s1; �2; s2)�Final(P; �1; s1) � P (�1; s1)Formally we can state the following theorem:Theorem 3: The following sentences are consequences of the second-order de�nitions ofTrans and Final respectively:8P:[8�1; s1; �2; s2:�Trans(P; �1; s1; �2; s2) � P (�1; s1; �2; s2)] �8�; s; �0; s0:Trans(�; s; �0; s0) � P (�; s; �0; s0)8P:[8�1; s1:�Final(P; �1; s1) � P (�1; s1)] �8�; s:Final(�; s; �0; s0) � P (�; s)Proof: We prove only the �rst sentence. The proof of the second sentence is analogous.By de�nition we have:8�; s; �0; s0:Trans(�; s; �0; s0) �8P:[8�1; s1; �2; s2:�Trans(P; �1; s1; �2; s2) � P (�1; s1; �2; s2)]� P (�; s; �0; s0)By considering the only-if part of the above equivalence, we get:8�; s; �0; s0:Trans(�; s; �0; s0) ^8P:[8�1; s1; �2; s2:�Trans(P; �1; s1; �2; s2) � P (�1; s1; �2; s2)]� P (�; s; �0; s0)So moving the quanti�ers around we get:8P:[8�1; s1; �2; s2:�Trans(P; �1; s1; �2; s2) � P (�1; s1; �2; s2)] ^8�; s; �0; s0:Trans(�; s; �0; s0)� P (�; s; �0; s0)and hence the thesis. 2These induction principles allow us to prove that Trans and Final for programs withprocedures can be considered an extension of those for programs without procedures.32



Theorem 4: With respect to ConGolog programs without procedures, Trans and Finalintroduced above are equivalent to the versions introduced in Section 4.Proof: Let us denote Trans de�ned by the second-order sentence as TransSOL and Transimplicitly de�ned through axioms in Section 4 as TransFOL. Since procedures are notconsidered we can drop, without loss of generality, the assertions for fEnv; �g and [Env :P (~t)] in the de�nition of TransSOL. Then:� TransSOL(�; s; �0; s0)�TransFOL(�; s; �0; s0), is proven simply by noting that TransFOLsatis�es (is closed under) the assertions in the de�nition of TransSOL, and then usingTheorem 3.� TransFOL(�; s; �0; s0)�TransSOL(�; s; �0; s0), is proven by induction on the structure of� considering as base cases nil, a, and �?, and then applying the induction argument.Similarly for Final. 2It is interesting to examine whether Trans and Final introduced above are themselvesclosed under the assertions in their de�nitions. For Final a positive answer can be estab-lished:Theorem 5: The following sentence is a consequence of the second-order de�nition ofFinal: �Final(Final(�; s); �; s) � Final(�; s):Proof: Observe that �Final is monotonic13, i.e.:8Z1; Z2:[8�; s:Z1(�; s)�Z2(�; s)] � [8�; s:�Final(Z1; �; s)��Final(Z2; �; s):]Hence the thesis is a direct consequence of the Tarski-Knaster �xpoint theorem [40]. 2For Trans an analogous result does not hold in general. Indeed consider the followingprogram �q: f proc Q()Q() ii aend;Q()gObserve that the de�nition of Trans implies that Trans(�q; s; �0; s0) � False. Hence if Transwas closed under �Trans, then we would have Trans(�q ii a; s; �0; s0) � Trans(a; s; �0; s0),which would imply that Trans(�q; s; �0; s0) � Trans(a; s; �0; s0). Contradiction.Obviously there are several classes of ConGolog programs that are closed under �Trans.For instance, if we disallow prioritized concurrency in procedures we get one such class.Another such class is that obtained by allowing prioritized concurrency to appear only innon-recursive procedures. Yet another quite general class is immediately obtainable fromwhat is discussed next.13In fact syntactically monotonic. 33



8 First-order Trans and Final for ProceduresIn this section we investigate conditions that allow us to replace the second-order de�ni-tions of Trans and Final for programs with procedures by the �rst-order de�nitions, as inthe case where procedures are not allowed.8.1 Guarded con�gurationsWe de�ne a quite general condition on con�gurations (pairs of programs and situations)that guarantees the possibility of using �rst-order axioms for Trans and Final for proce-dures as well. To this end we introduce a notion of \con�guration rank". Intuitively, acon�guration is of rank n if and only if makes at most n (recursive) procedure calls beforetrying to make an actual program step (either an atomic action or a test).We de�ne the rank of a con�guration inductively. A con�guration is of rank n denotedby Rank(n; �; s) if and only if:Rank(n; nil; s) � TrueRank(n; a; s) � TrueRank(n; �?; s) � TrueRank(n; �1; �2; s) � Rank(n; �1; s) ^ (Final(�1; s)�Rank(n; �2; s))Rank(n; �1 j �2; s) � Rank(n; �1; s) ^ Rank(n; �2; s)Rank(n; �v:�; s) � 8x:Rank(n; �vx; s)Rank(n; ��; s) � Rank(n; �; s)Rank(n; if � then �1 else �2; s) � �[s] ^ Rank(n; �1; s) _ :�[s] ^ Rank(n; �2; s)Rank(n;while � do �; s) � �[s]�Rank(n; �; s)Rank(n; �1 k �2; s) � Rank(n; �1; s) ^ Rank(n; �2; s)Rank(n; �1 ii �2; s) � Rank(n; �1; s) ^((:9�01; s0:Trans(�1; s; �01; s0))�Rank(n; �2; s))Rank(n; �jj; s) � Rank(n; �; s)Rank(n; fEnv; �g; s) � Rank(n; �Pi(~t)[Env:Pi(~t)]; s)Rank(n; [Env : P (~t)]; s) � Rank(n� 1; fEnv; �P~vP~t[s]g; s)A con�guration (�; s) is guarded if and only if it is of rank n for some n:Guarded(�; s) def= 9n:Rank(n; �; s)8.2 First-order Trans and Final for proceduresFor guarded con�gurations, we do not need to use the second-order de�nitions of Transand Final when dealing with procedures. Instead we can use the �rst-order axioms in34



Section 4 together with the following:14Trans(fEnv; �g; s; �0; s0) � Trans(�Pi(~t)[Env:Pi(~t)]; s; �0; s0)Trans([Env : P (~t)]; s; �0; s0) � Trans(fEnv; �P~vP~t[s]g; s; �0; s0)Final(fEnv; �g; s) � Final(�Pi(~t)[Env:Pi(~t)]; s)Final([Env : P (~t)]; s) � Final(fEnv; �P~vP~t[s]g; s)Let us call TransFOL and FinalFOL the predicates determined by the �rst-order ax-ioms and TransSOL and FinalSOL the original predicates determined by the second-orderde�nition for procedures. We can prove the following result:Theorem 6: Guarded(�; s)�8�0; s0:TransSOL(�; s; �0; s0) � TransFOL(�; s; �0; s0)Guarded(�; s)�FinalSOL(�; s) � FinalFOL(�; s):Proof:(outline) By induction on the rank of the con�guration (�; s). For rank 0 the thesisis trivial. For rank n+1, we assume that the thesis holds for all con�gurations of rank n,and show the thesis by induction on the structure of the program considering nil, a, �?and [Env : P (~t)] as base cases. 2A con�guration (�; s) has a guarded evolution, if and only if:GuardedEvol(�; s) def=8�0; s0:Trans�SOL(�; s; �0; s0)�Guarded(�0; s0)For con�gurations with guarded evolution we have the following easy consequences:GuardedEvol(�; s)�8�0; s0:Trans�SOL(�; s; �0; s0) � Trans�FOL(�; s; �0; s0)GuardedEvol(�; s)�8s0:DoSOL(�; s; s0) � DoFOL(�; s; s0)14The form of these axioms is exactly that of the conditions on the predicate variables T and F in thesecond-order de�nitions. 35



8.3 Su�cient condition for guarded evolutionsTheorem 7: If all procedures P with environment Env in a program � are such that8~t; s:Guarded([Env : P (~t)]; s)then we have: 8s:GuardedEvol(�; s):Proof:(outline) By induction on the number of transitions. For 0 transitions, we get thethesis by induction on the structure of the program (considering nil; a; �? and [Env : P (~t)]as base cases). For k + 1 transitions, we assume the thesis holds for k transitions, andwe prove by induction on the structure of the program (again considering nil; a; �? and[Env : P (~t)] as base cases) that making a further transition from the program resultingfrom the k transitions still preserves the thesis. 2It is easy to verify that non-recursive procedures, as well as procedures whose bodystarts with an atomic action or a wait action, trivially satisfy the hypothesis of the the-orem. Observe also that all procedures in [20] satisfy such hypothesis, except for theprocedure d at page 9 whose de�nition is reported below (n is a natural number):proc d(n) (n = 0?) j d(n� 1); goDown endHowever, the variants proc d(n) (n = 0?) j goDown; d(n� 1) endproc d(n) (n = 0?) j (n > 0)?; d(n� 1); goDown endproc d(n) if (n = 0) then nil else (d(n� 1); goDown) enddo satisfy the hypothesis.9 ImplementationDespite the fact that in de�ning the semantics of ConGolog we resorted to �rst- andsecond-order logic, it is possible to come up with a simple implementation of the ConGologlanguage in Prolog.In this section, we present a ConGolog interpreter in Prolog which is lifted directlyfrom the de�nition of Final, Trans, and Do introduced above.15 This interpreter requiresthat the program's precondition axioms, successor state axioms, and axioms about theinitial situation be expressible as Prolog clauses. In particular, the usual closed world15Exogenous actions can be generated by simulating them probabilistically, by asking the user atruntime when they should occur, or by monitoring the environment in which the program is running.36



assumption (CWA) is made on the initial situation. Note that this is a limitation of thisparticular implementation, not the theory.Prolog terms representing ConGolog programs are as follows:� nil, empty program.� act(a), atomic action, where a is an action term with the situation argumentsreplaced by the constant now.� test(c), wait/test, where c is a condition described below.� seq(p1,p2), sequence.� choice(p1,p2), nondeterministic branch.� pick(v,p), nondeterministic choice of argument, where v is a Prolog constant(atom), standing for a ConGolog variable, and p a program-term that uses v.� iter(p), nondeterministic iteration.� if(c,p1,p2), if-then-else, with p1 the then-branch and p2 the else-branch.� while(c,p), while-do.� conc(p1,p2), concurrency.� prconc(p1,p2), prioritized concurrency.� iterconc(p), iterated concurrency.� pcall(pArgs), procedure call, with pArgs the procedure name and arguments.A condition c in the above is either a Prolog-term representing an atomic formula/
uentwith the situation arguments replaced by now or an expression of the form and(c1,c2),or(c1,c2), neg(c), all(v,c), or some(v,c), with the obvious intended meaning. Inall(v,c) and some(v,c), v is an Prolog constant, standing for a logical variable, and c acondition using v.The Prolog predicate trans=4, final=2, trans�=4 and do=3 implement respectivelythe predicate Trans, Final, Trans� and Do.The Prolog predicate holds=2 is used to evaluate conditions in tests, while-loops andif-then-else's in ConGolog programs. As well, the Prolog predicate sub=4 implements thesubstitution so that sub(x; y; t; t0) means that t0 = txy . The de�nition of these two Prologpredicates is taken from [20, 34].The following is the Prolog code. 37



/***********************************************************************//* Trans-based ConGolog Interpreter *//***********************************************************************//* trans(Prog,Sit,Prog_r,Sit_r) */trans(act(A),S,nil,do(AS,S)) :- sub(now,S,A,AS), poss(AS,S).trans(test(C),S,nil,S) :- holds(C,S).trans(seq(P1,P2),S,P2r,Sr) :- final(P1,S),trans(P2,S,P2r,Sr).trans(seq(P1,P2),S,seq(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).trans(choice(P1,P2),S,Pr,Sr) :- trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).trans(pick(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).trans(iter(P),S,seq(PP,iter(P)),Sr) :- trans(P,S,PP,Sr).trans(if(C,P1,P2),S,Pr,Sr) :- holds(C,S),trans(P1,S,Pr,Sr) ;holds(neg(C),S),trans(P2,S,Pr,Sr).trans(while(C,P),S,seq(PP,while(C,P)),Sr) :- holds(C,S),trans(P,S,PP,Sr).trans(conc(P1,P2),S,conc(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).trans(conc(P1,P2),S,conc(P1,P2r),Sr) :- trans(P2,S,P2r,Sr).trans(prconc(P1,P2),S,prconc(P1r,P2),Sr) :- trans(P1,S,P1r,Sr).trans(prconc(P1,P2),S,prconc(P1,P2r),Sr) :- not trans(P1,S,_,_),trans(P2,S,P2r,Sr).trans(iterconc(P),S,conc(PP,iterconc(P)),Sr) :- trans(P,S,PP,Sr).trans(pcall(P_Args),S,Pr,Sr) :- sub(now,S,P_Args,P_ArgsS),proc(P_ArgsS,P), trans(P,S,Pr,Sr)./* final(Prog,Sit) */final(nil,S).final(seq(P1,P2),S) :- final(P1,S),final(P2,S).final(choice(P1,P2),S) :- final(P1,S) ; final(P2,S).38



final(pick(V,P),S) :- sub(V,_,P,PP), final(PP,S).final(iter(P),S).final(if(C,P1,P2),S) :- holds(C,S),final(P1,S) ;holds(neg(C),S),final(P2,S).final(while(C,P),S) :- holds(neg(C),S) ; final(P,S).final(conc(P1,P2),S) :- final(P1,S),final(P2,S).final(prconc(P1,P2),S) :- final(P1,S),final(P2,S).final(iterconc(P),S).final(pcall(P_Args)) :- sub(now,S,P_Args,P_ArgsS),proc(P_ArgsS,P),final(P,S)./* trans*(Prog,Sit,Prog_r,Sit_r) */trans*(P,S,P,S).trans*(P,S,Pr,Sr) :- trans(P,S,PP,SS), trans*(PP,SS,Pr,Sr)./* do(Prog,Sit,Sit_r) */do(P,S,Sr) :- trans*(P,S,Pr,Sr),final(Pr,Sr)./* holds(Cond,Sit): as defined in [34] */holds(and(F1,F2),S) :- holds(F1,S), holds(F2,S).holds(or(F1,F2),S) :- holds(F1,S); holds(F2,S).holds(all(V,F),S) :- holds(neg(some(V,neg(F))),S).holds(some(V,F),S) :- sub(V,_,F,Fr), holds(Fr,S).holds(neg(neg(F)),S) :- holds(F,S).holds(neg(and(F1,F2)),S) :- holds(or(neg(F1),neg(F2)),S).holds(neg(or(F1,F2)),S) :- holds(and(neg(F1),neg(F2)),S).holds(neg(all(V,F)),S) :- holds(some(V,neg(F)),S).holds(neg(some(V,F)),S) :- not holds(some(V,F),S). /* Negation by failure */holds(P_Xs,S) :-P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),P_Xs\=some(_._),sub(now,S,P_Xs,P_XsS), P_XsS. 39



holds(neg(P_Xs),S) :-P_Xs\=and(_,_),P_Xs\=or(_,_),P_Xs\=neg(_),P_Xs\=all(_,_),P_Xs\=some(_._),sub(now,S,P_Xs,P_XsS), not P_XsS. /* Negation by failure *//* sub(Const,Var,Term1,Term2): as defined in [34] */sub(X,Y,T,Tr) :- var(T), Tr = T.sub(X,Y,T,Tr) :- not var(T), T = X, Tr = Y.sub(X,Y,T,Tr) :- T \= X, T =..[F|Ts], sub_list(X,Y,Ts,Trs), Tr =..[F|Trs].sub_list(X,Y,[],[]).sub_list(X,Y,[T|Ts],[Tr|Trs]) :- sub(X,Y,T,Tr), sub_list(X,Y,Ts,Trs).In this implementation a ConGolog application is expected to have the following parts:1. A collection of clauses which together de�ne which 
uents are true in the initialsituation s0. The clauses need not to be atomic, and can involve arbitrary amountsof computation for determining entailments in the initial database.2. A collection of clauses which together de�ne the predicate Poss(a; s) for every actiona and situation s. Typically, this requires one clause per action, using a variable torange over all situations.3. A collection of clauses which together de�ne the successor state axioms for each
uent. Typically, this requires one clause per 
uent, with variables for actions andsituations.4. A collection of facts de�ning ConGolog procedures. In particular for each procedurep occurring in the program we have a fact of the form:proc(p(X1; : : : ; Xn); body)In such facts: (i) formal parameters are represented as Prolog variables so as to useProlog built-in uni�cation mechanism instead of a substitution procedure; (ii) inthe body body the only variables that can occur are those representing the formalparameters X1; : : : ; Xn. For simplicity, we do not consider nested procedures in theabove implementation.Expressing action theories as Prolog clauses places a number of restrictions on theaction theories that are representable. These restrictions force the closed world assump-tion (Prolog CWA) on the initial situation and the unique name assumption (UNA) onboth actions and objects. For an in-depth study on action theories expressible as Prologclauses, we refer to [34]. 40



9.1 ExampleBelow, we give an implementation in Prolog of the two robots lifting a table scenariodiscussed in subsection 6.1. The code is written as close to the speci�cation as possible.The inability of Prolog to de�ne directly the functional 
uent vpos(e; s) is resolved byintroducing a predicate val=2 such that val(vpos(e; s); v) stands for vpos(e; s) = v./***********************************************************************//* Two Robots Lifting a Table Example *//***********************************************************************//* Precondition axioms */poss(grab(Rob,E),S) :- not holding(_,E,S), not holding(Rob,_,S).poss(release(Rob,E),S) :- holding(Rob,E,S).poss(vmove(Rob,Amount),S) :- true./* Succ state axioms */val(vpos(E,do(A,S)),V) :-(A=vmove(Rob,Amount), holding(Rob,E,S), val(vpos(E,S),V1), V is V1+Amount) ;(A=release(Rob,E), V=0) ;(val(vpos(E,S),V), not((A=vmove(Rob,Amount), holding(Rob,E,S))),A\=release(Rob,E)).holding(Rob,E,do(A,S)) :-A=grab(Rob,E) ; (holding(Rob,E,S), A\=release(Rob,E))./* Defined Fluents */tableUp(S) :- val(vpos(end1,S),V1), V1 >= 3, val(vpos(end2,S),V2), V2 >= 3.safeToLift(Rob,Amount,Tol,S) :-tableEnd(E1), tableEnd(E2), E2\=E1, holding(Rob,E1,S),val(vpos(E1,S),V1), val(vpos(E2,S),V2), V1 =< V2+Tol-Amount./* Initial state */val(vpos(end1,s0),0). /* plus by CWA: */val(vpos(end2,s0),0). /* */tableEnd(end1). /* not holding(rob1,_,s0) */tableEnd(end2). /* not holding(rob2,_,s0) *//* Control procedures */ 41



proc(ctrl(Rob,Amount,Tol),seq(pick(e,seq(test(tableEnd(e)),act(grab(Rob,e)))),while(neg(tableUp(now)),seq(test(safeToLift(Rob,Amount,Tol,now)),act(vmove(Rob,Amount)))))).proc(jointLiftTable,conc(pcall(ctrl(rob1,1,2)), pcall(ctrl(rob2,1,2)))).Below we show a few �nal situations returned by the interpreter for the above example(note that the interpreter does not �lter out identical situations).?- do(pcall(jointLiftTable),s0,S).S = do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob1, 1),do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1),do(grab(rob1, end1), s0))))))))) ;S = do(vmove(rob2, 1), do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob1, 1),do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1),do(grab(rob1, end1), s0))))))))) ;S = do(vmove(rob1, 1), do(vmove(rob2, 1), do(vmove(rob2, 1), do(vmove(rob1, 1),do(vmove(rob2, 1), do(grab(rob2, end2), do(vmove(rob1, 1), do(vmove(rob1, 1),do(grab(rob1, end1), s0)))))))))Yes9.2 Correctness of the Prolog implementationIn this section we prove the correctness of the interpreter presented above under suitableassumptions. Let C be the set of axioms for Trans, Final, and Do plus those neededfor the encoding of programs as �rst-order terms, and D the domain theory. To keepnotation simple we denote the condition corresponding to a situation calculus formula �with the situation argument replaced by now, simply by �. Similarly for Prolog termscorresponding to actions and programs.Our proof of correctness relies on the following assumptions:� The domain theory D enforces the unique name assumption (UNA) on both actionsand objects.1616UNA is already enforced for programs, see Appendix A.42



� The predicate sub=4 correctly implements substitution for both programs and for-mulas.� The predicate holds=2 satis�es the following properties:1. If a goal holds(�; s), with free variables only on object terms and action terms,succeeds with computed answer �, then D j= 8�[s]� (by 8 , we mean theuniversal closure of  ).2. If a goal holds(�; s), with free variables only on object terms and action terms,�nitely fails, then D j= 8:�[s].� The predicate poss=2 satis�es the following properties:1. If a goal poss(a; s), with free variables only on object terms and action terms,succeeds with computed answer � then D j= 8Poss(a; s)�.2. If a goal poss(a; s), with free variables only on object terms and action terms,�nitely fails, then D j= 8:Poss(a; s).� The Prolog interpreter 
ounders (and hence does not return) on goals of the formnot trans(�; s; ; )17 with non-ground � and s.18Observe that the hypotheses required for sub=4, holds=2 and poss=2 do hold whenthese predicates are de�ned as above and run by an interpreter that 
ounders on non-ground negative goals (see [34]).Theorem 8: Under the hypotheses above the following holds:1. If a goal do(�; s; s0), where � and s may contain variables only on object termsand action terms, succeeds with computed answer �, then C [ D j= 8Do(�; s; s0)�,moreover s0� may contain free variables only on object terms and action terms.2. If a goal do(�; s; s0), where � and s may contain variables only on object terms andaction terms, �nitely fails, then C [ D j= 8:Do(�; s; s0).To make the arguments more apparent we will �rst prove the theorem without con-sidering procedures. Then we show how introducing procedures a�ects the proof.17From a formal point of view not trans(�; s; ; ) is a shorthand for not aux(�; s) with aux=2 de�nedas aux(�; s) :� trans(�; s; ; ).18This form of 
oundering arises for example when we expand � in programs of the form �z:(�1(z) ii�2(z)). Notably it does not arise for their variants �z:(�(z)?; (�1(z) ii �2(z))).
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Without proceduresTheorem 8 is an easy consequence of Lemma 2 and Lemma 3 below.Lemma 2: Under the hypotheses above the following holds:� The predicate trans=4 satis�es the following properties:1. If a goal trans(�; s; �0; s0), where � and s may contain variables only on ob-ject terms and action terms, succeeds with computed answer �, then C [ D j=8Trans(�; s; �0; s0)�, moreover �0� and s0� may contain free variables only onobject terms and action terms.2. If a goal trans(�; s; �0; s0), where � and s may contain variables only on objectterms and action terms, �nitely fails, then C [ D j= 8:Trans(�; s; �0; s0).� The predicate final=2 satis�es the following properties:1. If a goal final(�; s), where � and s may contain variables only on object termsand action terms, succeeds with computed answer �, then C[D j= 8Final(�; s)�.2. If a goal final(�; s), where � and s may contain variables only on object termsand action terms, �nitely fails, then C [ D j= 8:Final(�; s).Proof: First we observe that since we are not considering procedures, Trans and Finalsatisfy the axioms T and F from Sections 4 and 5. We prove simultaneously 1 and 2 forboth trans=4 and final=2 by induction on the program �. Here we show only the case� = �1 ii �2 for trans=4.Success. If trans(�1 ii �2; s; �0; s0) succeeds with computed answer �, then: either (i)trans(�1; s; �01; s0) succeeds with computed answer �1, and � = �0�1 where �0 = mgu(�0; �01 ii�2) is the most general uni�er [23] between �0 and �01 ii �2; or (ii) trans(�1; s; ; ) �nitelyfails and trans(�2; s; �02; s0) succeeds with computed answer �2 and � = mgu(�0; �1 ii �02)�2.In case (i) by the induction hypothesis C[D j= 8Trans(�1; s; �01; s0)�1, and s0�1 and �01�1 maycontain free variables only on object terms and action terms. In case (ii) by the inductionhypothesis C [D j= 8:Trans(�1; s; �01; s01), C[D j= 8Trans(�2; s; �02; s0)�2, and s0�2 and �02�2may contain free variables only on object terms and action terms. ConsideringTrans(�1 ii �2; s; �0; s0) � (3)9
:�0 = (
 ii �2) ^ Trans(�1; s; 
; s0) _9
:�0 = (�1 ii 
) ^ Trans(�2; s; 
; s0) ^ :9�; s00:Trans(�1; s; �; s00)and how � is de�ned in both cases, we get the thesis.Failure. If trans(�1 ii �2; s; �0; s0) �nitely fails, then: (i) for all �01 such that �0 uni�eswith �01 ii �2, trans(�1; s; �01; s0) �nitely fails, hence by the induction hypothesis C [ D j=8:Trans(�1; s; �01; s0)^ �0 = (�01 ii �2)); (ii) either trans(�1; s; ; ) succeeds, hence C [D j=44



9�01; s01:Trans(�1; s; �01; s01), or for all �02 such that �0 uni�es with �1 ii �02, trans(�2; s; �02; s0)�nitely fails, hence by the induction hypothesis C [D j= 8:Trans(�2; s; �02; s0)^ �0 = (�1 ii�02)). Considering (3) and the UNA for object, actions, and program terms, we get thethesis. 2Lemma 3: Under the hypotheses above the following holds:1. If a goal trans�(�; s; �0; s0), where � and s may contain variables only on ob-ject terms and action terms, succeeds with computed answer �, then C [ D j=8Trans�(�; s; �0; s0)�, moreover �0� and s0� may contain free variables only on ob-ject terms and action terms.2. If a goal trans�(�; s; �0; s0), where � and s may contain variables only on object termsand action terms, �nitely fails, then C [ D j= 8:Trans�(�; s; �0; s0).Proof: Using Lemma 2. Success. Then there exists a successful SLDNF-derivation[23] . Such a derivation must contain a �nite number k of selected literals of the formtrans�(�1; s1; �2; s2). The thesis is proven by induction on such a number k. Failure.Then there exists a �nitely failed SLDNF-tree [23] formed by failed SLDNF-derivationseach of which contains a �nite number of selected literals of the form trans�(�1; s1; �2; s2).The thesis is proven by induction on the maximal number of selected literals of the formtrans�(�1; s1; �2; s2) contained in the SLDNF-derivations forming the tree. 2With proceduresSince we do not have nested procedures in the Prolog implementation, we can avoidcarrying around the procedure environment. Hence we can simplify the constraints onprocedures in the de�nition of Trans and Final from Section 7 to respectively:T (P (~t); s; �0; s0) � T (�P~vP~t[s]; s; �0; s0)F (P (~t); s) � F (�P~vP~t[s]; s)To prove the soundness of the interpreter in presence of procedures, we need only redothe proof of Lemma 2.We now prove Lemma 2 as follows. Assume, for the moment, that Trans and Finalsatisfy the axioms T and F from Sections 4 and 5 plus the following ones:Trans(P (~t); s; �0; s0) � Trans(�P ~vP~t[s]; s; �0; s0)Final(P (~t); s) � Final(�P~vP~t[s]; s)Then we follow the line of the proof given above. However we need to deal with theadditional complication that due to procedure expansions the program now does not45



get always simpler anymore. To this end, we observe that every terminating SLDNF-derivation contains a �nite number of selected literals of the form trans(P (~t); s1; �2; s2)(final(P (~t); s1)). Hence we can prove the lemma using the following three nested induc-tions:� Induction on the rank of successful SLDNF-derivations/�nitely failed SLDNF-trees(i.e., the depth of nesting of auxiliary �nitely failed SLDNF-trees) [23].� Induction on the number of selected literals of the form trans(P (~t); s1; �2; s2)(final(P (~t); s1)) occurring in a successful SLDNF-derivation, for success. Induc-tion on the maximal number of selected literals of the form trans(P (~t); s1; �2; s2)(final(P (~t); s1)) contained in the SLDNF-derivations forming the �nitely failedSLDNF-tree, for failure.� Induction on the structure of the program.Now we come back to the assumption we made above for Trans and Final. In factFinal, being closed under the constraints on F in its de�nition, does actually satisfy theaxioms F from Sections 4 and 5 as well as the one above. However, Trans, which is notclosed under the constraints for T in its de�nition, does not satisfy the assumption, ingeneral. However, we get the desired result by noticing that the equivalences assumed forTrans form a conservative extension (see e.g. [37]) of domain theory D plus the axiomsneeded for the encoding of programs as �rst-order terms, and appealing to the followinggeneral result:Proposition 1: Let � be a consistent theory, �[f�g a conservative extension of � where� is a closed �rst-order formula, and P a predicate occurring in � but not in �. Thenfor any tuple of terms ~t:1. � [ f�g j= 8P (~t) implies � j= 8(8Z:[�PZ � Z(~t)])2. � [ f�g j= 8:P (~t) implies � j= 8(:8Z:[�PZ � Z(~t)])Proof: (1) by contradiction. Suppose there exists a modelM of � and variable assignment� with �(Z) = R for some relation R, such that M;� j= �PZ but M;� 6j= Z(~t). Nowconsider the model M 0 of � obtained from M by changing the interpretation of P toPM 0 = R. Then M 0 j= � and M 0; � 6j= P (~t), which contradicts � [ f�g j= 8P (~t). (2) bycontradiction. Suppose exists a model M of � and a variable assignment � such thatM;� j= 8Z:[�PZ � Z(~t)]. Then for every variable assignment �0 obtained from � byputting �(Z) = Q if M;�0 j= �PZ then M;�0 j= Z(~t). Let M 0 be an expansion of Msuch that M 0 j= �. Then for Q = PM 0 we have M;�0 j= Z(~t), i.e., M 0; � j= P (~t), whichcontradicts � [ f�g j= 8:P (~t). 2Intuitively, Proposition 1 says that when we constrain a relation P by a �rst-orderstatement, then every tuple that is forced to be \in" or \out" of the relation, will also46



be similarly \in" or \out" of the relation obtained by the second-order version of thestatement. Thus if Trans(�; s; �0; s0) holds for the �rst-order version of Trans, it must alsohold for the second-order version.10 DiscussionWith all of this procedural richness (nondeterminism, concurrency, recursive procedures,priorities, etc.), it is important not to lose sight of the logical framework. ConGologis indeed a programming language, but one whose execution, like planning, depends onreasoning about actions. Thus, a crucial part of a ConGolog program is the declarativepart: the precondition axioms, the successor state axioms, and the axioms characterizingthe initial state. This is central to how the language di�ers from super�cially similar\procedural languages". A ConGolog program together with the de�nition of Do andsome foundational axioms about the situation calculus is a formal logical theory aboutthe possible behaviors of an agent in a given environment. And this theory must be usedexplicitly by a ConGolog interpreter.In contrast, an interpreter for an ordinary procedural language does not use its se-mantics explicitly. Standard semantic accounts of programming languages also requirethe initial state to be completely speci�ed; our account does not; an agent may haveto act without knowing everything about its environment. Our account accommodatesdomain-dependent primitive actions and allows the interactions between the agent and itsenvironment to be modeled | actions may change the environment in a way that a�ectswhat actions can later occur [8].As mentioned, an important motivation for the development of ConGolog is the needfor tools to implement intelligent agent programs that are \reactive" in the sense thatthey reconsider their plans in response to signi�cant changes in their environment. Thus,our work is related to earlier research on resource-bounded deliberative architectures suchas [2] (IRMA) and [30] (PRS), and agent programming languages that are to some ex-tent based on this kind of architectures, such as AGENT-0 [38], AgentSpeak(L) [29], and3APL [16]. One di�erence is that in ConGolog, domain dynamics are speci�ed declara-tively and the speci�cation is used automatically in program execution; there is no needto program the updating of a world model when actions are performed. On the otherhand, plan selection or generation is not speci�ed using rules; it must be coded up inthe program; this produces more complex programs, but there is perhaps less overhead.Finally, agents programmed in ConGolog can be understood as executing programs, al-beit in a smart way; they have a simple operational semantics; architectures like IRMAand PRS, and languages like AGENT-0, AgentSpeak(L), and 3APL have more complexexecution models.Other programming languages share features with ConGolog. The agent programminglanguage Concurrent MetateM [11] supports concurrency and uses a temporal logic to47



specify the behavior of agents. Bonner and Kifer [3] have proposed a logical formalism tospecify concurrent database transactions. Also related are concurrent constraint languagessuch as CCP [35] and HCC [14], which support incompletely speci�ed information statesand concurrency. But unlike ConGolog, these languages generally restrict the kinds ofconstraints allowed in order to make entailment easy to compute. In ConGolog, the actiontheory is what determines how how states are updated. Also in constraint languages,control seems somewhat deemphasized. van Eijk et al.'s [10] have proposed an agentlanguage partly inspired from CCP.The simple Prolog implementation of the ConGolog interpreter described in section 8is at the core of a toolkit we have developed for implementing ConGolog applications. Theinterpreter in the toolkit is very similar to the one described, but uses a more convenientsyntax, performs some error detection, and has tracing facilities for debugging.The toolkit also includes a module for progressing the initial state database. Tounderstand the role of this component, �rst note that the basic method used by ourimplementation of action theories for determining whether a condition holds in a givensituation (i.e. evaluate holds(�; do(a1; : : : ; do(an; S0) : : :) is to perform regression on thecondition to obtain a new condition that only mentions the initial situation and thenquery the initial situation database to determine whether the new condition holds. Butregressing the condition all the way back to the initial situation can be quite ine�cientwhen the program has been running for a while and many actions have been performed.If the program is willing to commit to a particular sequence of actions, it is possibleto progress the initial situation theory to a new initial situation theory representing thestate of a�airs after the sequence of actions.19 Subsequent queries can then be e�cientlyevaluated with respect to this new initial situation database. The progression moduleperforms this updating of the initial situation database.The toolkit also includes a graphical viewer (see �gure 1) for debugging ConGologprograms and delivering process modeling applications. The tool, which is implementedin Tcl/Tk, displays the sequence of actions performed by the ConGolog program andthe value of the 
uents in the resulting situation (or any situation along the path). Theprogram can be stepped through and exogenous events can be generated either manuallyor at random according to a given distribution. The manner in which state informationis displayed can be speci�ed easily and customized as required.Finally, a high-level Golog Domain Speci�cation language (GDL) similar to Gelfondand Lifschitz's A [12] has also been developed. The toolkit includes a GDL compiler thattakes a domain speci�cation in GDL, generates successor state axioms for it, and thenproduces a Prolog implementation of the resulting domain theory.ConGolog has already been used in various applications. Lesp�erance et al. [19] haveimplemented a \reactive" high-level control module for a mobile robot in ConGolog. The19In general, the progression of an initial situation database may not be �rst-order representable; butwhen the initial situation is completely known (as we are assuming in this implementation), its progressionis always �rst-order representable and can be computed e�ciently; see [22] for details.48
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Figure 1: The ConGolog toolkit's graphical viewer.robot performs a mail-delivery task. The ConGolog control program involves a set ofprioritized interrupts that react to events such as the robot arriving to a customer'smailbox or failing to get to a mailbox due to obstacles, as well as new shipment orderswith varying degrees of urgency being received. The ConGolog controller was interfacedto navigation software and successfully tested on a RWI B12 mobile robot.Work has also been done on using ConGolog to model multiagent systems [36]. In thiscase, the domain theory includes 
uents that model the beliefs and goals of the system'sagents (this is done by adapting a possible-world semantics of such mental states to thesituation calculus). A ConGolog program is used to specify the complex behavior of theagents in such a system. A simple multiagent meeting scheduling example is speci�ed in[36]. ConGolog-based tools for specifying and verifying complex multiagent systems arebeing investigated.Finally, in [7], the transition semantics developed in this paper is adapted so thatexecution can be interleaved with program interpretation in order to accommodate sensingactions, that is, actions whose e�ect is not to change the world so much as to provideinformation to be used by the agent at runtime.In summary, we have seen how, given a basic action theory describing an initial stateand the preconditions and e�ects of a collection of primitive actions, it is possible tocombine these into complex actions for high-level agent control. The semantics of theresulting language end up deriving directly from that of the underlying primitive actions.In this sense, the solution to the frame problem provided by successor state axioms forprimitive actions is extended to cover the complex actions of ConGolog. So ConGologcan be viewed as an action theory (that supports complex actions), as a speci�cationlanguage, and as an implementation language, and has been used in all three ways.49
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A Appendix: Programs as TermsIn this section, we develop an encoding of programs as �rst-order terms. Although some careis required (e.g. introducing constants denoting variables and de�ning substitution explicitly inthe language), this does not pose any major problem; see [18] for an introduction to problemsand techniques in this area.We add to the sorts Sit , Obj and Act of the Situation Calculus, the following new sorts:Idx , PseudoSit , PseudoAct , PseudoObj , PseudoForm , ENV , and PROG .Intuitively, elements of Idx denote natural numbers, and are used for building indexingfunctions. Elements of PseudoAct , PseudoObj , PseudoSit and PseudoForm are syntactic devicesto denote respectively actions, objects, situations and formulas within programs. Elements ofENV denote environments, i.e sets of procedure de�nitions. And �nally, elements of PROGdenote programs, which are considered as simply syntactic objects.A.1 Sort IdxWe introduce the constant 0 of sort Idx , and a function succ : Idx ! Idx . For them we enforcethe following unique name axioms:succ(i) 6= 0succ(i) = succ(i0) � i = i0We de�ne the predicate Idx : Idx as:Idx(i) � 8X:[ : : : � X(i)]where : : : stands for the universal closure ofX(0)X(i) � X(succ(i))Finally we assume the following domain closure axiom for sort Idx :8i:Idx(i)A.2 Sorts PseudoSit, PseudoObj , PseudoActThe languages of PseudoSit , PseudoObj and PseudoAct are as follows:� A constant Now : PseudoSit .� A function nameOfSort : Sort ! PseudoSort for Sort = Obj ;Act . We use the notation [[x]]to denote nameOfSort (x), leaving Sort implicit.� A function varSort : Idx ! PseudoSort for Sort = Obj ;Act . We call terms of the formvarSort (i) pseudo-variables and we use the notation zi (or just x; y; z) to denote varSort(i),leaving Sort implicit. 54



� A function f : PseudoSort1 � : : : � PseudoSortn ! PseudoSortn+1 for each 
uent ornon
uent function f of sort Sort1 � : : : � Sortn ! Sortn+1 with Sort i = Obj ;Act ;Sit inthe original language (note that if n = 0 then f is a constant).We de�ne the predicates PseudoSit : PseudoSit , PseudoObj : PseudoObj and PseudoAct :PseudoAct respectively as:PseudoSit(x) � 8PSit ; PObj ; PAct :[ : : : � PSit(x)]PseudoObj(x) � 8PSit ; PObj ; PAct :[ : : : � PObj (x)]PseudoAct(x) � 8PSit ; PObj ; PAct :[ : : : � PAct (x)]where : : : stands for the universal closure ofPSit (Now)PSort (nameOfSort (x)) for Sort = Obj ;ActPSort (zi) for Sort = Obj ;ActPSort (x1) ^ : : : ^ PSort (xn) � PSort (f(x1 : : : ; xn)) (for each f)We assume the following domain closure axioms for the sorts PseudoSit, PseudoObj andPseudoAct: 8x:PseudoSit(x)8x:PseudoObj(x)8x:PseudoAct(x)We also enforce unique name axioms for them, that is, for all functions g; g0 of any arity (includingconstants) introduced above:g(x1; : : : ; xn) 6= g0(y1; : : : ; ym)g(x1; : : : ; xn) = g(y1; : : : ; yn)�x1 = y1 ^ : : : ^ xn = ynObserve that the unique name axioms impose that nameOf(x) = nameOf(y)�x = y but do notsay anything on domain elements denoted by x and y since these are elements of Act or Obj .Next we want to relate pseudo-situations, pseudo-objects and pseudo-actions to real sit-uations, object and actions. In fact we do not want to relate all terms of sort PseudoObjand PseudoAct to real object and actions, but just the \closed" ones, i.e. those in which nopseudo variable zi occur. To formalize the notion of closedness, we introduce the predicateClosed : PseudoSort for Sort = Sit ;Obj ;Act , characterized by the following assertions20Closed(Now)Closed(nameOf(x)):Closed(zi)Closed(f(x1; : : : ; xn)) � Closed(x1) ^ : : : ^ Closed(xn) for each fClosed terms of sort PseudoObj and PseudoAct are related to real objects and actions bymeans of the function decode : (PseudoSort � Sit ! Sort) for Sort = Sit ;Obj ;Act . We use the20We say the following theory is \characterizing" since it is complete, in the sense that it partitionsthe elements in PseudoSort into those that are closed and those that are not.55



notation x[s] to denote decode(x; s). Such a function is characterized by the following assertions:decode(Now ; s) = sdecode(nameOf(x); s) = xdecode(f(x1 : : : ; xn); s) = f(decode(x1; s); : : : ; decode(xn; s)) (for each f)A.3 Sort PseudoFormNext we introduce pseudo-formulas used in tests. Speci�cally, we introduce:� A function p : PseudoSort 1� : : :�PseudoSortn ! PseudoForm for each non
uent/
uentpredicate p in the original language (not including the new the predicates introduced inthis section).� A function and : PseudoForm�PseudoForm ! PseudoForm . We use the notation �1^�2to denote and(�1; �2).� A function not : PseudoForm ! PseudoForm . We use the notation :� to denote not(�).� A function someSort : PseudoSort � PseudoForm ! PseudoForm , for PseudoSort =PseudoObj ;PseudoAct . We use the notation 9zi:� to denote some(varSort (i); �), leavingSort implicit.We de�ne the predicate PseudoForm : PseudoForm as:PseudoForm(�) � 8PForm :[ : : : � PForm (�)]where : : : stands for the universal closure ofPForm (p(x1; : : : ; xn)) (for each p)PForm (�1) ^ PForm (�2) � PForm (�1 ^ �2)PForm (�) � PForm (:�)PForm (�) � PForm (9zi:�)We assume the following domain closure axiom for the sort PseudoForm :8�:PseudoForm(�):We also enforce unique name axioms for pseudo-formulas, that is, for all functions g; g0 of anyarity introduced above:g(x1; : : : ; xn) 6= g0(y1; : : : ; ym)g(x1; : : : ; xn) = g(y1; : : : ; yn)�x1 = y1 ^ : : : ^ xn = ynNext we formalize the notion of substitution. We introduce the function sub : PseudoSort �PseudoSort � PseudoSort 0 ! PseudoSort 0 for Sort = Obj ;Act and Sort 0 = Sit ;Obj ;Act . We56



use the notation txy to denote sub(x; y; t). Such a function is characterized by the followingassertions: Nowxy = NownameOf(t)xy = nameOf(t)ziziy = yx 6= zi � zixy = zif(t1; : : : ; tn)xy = f(t1xy ; : : : ; tnxy) (for each f)We extend the function sub to pseudo-formulas (as third argument) as follows:p(t1; : : : ; tn)xy = p(t1xy ; : : : ; tnxy) (for each p)(�1 ^ �2)xy = (�1)xy ^ (�2)xy(:�)xy = :(�)xy(9zi:�)ziy = 9zi:�x 6= zi � (9zi:�)xy = 9zi:(�xy)Next we extend the predicate Closed to pseudo-formulas in a natural way:Closed(p(x1; : : : ; xn)) � Closed(x1) ^ : : : ^ Closed(xn) for each pClosed(�1 ^ �2) � Closed(�1) ^ Closed(�2)Closed(:�) � Closed(�1)Closed(9zi:�) � 8y:Closed(�zinameOf(y))We relate closed pseudo-formulas to real formulas by introducing a predicate Holds :PseudoForm � Sit , characterized by the following assertions:Holds(p(x1; : : : ; xn); s) � p(decode(x1; s); : : : ; decode(xn; s)) (for each p)Holds(�1 ^ �2; s) � Holds(�1; s) ^ Holds(�2; s)Holds(:�; s) � :Holds(�; s)Holds(9z:�; s) � 9y:Holds(�znameOf(y); s)where y in the last equation is any variable that does not appear in �. We use the notation �[s]to denote Holds(�; s).A.4 Sorts PROG and ENVNow we are ready to introduce programs. Speci�cally, we introduce:� A constant nil : PROG .� A function act : PseudoAct ! PROG . As notation we write simply a to denote act(a)when confusion cannot arise.� A function test : PseudoForm ! PROG . We use the notation �? to denote test(�).� A function seq : PROG � PROG ! PROG . We use the notation �1; �2 to denoteseq(�1; �2). 57



� A function choice : PROG � PROG ! PROG . We use the notation �1 j �2 to denotechoice(�1; �2).� A function iter : PROG ! PROG . We use the notation �� to denote iter(�).� Two functions pickSort : PseudoSort � PROG ! PROG , where PseudoSort is eitherPseudoObj or PseudoAct . We use the notation �zi:� to denote pickSort(varSort (i); �),leaving Sort implicit.� A function if : PseudoForm �PROG�PROG ! PROG . We use the notation if� then�1 else �2 to denote if(�; �1; �2).� A function while : PseudoForm � PROG ! PROG . We use the notation while� do �to denote while(�; �).� A function conc : PROG � PROG ! PROG . We use the notation �1 k �2 to denoteconc(�1; �2).� A function prconc : PROG � PROG ! PROG . We use the notation �1 ii �2 to denoteprconc(�1; �2).� A function iterconc : PROG ! PROG . We use the notation �jj to denote iterconc(�).To deal with procedures we need to introduce the notion of environment together with thatof program. We introduce:� A �nite number of functions P : PseudoSort1 � : : : � PseudoSortn ! PROG , wherePseudoSort i is either PseudoObj or PseudoAct . These functions are going to be used asprocedure calls.� A function proc : PROG � PROG ! PROG. This function is used to build procedurede�nitions and so we will force the �rst argument to have the form P(zi1 ; : : : ; zin), wherez1 : : : zn are used to denote the formal parameters of the de�ned procedure. We use thenotation proc P(z1; : : : ; zn) � end to denote proc(P(z1; : : : ; zn); �).� A constant " : ENV , denoting the empty environment.� A function addproc : ENV � PROG ! ENV . We will restrict the programs allowedto appear as the second argument to procedure de�nitions only. We use the notationE ; proc P(~z) � end to denote addproc(E ; proc P(~z) � end).� A function pblock : ENV � PROG ! PROG . We use the notation fE ; �g to denotepblock(E ; �).� A function c call : ENV � PROG ! PROG . We will restrict the programs allowed toappear as the second argument to procedure calls only. We use the notation [E : P(~t)] todenote c call(E ; P(~t)). 58



We next introduce a predicate defined : PROG�ENV meaning that a procedure is de�nedin an environment. It is speci�ed as:defined(c; E) � 8D:[ : : : � D(c; E)]where : : : stands for D(P(~x); "; proc P(~y) � end)D(c; E 0) � D(c; E 0; d)Observe that procedures P are only de�ned in an environment E , and that the parameters theprocedure is applied to do not play any role in determining whether the procedure is de�ned.Now we de�ne the predicate Prog : PROG and the predicate Env : ENV as:Prog(�) � 8PPROG ; PENV :[ : : : � PPROG(�)]Env(E) � 8PPROG ; PENV :[ : : : � PENV (E)]where : : : stands for the universal closure ofPPROG(nil)PPROG (act(a)) (a pseudo-action)PPROG (�?) (� pseudo-formula)PPROG(�1) ^ PPROG(�2) � PPROG(�1; �2)PPROG(�1) ^ PPROG(�2) � PPROG(�1 j �2)PPROG(�) � PPROG(��)PPROG(�) � PPROG(�zi:�)PPROG(�1) ^ PPROG(�2) � PPROG(if � then �1 else �2)PPROG(�) � PPROG(while� do �)PPROG(�1) ^ PPROG(�2) � PPROG(�1 k �2)PPROG(�1) ^ PPROG(�2) � PPROG(�1 ii �2)PPROG(�) � PPROG(�jj)PPROG(P(x1; : : : ; xn)) (for each P)PENV (E) ^ PPROG(�) � PPROG(fE ; �g)PENV (E) ^ defined(P(~z); E) � PPROG([E : P(x1; : : : ; xn)])PENV (")PENV (E) ^ PPROG(�) ^ :defined(P(~z); E) ^ (Vnh;k=1 zih 6= zik) �PENV (E ; proc P(zi1 ; : : : ; zin) � end)We assume the following domain closure axioms for the sorts PROG and ENV :8�:Prog(�) 8E :Env(E):We also enforce unique name axioms for programs and environments, that is for all functionsg; g0 of any arity introduced above:g(x1; : : : ; xn) 6= g0(y1; : : : ; ym)g(x1; : : : ; xn) = g(y1; : : : ; yn)�x1 = y1 ^ : : : ^ xn = yn59



We extend the predicate Closed to PROG by induction on the structure of the programterms in the obvious way so as to consider closed, programs in which all occurrences of pseudo-variables zi are bound either by �, or by being a formal parameter of a procedure. Only closedprograms are considered legal.We introduce the function resolve : ENV � PROG � PROG ! PROG , to be used toassociate to procedure calls the environment to be used to resolve them. Namely, given theprocedure P de�ned in the environment E , resolve(E ; P(~t); �) denoted by (�)P(~t)[E :P(~t)], suitablyreplaces P(~t) by c call(E ; P(~t)) in order to obtain static scope for procedures. It is obvioushow the function can be extended to resolve whole sets of procedure calls whose procedures arede�ned in the environment E . Formally this function satis�es the following assertions:(nil)P(~x)[E :P(~x)] = nil(a)P(~x)[E :P(~x)] = a(�?)P(~x)[E :P(~x)] = �?(�1; �2)P(~x)[E :P(~x)] = (�1)P(~x)[E :P(~x)]; (�2)P(~x)[E :P(~x)](�1 j �2)P(~x)[E :P(~x)] = (�1)P(~x)[E :P(~x)] j (�2)P(~x)[E :P(~x)](�zi:�)P(~x)[E :P(~x)] = �zi:(�)P(~x)[E :P(~x)](��)P(~x)[E :P(~x)] = ((�)P(~x)[E :P(~x)])�(if� then �1 else �2)P(~x)[E :P(~x)] = if� then (�1)P(~x)[E :P(~x)] else (�2)P(~x)[E :P(~x)](while� do �)P(~x)[E :P(~x)] = while� do (�)P(~x)[E :P(~x)](�1 k �2)P(~x)[E :P(~x)] = (�1)P(~x)[E :P(~x)] k (�2)P(~x)[E :P(~x)](�1 ii �2)P(~x)[E :P(~x)] = (�1)P(~x)[E :P(~x)] ii (�2)P(~x)[E :P(~x)](�jj)P(~x)[E :P(~x)] = ((�)P(~x)[E :P(~x)])jj(P(~x))P(~x)[E :P(~x)] = [E : P(~x)](Q(~t))P(~x)[E :P(~x)] = Q(~t) for any procedure call Q(~t) di�erent from P(~x)(fE 0; �g)P(~x)[E :P(~x)] = ( fE 0; �g if procedure P is (re)de�ned in E 0fE 0; (�)P(~x)[E :P(~x)]g otherwise([E 0 : Q(~t]))P(~x)[E :P(~x)] = [E 0 : Q(~t)] for every procedure call Q(~t) and environment E 0Finally, we extend the function sub to PROG (as third argument) again by induction on thestructure of program terms in the natural way considering � as a binding construct for pseudo-variables and without doing any substitutions into environments. sub is used for substitutingformal parameters with actual parameters in contextualized procedure calls, as well as to dealwith �. We also introduce a function c body : PROG�ENV ! PROG to be used to return thebody of the procedures. Namely, c body(P(~x); E) returns the body of the procedure P in E withthe formal parameters substituted by the actual parameters ~x. Formally this function satis�esthe following assertions:c body(P(~x); E ; proc P(~y) � end) = �~y~xc body(P(~x); E ; proc Q(~y) � end) = c body(P(~x); E) (Q 6= P)60



A.5 Consistency preservationThe encoding presented here preserves consistency as stated by the following theorem.Theorem 9: Let H be the axioms de�ning the encoding above. Then every model of an actiontheory D (involving sorts Sit, Act and Obj ) can be extended to a model of H[D (involving theadditional sorts Idx , PseudoSit, PseudoAct, PseudoObj , PseudoForm, ENV and PROG).Proof: It su�ces to observe that for each new sort (Idx ; : : : ;PROG) H contains:� A second-order axiom that explicitly de�nes a predicate which inductively characterizesthe elements of the sort.� An axiom that closes the domain of the new sort with respect to the characterizing pred-icate.� Unique name axioms that extend the interpretation of = to the new sort by induction onthe structure of the elements (as imposed by the characterizing axiom).� Axioms that characterize predicates and functions, such as Closed, decode, sub, Holds,etc., by induction on the structure of the elements of the sort.Hence, given a model M of the action theory D, it is straightforward to introduce domainsfor the new sorts that satisfy the characterizing predicate, the domain closure axioms, and theunique name axioms for the sort, by proceeding by induction on the structure of the elementsforced by the characterizing predicate, and then establishing the extension of the newly de�nedpredicates/functions for the sort. 2
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B Appendix: Proof of Theorem 1 { Equivalence be-tween the Do's for Golog programsIn this section, we prove Theorem 1, i.e. the equivalence of the original de�nition of Do andthe new one given in this paper, in the more general language which includes procedures. Tosimplify the presentation of the proof, we use the same symbols to denote terms and elementsof the domain of interpretation; the meaning will be clear from the context.B.1 Alternative de�nitions of Trans and FinalFor proving the following results, it is convenient to reformulate the de�nitions of Trans andFinal:� Trans(�; s; �0; s0) � 8T:[ : : : � T (�; s; �0; s0)], where : : : stands for the conjunction ofthe universal closure of the following implications:Poss(a[s]; s) � T (a; s;nil; do(a[s]; s))�[s] � T (�?; s;nil; s)T (�; s; �0; s0) � T (�; 
; s; �0; 
; s0)Final(
; s) ^ T (�; s; �0; s0) � T (
; �; s; �0; s0)T (�; s; �0; s0) � T (� j 
; s; �0; s0)T (�; s; �0; s0) � T (
 j �; s; �0; s0)T (�vx; s; �0; s0) � T (�v:�; s; �0; s0)T (�; s; �0; s0) � T (��; s; �0; ��; s0)T (�Pi(~t)[Env:Pi(~t)]; s; �0; s0) � T (fEnv; �g; s; �0 ; s0)T (fEnv; �P ~vP~t[s]g; s; �0; s0) � T ([Env : P (~t)]; s; �0; s0)� Final(�; s) � 8F:[ : : : � F (�; s)], where : : : stands for the conjunction of the universalclosure of the following implications:True � F (nil; s)F (�; s) ^ F (
; s) � F (�; 
; s)F (�; s) � F (� j 
; s)F (�; s) � F (
 j �; s)F (�vx; s) � F (�v:�; s)True � F (��; s)F (�Pi(~t)[Env:Pi(~t)]; s) � F (fEnv; �g; s)F (fEnv; �P ~vP~t[s]; s) � F ([Env : P (~t)]; s)Theorem 10: With respect to Golog programs, the de�nitions above are equivalent to the onesgiven in Section 7 of the paper. 62



Proof: To prove this equivalence, consider �rst the following general results, which are a directconsequence of the Tarski-Knaster �xpoint theorem [40]. IfS(~x) � 8Z:[[8~y:�(Z; ~y)�Z(~y)]�Z(~x)] (4)and �(Z; ~y) is monotonic (i.e. 8Z1; Z2:[8~y:Z1(~y)�Z2(~y)] � [8~y:�(Z1; ~y)��(Z2; ~y)]), then we getthe following consequences21S(~x) � �(S; ~x) (5)S(~x) � 8Z:[[8~y:Z(~y) � �(Z; ~y)]�Z(~x)]: (6)Now it is easy to see that the above de�nition of Trans and Final can be rewritten as (4) andthat the resulting � is indeed monotonic (in particular it is syntactically monotonic since thepredicate variables T and F do not occur in the scope of any negation). Thus, by the Tarski-Knaster �xpoint theorem, the above de�nitions can be rewritten in the form of (6). Once inthis form it is easy to see that for Golog programs they are equivalent to those introduced inSection 7. 2B.2 Do1 is equivalent to Do2Let Do1 be the original de�nition of Do in [20] extended with Do1(nil; s; s0) def= s0 = s andDo([Env : P (~t)]; s; s0) def= Do(fEnv;P (~t)g; s; s0), and Do2 the new de�nition in terms of Transand Final. Also, we do not allow procedure calls for which no procedure de�nitions are given.Lemma 4 : For every model M of C, there exist �1; s1 : : : �n; sn such that M j=Trans(�i; si; �i+1; si+1) for i = 1; : : : ; n� 1 if and only if M j= Trans�(�1; s1; �n; sn).Proof: ) By induction on n. If n = 1, then M j= Trans�(�1; s1; �1; s1) by de�nition ofTrans�. If n > 1, then by induction hypothesis M j= Trans�(�2; s2; �n; sn), and since M j=Trans(�1; s1; �2; s2), we get M j= Trans�(�1; s1; �n; sn) by de�nition of Trans�.( Let R be the relation formed by the tuples (�1; s1; �n; sn) such that there exist �1; s1 : : : �n; snand M j= Trans(�i; si; �i+1; si+1) for i = 1; : : : ; n � 1. It is easy to verify that (i) for all �; s,(�; s; �; s) 2 R; (ii) for all �; s; �0; s0; �00; s00, M j= Trans(�; s; �0; s0) and (�0; s0; �00; s00) 2 R implies(�; s; �00; s00) 2 R. 2Lemma 5: For every model M of C, M j= Do1(�; s; s0) implies that there exist �1; s1 : : : �n; snsuch that �1 = �, s1 = s, sn = s0, M j= Final(�n; sn), and M j= Trans(�i; si; �i+1; si+1) fori = 1; : : : ; n� 1.Proof: We prove the lemma by induction on the structure of the program. We only give detailsfor the most signi�cant cases.21In fact, (5) is only mentioned in passing and not used in the proof.63



1. a (atomic action). M j= Do1(a; s; s0) i� M j= Poss(a[s]; s) and s0 = do(a[s]; s). ThenM j= Trans(a; s;nil; do(a[s]; s)), and hence the thesis.2. �; 
 (sequence). M j= Do1(�; 
; s; s0) i� M j= Do1(�; s; s00) and M j= Do1(
; s00; s0).Then by induction hypothesis: (i) there exist �1; s1 : : : ; �k; sk such that �1 = �, s1 = s,sk = s00, M j= Final(�k; sk) and M j= Trans(�i; si; �i+1; si) for i = 1; : : : ; k � 1; (ii)there exist 
k; sk : : : ; 
n; sn such that 
1 = 
, sk = s00, sn = s0, M j= Final(
n; sn) andM j= Trans(
i; si; 
i+1; si) for i = k; : : : ; n� 1.Since Trans itself is closed under the assertions in its de�nition we have that: M j=Trans(�i; si; �i+1; si+1) implies M j= Trans(�i; 
; si; �i+1; 
; si+1). Moreover M j=Final(�k; sk) and M j= Trans(
k; sk; 
k+1; sk+1) implies M j= Trans(�k; 
k; sk; 
k+1; sk+1).Similarly in the case k = n we have that, since Final is also closed under the assertionsin its de�nition M j= Final(�k; sk) and M j= Final(
k; sk) implies M j= Final(�k; 
k; sk).Hence the thesis.3. �� (iteration). M j= Do1(��; s; s0) i� M j= 8P:[ : : : �P (s; s0)] where : : : stand for thefollowing two assertions: (i) 8s:P (s; s); (ii) 8s; s0; s00:Do1(�; s; s00) ^ P (s00; s0)�P (s; s0).Consider the relation Q de�ned as the set of pairs (s; s0) such that: there exist�1; s1 : : : ; �n; sn with �1 = ��, s1 = s, sn = s0, M j= Final(�n; sn) and M j=Trans(�i; si; �i+1; si) for i = 1; : : : ; n � 1. To prove the thesis, it is su�cient to showthat Q satis�es the two assertions (i) and (ii).� (i) Let �1 = �n = ��, s1 = sn = s; since M j= Final(��; s), it follows that for all s,(s; s) 2 Q.� (ii) By the �rst induction hypothesis (the induction on the structure of the program):M j= Do1(�; s; s00) implies that there exist �1; s1 : : : ; �k; sk such that �1 = �, s1 = s,sk = s00, M j= Final(�k; sk) and M j= Trans(�i; si; �i+1; si+1) for i = 1; : : : ; k � 1.This implies that M j= Trans(�i; ��; si; �i+1; ��; si+1) for i : 2; : : : ; k � 1. Moreover,we must also have M j= Trans(��; s1; �2; ��; s2).By the second induction hypothesis (rule induction for P ), we can assume that thereexist 
k; sk : : : ; 
n; sn such that 
k = ��, sk = s00, sn = s0, M j= Final(
n; sn) andM j= Trans(
i; si; 
i+1; si+1) for i = k; : : : ; n� 1.Now observe that Final(�k; sk) and Trans(
k; sk; 
k+1; sk+1) implies thatTrans(�k; 
k; sk; 
k+1; sk+1). Thus, we get that (ii) holds for Q.Hence the thesis.4. fEnv; �g (procedures). M j= Do1(fEnv; �g; s; s0) i�M j= 8P1; : : : ; Pn: [� � Do1(�; s; s0)]where � = [ n̂i=1 8~x; s; s0:Do1(�i~vi~x ; s; s0)�Pi(~x; s; s0)]: (7)64



To get the thesis, it su�ces to prove it for the case:M j= 8P1; : : : ; Pn: [� � Pi(~x; s; s0)] (8)and then apply the induction argument on the structure of the program considering asbase cases nil, a, �?, and P (~t).Consider the relations Qi de�ned as the set of tuples (~x; s; s0) such that there exist�1; s1 : : : ; �n; sn with �1 = fEnv;Pi(~x)g22, s1 = s, sn = s0, M j= Final(�n; sn) andM j= Trans(�i; si; �i+1; si) for i = 1; : : : ; n � 1. To prove the thesis it is su�cient toshow that each Qi satis�es (is closed under) the assertion (7).Recall that Do1(Pi(~x)); s; s0) def= Pi(~x; s; s0) where Pi is a free predicate variable. Thismeans that for any variable assignment �, M;�P1;:::;PnQ1;:::;Qn j= Do1(Pi(~x); s; s0) implies(~x; s; s0) 2 Qi, i.e., there exist �1; s1 : : : ; �n; sn with �1 = fEnv;Pi(~x)g, s1 = s, sn = s0,M j= Final(�n; sn) and M j= Trans(�i; si; �i+1; si) for i = 1; : : : ; n � 1. Hence by in-duction on the structure of the program, considering as base cases nil, a, �? and P (~t),we have that M;�P1;:::;PnQ1;:::;Qn j= Do1(�i~vi~x ; s; s0) implies that there exist �1; s1 : : : ; �n; sn with�1 = fEnv; �i~vi~x g, s1 = s, sn = s0, M j= Final(�n; sn) and M j= Trans(�i; si; �i+1; si)for i = 1; : : : ; n � 1. Now considering that M j= Trans(fEnv; �i~vi~x g; s1; �2; s2) impliesM j= Trans([Env : Pi(~x)]; s1; �2; s2) implies M j= Trans(fEnv;Pi(~x)g; s1; �2; s2), we getthat (~x; s; s0) 2 Qi.2Lemma 6: For all Golog programs � and situations s:Final(�; s)�Do1(�; s; s)Proof: It is easy to show that Do1(�; s; s) is closed with respect to the implications in theinductive de�nition of Final. 2Lemma 7: For all Golog programs �; �0 and situations s; s0:Trans(�; s; �0; s0) ^Do1(�0; s0; s00)�Do1(�; s; s00):Proof: The property we want to prove can be rewritten as follows:Trans(�; s; �0; s0)��(�; s; �0; s0)with �(�; s; �0; s0) def= 8s00:Do1(�0; s0; s00)�Do1(�; s; s00):Hence it is su�cient to show that � is closed under the implications that inductively de�neTrans. Again, we only give details for the most signi�cant cases.22To be more precise, the variables xi in Pi(~x) should be read as nameOf(xi) thus converting situationcalculus objects/actions variables into suitable program terms (see appendix A).65



1. Implication for primitive actions. We show that Poss(a[s]; s)��(a[s]; s;nil; do(a[s]; s)) i.e.:Poss(a[s]; s)�8s00:Do1(nil; do(a[s]; s); s00)�Do1(a; s; s00):Since Do1(nil; s; s0) def= s0 = s, this reduces to Poss(a[s]; s)�Do1(a; s; do(a; s)), which holdsby the de�nition of Do1.2. First implication for sequences. We have to show �(�; s; �0; s0)��(�; 
; s; �0; s0), i.e.:8s00:[Do1(�0; s0; s00)�Do1(�; s; s00)]�8s00:Do1(�0; 
; s0; s00)�Do1(�; 
; s; s00):By contradiction. Suppose that there is a model M such that M j=8s00:Do1(�0; s0; s00)�Do1(�; s; s00), and M j= Do1(�0; 
; s0; sc) and M j= :Do1(�; 
; s; sc)for some sc. This means that M j= Do1(�0; s0; st) ^ Do1(
; st; sc) for some st, butM j= 8t::Do1(�; s; t) _:Do1(
; t; sc). Since M j= Do1(�0; s0; st) implies M j= Do1(�; s; st),we have a contradiction.3. Secondimplication for sequences. We have to show Final(�; s) ^ �(
; s; 
0; s0)��(�; 
; s; 
0; s0),i.e.:Final(�; s) ^ 8s00:[Do1(
0; s0; s00)�Do1(
; s; s00)]�8s00:Do1(
0; s0; s00)�Do1(�; 
; s; s00):By contradiction. Suppose that there is a model M such that M j= Final(�; s),M j= 8s00:Do1(
0; s0; s00)�Do1(
; s; s00), and M j= Do1(
0; s0; sc) { thus M j= Do1(
; s; sc) {and M j= :Do1(�; 
; s; sc) for some sc. The latter means that M j= 8t::Do1(�; s; t) _:Do1(
; t; sc). Since M j= Final(�; s) implies M j= Do1(�; s; s) by lemma 6, thenM j= :Do1(
; s; sc), contradiction.4. Implication for iteration. We have to show �(�; s; �0; s0)��(��; s; �0; ��; s0), i.e.:8s00:[Do1(�0; s0; s00)�Do1(�; s; s00)]�8s00:Do1(�0; ��; s0; s00)�Do1(��; s; s00):By contradiction. Suppose that there is a model M such that M j=8s00:Do1(�0; s0; s00)�Do1(�; s; s00), and M j= Do1(�0; ��; s0; sc) and M j= :Do1(��; s; sc) forsome sc. Since M j= Do1(�0; ��; s0; sc) implies M j= Do1(�0; s0; st) { thus M j= Do1(�; s; st){ and M j= Do1(��; st; sc), and M j= Do1(�; s; st) and M j= Do1(��; st; sc) implyM j= Do1(��; s; sc), contradiction.5. Implication for contextualized procedure calls. We have to show that�(fEnv; �i ~vi~t[s]g; s; �0; s0) � �([Env : Pi(~t)]; s; �0; s0)It su�ces to prove that:Do1(fEnv; �i~vi~t[s]g; s; s0) � Do1([Env : Pi(~t)]; s; s0):66



We proceed by contradiction. Suppose that there exists an model M such that M j=Do1(fEnv; �i ~vi~t[s]g; s; s0) and M j= :Do1([Env;Pi(~t)]; s; s0), for some ~t, s and s0. That is:M j= 8P1; : : : ; Pn: [	 � Do1(�i ~vi~t[s]; s; s0)] (9)M j= 9P1; : : : ; Pn: [	 ^ :Pi(~t[s]); s; s0)]: (10)where 	 = [Vni=1 8~xi; s; s0:Do1(�i~vi~xi ; s; s0)�Pi(~xi; s; s0)]. Then by (10) there exists avariable assignment such that M;� j= 	 and M;� j= :Pi(~t[s]; s; s0), which impliesM;� j= :Do1(�~vi~t[s]; s; s0), which contradicts (9).6. Implication for programs within an environment. We have to show�(�Pi(~t)[Env:Pi(~t)]; s; �0; s0) � �(fEnv; �g; s; �0 ; s0):It su�ces to prove that:Do1(�Pi(~t)[Env:Pi(~t)]; s; s0) � Do1(fEnv; �g; s; s0)This can be done by induction on the structure of the program � considering nil, a, �?,and [Env0 : P (~t)] as base cases (such programs do not make use of Env).2Lemma 8: For every model M of C, if there exist �1; s1 : : : �n; sn such that �1 = �, s1 = s,sn = s0, M j= Final(�n; sn) and M j= Trans(�i; si; �i+1; si+1) for i = 1; : : : ; n � 1, then M j=Do1(�; s; s0).Proof: By induction on n. If n = 1, then Final(�; s)�Do1(�; s; s) by lemma 6. If n > 1, thenby induction hypothesis M j= Do1(�2; s2; s0), hence by applying Lemma 7, we get the thesis. 2With these lemmas in place we can �nally prove the wanted result:Theorem 1: For each Golog program �:C j= 8s; s0: Do1(�; s; s0) � Do2(�; s; s0):Proof: ) by Lemma 5 and Lemma 4; ( by Lemma 4 and Lemma 8. 2
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