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Abstract
A central problem in the analysis of teams of agents
is to assess when a group of autonomous agents,
who may have private beliefs and goals, know
enough together to be able to achieve a goal, should
they so desire. In this paper, we present a defini-
tion of joint ability in the presence of sensing. We
show through some simple examples involving pri-
vate and public actions that it makes appropriate
predictions with respect to coordination.

1 Introduction
An individual agent can often achieve a goal even if he does
not initially know all the steps to follow, as long as he can
sense along the way enough information to know what to do
next, until the goal is attained. Clearly, one may delegate a
goal only to an agent that is able to achieve it. Moore [1985]
and others [Davis, 1994; Lespérance et al., 2000] developed
logical accounts of single agent ability in this sense.

Given this, an obvious question is how to extend this no-
tion to teams of agents: when does a group know enough
together, despite any incomplete knowledge or even false be-
liefs that they may have about the world or each other, to be
jointly able to achieve a goal. Crucially, the agents need to
know enough to stay coordinated. Unlike in the single-agent
case, the mere existence of a joint plan mutually believed to
achieve the goal (as in [Wooldridge and Jennings, 1999]) is
not sufficient, since there may be several incompatible work-
ing plans and the agents may not be able to choose a share
that coordinates with those of the others.

The issue of coordination has been thoroughly explored in
game theory [Osborne and Rubinstein, 1999]. However, a
major limitation of the classical game theoretic framework is
that it assumes that there is a complete specification of the
structure of the game including the beliefs of the agents. It
is often also assumed that this structure is common knowl-
edge among the agents. Recent work on the symbolic logic of
games allows more incomplete and qualitative specifications,
and supports symbolic reasoning over very large state spaces.
However, most of this work, such as Coalition Logic [Pauly,
2002] and ATEL [van der Hoek and Wooldridge, 2003],
is propositional, which limits expressiveness. More impor-
tantly, it ignores the issue of coordination within a coalition

and simply assumes that a team can achieve a goal if there
exists a strategy profile (or joint plan) over the agents that
achieves it. This is only sufficient if we assume that the agents
can communicate arbitrarily to coordinate as needed.

Ghaderi et al. [2007] proposed a logical framework to
model the coordination of teams of agents based on the sit-
uation calculus. Their formalization avoids both of the lim-
itations mentioned above: it supports reasoning on the basis
of very incomplete specifications about the belief states of
the agents, and it does not trivialize the issue of coordina-
tion. The formalization involves iterated elimination of dom-
inated strategies [Osborne and Rubinstein, 1999]. Each agent
eliminates strategies that are not as good as others given her
private beliefs about the world and about what strategies the
other agents would eliminate. This elimination process is re-
peated until it converges to a set of preferred strategies for
each agent. Joint ability is said to hold if all combinations of
preferred strategies succeed in achieving the goal.

However, Ghaderi et al. only considered example domains
involving ordinary “world changing” actions. In this paper,
we extend their account and show that it correctly handles
domains with sensing actions, actions that allow an agent to
obtain information by observing some aspect of the environ-
ment. We use an account of sensing actions and their effects
on knowledge from [Shapiro et al., 1998] and show that the
techniques proposed by Ghaderi et al. to prove joint ability or
the lack of it can be generalized to deal with sensing actions.
This is significant, as it requires dealing with knowledge
change, and strategies that may branch depending on what
is learned by sensing. The space of strategies quickly be-
comes extremely large and it is significant that our symbolic
proof techniques nonetheless allow results to be proven, even
with only incomplete specifications of the agents’ knowledge.
Note that our approach can be also used to handle basic “in-
forming” communication actions where the value of a fluent
is communicated by one agent to another. These actions work
very much like sensing, the difference being that it is the re-
cipient of the communication that gets the new information.

In the next section, we describe a simple setup to test these
ideas involving a safe with two locks. We then present the
formalization of this domain and the definition of joint abil-
ity in the situation calculus. We then show the kind of ability
results we can obtain in this formalization. Finally, we sum-
marize our contributions and discuss future work.



2 Opening A Safe Together
Perhaps the simplest non-trivial example of ability in the sin-
gle agent case was presented by Moore [1985]. He presents
the example of a safe that can be opened by dialing the correct
combination. Imagine that the safe explodes or jams or turns
on a security alarm when any other number is dialed. Sup-
pose there is an agent who does not know the combination of
the safe. Although a plan surely exists to open the safe and
the agent knows this, we would say that the agent is not able
to open the safe. But if the correct combination is written on a
piece of paper that the agent can pick up and read, we would
now say that the agent is able to open the safe. This, in its
most basic form, shows how ability depends on knowledge
which itself depends on the available sensing actions.

To illustrate our formalization of joint ability, we will use
a series of examples based on a two-person safe. The idea,
roughly, is that two combinations are needed to open the safe,
so that P and Q may be able to open the safe together even
though neither one may know enough to do it alone. We also
want to consider variants where, for example, Q knows both
combinations allowing him to open the safe alone if P does
not interfere, although P might not see this and ruin the plan.

To focus on the essential details only, we make a few sim-
plifications. First of all, safe combinations will be binary: the
safe has two locks A and B, and each lock has two buttons,
0 and 1. To open the safe, the correct button for lock A must
first be pushed (using action pA0 or pA1) – this puts the safe
on standby – and then the correct button for lock B must be
pushed (using action pB0 or pB1). Any button pushing other
than this sequence sets off an alarm, and the game is lost. In-
stead of having combinations written on a pieces of paper, we
assume that there are two binary sensing actions, sA and sB,
that cause the agent performing them to come to know the
combination of the lock in question. We also assume that the
agents act synchronously and in turn: P acts first and then
they alternate. The goal in all cases will be to open the safe
in exactly 4 steps without activating the alarm. We consider
four variants of this setup with different assumptions.

Example 1: Suppose nothing is specified about the agents
knowledge about the correct combinations of the locks. Ac-
tions are restricted in such a way that P and Q can only
choose among actions {pA0, pA1, sA} and {pB0, pB1, sB},
respectively. The actions are public so each agent gets to see
the actions of the other agent. For this example, we want
to say the agents can jointly open the safe. If the agents
know nothing, the intuitive joint plan would look like this:
P senses the combination of A, Q senses the combination of
B, P pushes the correct button for A, and Q pushes the cor-
rect button for B. Note that if agents have extra information,
e.g. P knows in advance the combination of A, other suc-
cessful joint plans will exist, but as we will see, they do not
cause any coordination problem.

Example 2: Suppose everything is exactly as in example 1
except that sA does not provide any information (the sensor is
broken). In this case, we want to say that there is not enough
information to conclude that the agents can open the safe. In
fact, we will show that if P does not know the combination
of lock A, they are provably not jointly able to open the safe.

Example 3: Suppose everything is as in example 1 except
that the actions are not public, so the agents do not see what
actions the other agent has performed (each just knows that
some action has been performed by the other, so there is no
confusion about whose turn it is). We will show that in this
case seeing the other agent’s actions is not necessary and that
the agents are jointly able to open the safe, again without any
need for extra assumptions about the beliefs of the agents.

Example 4: Suppose everything is as in example 3 except
all actions are available to both agents, i.e., both P and Q
can choose among actions {pA0, pA1, sA, pB0, pB1, sB}. We
still assume that actions are private. As in example 2, we will
show that there is not enough information to conclude the
agents can open the safe. However, this is not because there
is no good joint plan, instead the problem is that one agent
might have extra knowledge which enables him to also open
the safe on his own (if the other agent does not interfere) and
since actions are private this can cause lack of coordination.

3 The formal framework
The basis of our framework for joint ability is the situa-
tion calculus [McCarthy and Hayes, 1969; Levesque et al.,
1998]. The situation calculus is a predicate calculus lan-
guage for representing dynamically changing domains. A
situation represents a possible state of the domain. There
is a set of initial situations corresponding to the ways the
domain might be initially. The actual initial state of the
domain is represented by the distinguished initial situation
constant, S0. The term do(a, s) denotes the unique sit-
uation that results from an agent doing action a in situ-
ation s. We use do(〈a1, · · · , an〉, s) as a shorthand for
do(an, do(· · · , do(a1, s)) · · ·). Initial situations are defined as
those that do not have a predecessor: Init(s) .= ¬∃a∃s′. s =
do(a, s′). In general, the situations can be structured into a
set of trees, where the root of each tree is an initial situation
and the arcs are actions. The formula s v s′ is used to state
that there is a path from situation s to situation s′. Our ac-
count of joint ability will require some second-order features
of the situation calculus, including quantifying over certain
functions from situations to actions, that we call strategies.

Predicates and functions whose values may change from
situation to situation (and whose last argument is a situation)
are called fluents. The effects of actions on fluents are defined
using successor state axioms [Reiter, 2001], which provide a
succinct representation for both effect and frame axioms [Mc-
Carthy and Hayes, 1969]. To axiomatize a dynamic domain
in the situation calculus, we use Reiter’s [2001] action the-
ory, which consists of (1) successor state axioms; (2) initial
state axioms, describing the initial states of the domain in-
cluding the initial beliefs of the agents; (3) precondition ax-
ioms, specifying the conditions under which each action can
be executed; (4) unique names axioms for the actions, and (5)
domain-independent foundational axioms (we adopt the ones
given in [Levesque et al., 1998] which accommodate multiple
initial situations, but we do not describe them further here).

For our examples, we need eight fluents. The fluents cA
and cB indicate the combination of locks A and B (i.e. true
corresponds to button 1, and false corresponds to button 0 as
the correct buttons that need to be pushed). The fluents open,



standby, and alarm indicate whether the safe is open, the safe
is on standby, and the alarm is activated, respectively. The
fluent time indicates how many actions have been performed.
Finally, the fluent turn is used to indicate whose turn it is to
act, and the fluent B deals with the beliefs of the agents.

Moore [1985] defined a possible-worlds semantics for a
logic of knowledge in the situation calculus by treating situa-
tions as possible worlds. Scherl and Levesque [2003] adapted
this to Reiter’s theory of action and gave a successor state ax-
iom for B that states how actions, including sensing actions,
affect knowledge. Shapiro et al. [1998] adapted this to han-
dle the beliefs of multiple agents, and we adopt their account
here. B(x, s′, s) will be used to denote that in situation s,
agent x thinks that situation s′ might be the actual situation.
Note that the order of the situation arguments is reversed from
the convention in modal logic for accessibility relations. Be-
lief is then defined as an abbreviation:1

Bel(x, φ[now], s) .= ∀s′. B(x, s′, s) ⊃ φ[s′].
We will also use the following abbreviation:

BW(x, φ, s) .= Bel(x, φ, s) ∨ Bel(x,¬φ, s).
Mutual beliefs among the agents, denoted by MBel, can be
defined either as a fix-point or by introducing a new accessi-
bility relation using a second-order definition.

Our examples use the following successor state axioms:
• The combinations of the locks do not change over time:

cA(do(a, s)) ≡ cA(s), and cB(do(a, s)) ≡ cB(s).
• If the safe is on standby and the alarm is not active, push-

ing the correct button for lock B opens the safe:
open(do(a, s)) ≡ standby(s) ∧ ¬alarm(s) ∧

[cB(s) ∧ a = pB1 ∨ ¬cB(s) ∧ a = pB0] ∨ open(s).
• If the alarm is not active, pushing the correct button for

lock A puts the safe on standby:
standby(do(a, s)) ≡ ¬alarm(s) ∧

[cA(s)∧a = pA1 ∨ ¬cA(s)∧a = pA0]∨ standby(s).
• The alarm is activated by pushing the wrong button,

pushing a button of A if the safe is already on standby,
or pushing any button if the safe is already open:
alarm(do(a, s)) ≡ alarm(s) ∨

cA(s) ∧ a = pA0 ∨ ¬cA(s) ∧ a = pA1 ∨
cB(s) ∧ a = pB0 ∨ ¬cB(s) ∧ a = pB1 ∨
standby(s) ∧ (a = pA0 ∨ a = pA1) ∨
open(s) ∧ [a = pA0∨a = pA1∨a = pB0∨a = pB1].

• Belief changes due to sensing and other actions. We use
the following type of successor state axiom proposed by
Scherl and Levesque in the case where actions are public
(see Section 4.3 for the case where actions are private):
B(x, s′, do(a, s)) ≡ ∃s′′. B(x, s′′, s) ∧ s′ = do(a, s′′)
∧ [agent(a) = x ⊃ (SF(a, s′′) ≡ SF(a, s))].

SF(a, s) ≡ [a = sA ⊃ cA(s)] ∧ [a = sB ⊃ cB(s)].
Thus when any action occurs, all agents learn that it has
occurred. Moreover, when an agent performs sA or sB,
he alone learns the corresponding lock combination.

1Free variables are assumed to be universally quantified from
outside. If φ is a formula with a single free situation variable, φ[t]
denotes φ with that variable replaced by situation term t. Instead of
φ[now] we occasionally omit the situation argument completely.

• Each action uses one time step:
time(do(a, s)) = time(s) + 1.

• Whose turn it is to act alternates between P and Q:
turn(do(a, s)) = x ≡

turn(s) = Q ⊃ x = P ∧ turn(s) = P ⊃ x = Q.
The examples also include the following initial state axioms:
• Init(s) ⊃ turn(s) = P . So, agent P gets to act first.
• In all initial situations, time starts at 0, the alarm is not

active, the safe is not on standby and not open:
Init(s) ⊃

time(s) = 0∧¬alarm(s)∧¬standby(s)∧¬open(s).
• Each agent initially knows that it is in an initial situation:

Init(s) ∧ B(x, s′, s) ⊃ Init(s′).
• B models knowledge, and hence beliefs must be true:

Init(s) ⊃ B(x, s, s).
• Each agent initially has introspection of her beliefs:

Init(s)∧B(x, s′, s) ⊃ [∀s′′. B(x, s′′, s′) ≡ B(x, s′′, s)].
The last two properties of belief can be shown to hold for all
situations using the successor state axiom for B so that belief
satisfies the modal system KT45 [Chellas, 1980]. Since the
axioms above are universally quantified, they are known to
all agents, and in fact are common knowledge. We will let Σ
denote the action theory containing the successor and initial
state axioms above. All the examples in Section 4 will use
Σ (with variations in the B or SF axiom) and in some cases
with additional conditions about the beliefs of agents.

3.1 Our definition of joint ability
In this paper, for simplicity, we use [Ghaderi et al., 2007]’s
definition restricted to two agents (for the general definition
see [Ghaderi et al., 2007]). All of the definitions below are
abbreviations for formulas in the language of the situation
calculus presented above. The joint ability of two agents P
and Q to achieve φ is defined as follows:
• P and Q can jointly achieve φ starting from s iff all com-

binations of their preferred strategies work together:
JCan(φ, s) .= ∀σp, σq. Pref(P, σp, φ, s) ∧

Pref(Q, σq, φ, s) ⊃ Works(σp, σq, φ, s).
• The pair of strategies σp and σq works if there is a future

situation where φ holds and the strategies prescribe the
actions to get there according to whose turn it is:
Works(σp, σq, φ, s) .=

∃s′′. s v s′′ ∧ φ[s′′] ∧ ∀s′. s v s′ < s′′ ⊃
(turn(s′) = P ⊃ do(σp(s′), s′) v s′′) ∧
(turn(s′) = Q ⊃ do(σq(s′), s′) v s′′).

• Agent x prefers strategy σx if it is kept for all levels n:
Pref(x, σx, φ, s) .= ∀n. Keep(x, n, σx, φ, s).

• Keep is defined inductively:2

– At level 0, each agent keeps all of her strategies:
Keep(x, 0, σx, φ, s) .= Strategy(x, σx).

2Strictly speaking, the definition we propose here is ill-formed.
We want to use it with the second argument universally quanti-
fied (as in Pref). Keep and GTE actually need to be defined using
second-order logic, from which the definitions here emerge as con-
sequences. We omit the details for space reasons.



– at level n + 1, agent x keeps strategy σx if it was
kept at level n and there was not a better kept σ′

x
(σ′

x is better than σx if σ′
x is as good as, i.e. greater

than or equal to, σx while σx is not as good as it):
Keep(x, n+1, σx, φ, s) .= Keep(x, n, σx, φ, s)∧
¬∃σ′

x. Keep(x, n, σ′
x, φ, s) ∧

GTE(x, n, σ′
x, σx, φ, s)∧¬GTE(x, n, σx, σ′

x, φ, s).
• Strategy σx is as good as (Greater Than or Equal to)

σ′
x for agent x at level n if x believes that whenever σ′

x
works with strategies kept by the other agent y, so does
σx. Note that here x = P ∧ y = Q or x = Q ∧ y = P :
GTE(x, n, σx, σ′

x, φ, s) .=
∀σy. Bel(x, [Keep(y, n, σy, φ, now) ∧
Works(σ′

x, σy, φ, now) ⊃ Works(σx, σy, φ, now)], s).
• Finally, strategies for an agent are functions from situa-

tions to actions such that the required action is legal and
known to the agent whenever it is the agent’s turn to act:
Strategy(x, σ) .= ∀s. turn(s) 6= x ⊃ σ(s) = nil ∧

turn(s) = x ⊃ ∃a. Bel(x, σ(now) = a, s)∧Legal(a).
Legal will depend on the domain. For examples 1, 2
and 3, it is defined such that P can only do actions pA0,
pA1, and sA, while Q can only do pB0, pB1, and sB. For
example 4, all actions will be possible for both agents.

These formulas define joint ability in a way that resembles the
iterative elimination of weakly dominated strategies of game
theory [Osborne and Rubinstein, 1999]. As we will see in the
examples next, the mere existence of a working strategy pro-
file is not enough; the definition requires coordination among
the agents in that all preferred strategies must work together.

4 Formalizing the Examples
In this section, we prove results about the four examples men-
tioned earlier. Due to lack of space we present only brief
proof sketches. Note that the goal in all examples is to open
the safe in exactly 4 steps without activating the alarm, i.e.

φ(s) .= open(s) ∧ ¬alarm(s) ∧ time(s) = 4.

4.1 Example 1
Recall that for this example actions are divided between
agents and are public. We show that the agents are jointly
able to achieve the goal (and have mutual belief about this):
Theorem 1 Σ |= Init(s) ⊃ JCan(φ, s).
Actually, it is sufficient to show that the following holds:
Theorem 2 Σ |= Init(s) ∧ Keep(P, 2, σp, φ, s) ∧

Keep(Q, 2, σq, φ, s) ⊃ Works(σp, σq, φ, s).
The proof is involved, so we just sketch the steps. Assume
M is a model of Σ and µ a variable assignment such that
M,µ |= Init(s) ∧ Keep(P, 2, σp, φ, s) ∧ Keep(Q, 2, σq, φ, s).
We need to show that Works(σp, σq, φ, s) holds. Let σp and
σq be strategies prescribing that P and Q initially sense the
combination of locks A and B, respectively, and then push the
correct button of the corresponding lock, in turn, i.e.:3

3In what follows, we use pA(s) as a shorthand for the correct
push action for lock A in situation s. Any formula ψ that mentions
pA(s) with free variable s stands for (cA(s) ⊃ ψ[pA(s)/pA1]) ∧
(¬cA(s) ⊃ ψ[pA(s)/pA0]), where ψ[u/v] is replacing all free oc-
currences of u by v in ψ. We use a similar definition for pB(s).

• M,µ |= ∀s, a1, a2, s′. Init(s) ⊃
σp(s) = sA ∧ σp(do(a1, s)) = nil ∧
σp(do(〈a1, a2〉, s)) = pA(s) ∧
[do(〈a1, a2〉, s) < s′ ⊃

turn(s′) = P ⊃ σp(s′) = sA ∧
turn(s′) 6= P ⊃ σp(s′) = nil].

• M,µ |= ∀s, a1, a2, a3, s′. Init(s) ⊃
σq(s) = nil ∧ σq(do(a1, s)) = sB ∧
σq(do(〈a1, a2〉, s)) = nil ∧
σq(do(〈a1, a2, a3〉, s)) = pB(s) ∧
[do(〈a1, a2, a3〉, s) < s′ ⊃

turn(s′) = Q ⊃ σq(s′) = sB ∧
turn(s′) 6= Q ⊃ σq(s′) = nil].

It can be easily shown that functions σp and σq are in fact
strategies for P and Q that together achieve the goal in all
initial situations, and hence each survives the first round of
elimination for the corresponding agent. Also, after the first
round of eliminations, the following holds at level 1:
Theorem 3 σp and σq are as good as any other strategies:
• M,µ |= ∀s, σp. Init(s) ∧ Strategy(P, σp) ⊃

GTE(P, 1, σp, σp, φ, s).
• M,µ |= ∀s, σq. Init(s) ∧ Strategy(Q, σq) ⊃

GTE(Q, 1, σq, σq, φ, s).
By theorem 3, GTE(P, 1, σp, σp, φ, s) holds, and by as-
sumption Keep(P, 2, σp, φ, s) holds, therefore we must have
GTE(P, 1, σp, σp, φ, s). Then, since in all initial situations
Works(σp, σq, φ, s) holds, we must have Works(σp, σq, φ, s).
By a similar argument, we have GTE(Q, 1, σq, σq, φ, s). This
together with Works(σp, σq, φ, s) obtained above, leads to
Works(σp, σq, φ, s) as desired and thus Theorem 2 holds.
Theorem 3 itself can proved by the following two lemmas:
Lemma 1 For any strategy for P that survives the first elimi-
nation round, if its first action is to push the correct A button,
the action prescribed in response to Q doing sB must be sA:
Σ |= Init(s) ∧ Keep(P, 1, σp, φ, s) ∧ σp(s) = pA(s) ⊃

σp(do(〈pA(s), sB〉, s)) = sA.
Lemma 2 For any strategy for Q that survives the first round
of elimination, its first action in response to P doing sA must
be doing sB, and then if P continues by pushing the correct
button of lock A, Q must push the correct button of B:
Σ |= Init(s) ∧ Keep(Q, 1, σq, φ, s) ⊃

σq(do(sA, s) = sB ∧ σq(do(〈sA, sB, pA(s)〉, s)) = pB(s).
The proofs of lemmas 1 and 2 are omitted but they use the
fact that in a given initial situation s there are only 3 legal se-
quences of length 4 that can open the safe without activating
the alarm: [sA; sB; pA(s); pB(s)], [pA(s); sB; sA; pB(s)], and
[pA(s); pB(s); sA; sB], where pA(s) and pB(s) correspond to
the correct push actions for lock A and B in s, respectively.

We remind the reader that the reason that the above proofs
are involved is that we have not specified anything about the
beliefs of agents about the locks combinations and/or each
other. Our theorems hold no matter what beliefs the agents
have about this (e.g. if P and Q know the combination of both
locks but neither knows what the other agent knows, they can
still coordinate to open the safe despite the existence of many
working plans). See example 4 as a case where the existence
of multiple joint plans can cause lack of coordination.



4.2 Example 2
In this example, action sA does not provide new information.
To handle this, let Σ2 be exactly like Σ except the SF axiom
is replaced by SF(a, s) ≡ [a = sB ⊃ cB(s)]. The informa-
tion in Σ2 is not enough to conclude joint ability. In fact, we
show that if P does not know the combination of lock A they
cannot open the safe (even if Q knows both combinations):

Theorem 4 Σ2 |= Init(s) ∧ ¬BW(P, cA, s) ⊃ ¬JCan(φ, s).

Proof sketch: Let M be a model of Σ2 and µ be a variable
assignment such that M,µ |= Init(s) ∧ ¬BW(P, cA, s), it is
sufficient to show that there exists a pair of preferred strate-
gies for P and Q that does not achieve the goal. Since P
does not know the combination of A, there is at least another
accessible initial situation s′ such that cA(s) ≡ ¬cA(s′).
Note that the function σp defined in example 1 is not a strat-
egy in this model as P now does not know the combina-
tion of lock A even after performing sA. We can show that
P has at least two preferred strategies σp and σ′

p such that
M,µ |= σp(s) = pA0 ∧ σ′

p(s) = pA1. However, for any
strategy σq for Q, one of the pair (σp, σq) or (σ′

p, σq) does
not work in s, as the first action by P activates the alarm.

4.3 Example 3
In this example, everything is the same as in example 1 except
that actions are now private, so the other agent does not see
what actions are performed by the other agent (but each agent
is aware of her own actions including the sensing results if
any). To accommodate for this, we define Σ3 exactly as Σ
except we modify the successor state axiom for B as follows:
B(x, s′, do(a, s)) ≡ ∃s′′, a′′.

B(x, s′′, s) ∧ s′ = do(a′′, s′′) ∧ Legal(a′′) ∧
[agent(a) = x ⊃ a = a′′ ∧ (SF(a, s′′) ≡ SF(a, s))].

Despite actions being private, we can prove that the agents
have joint ability to open the safe (again without any need for
additional specifications about their beliefs):

Theorem 5 Σ3 |= Init(s) ⊃ JCan(φ, s).

The proof is similar to that of example 1. Note that σp and σq

used there to eliminate non-promising strategies did not rely
on actions of the other agent and are applicable here as well.
However, the proof for Theorem 3 is slightly different.

4.4 Example 4
In this example, all actions are legal for both agents but, as
in example 3, are private. To handle this, let Σ4 be like Σ3

except that Legal is defined such that both agents can perform
any of actions pA0, pB0, pA1, pB1, sA, and sB.4 Under these
assumptions we cannot conclude that the agents have joint
ability to open the safe; in fact we show that if it is initially
mutually known that P does not know the lock combinations
and Q knows both combinations they cannot open the safe:

Theorem 6 Σ4 |= Init(s)∧MBel(BW(Q, cA)∧BW(Q, cB)∧
¬BW(P, cA) ∧ ¬BW(P, cB), s) ⊃ ¬JCan(φ, s).

4Technically, every action a has an agent parameter as its first ar-
gument where, e.g., agent(pA0(x)) = x. To simplify the presenta-
tion we have omitted the agent argument. Very minor modifications
to the formulas presented here are needed to restore the argument.

[pA; pB]

-

?

-

?

σp

Xσ2
p X[sA; sA]

[sA; pA]

σqσ2
qσ1

q

σ1
p X X

[sB; pB]

Figure 1: For private shared actions, if it is mutually believed that
Q knows the locks combinations and P does not, multiple incom-
patible preferred plans exist that cause lack of coordination. In the
above matrix, a X at i, j corresponds to MBel(Works(i, j, φ), s) and
an X corresponds to MBel(¬Works(i, j, φ), s).

The interesting point here is that unlike in example 2, this
is not because no joint plan exists. Quite the opposite, there
are multiple joint plans that open the safe but the agents can-
not coordinate (assuming no prior conventions can be relied
upon). To see this consider any model M of Σ4 and variable
assignment µ where M,µ |= Init(s) ∧ MBel(BW(Q, cA) ∧
BW(Q, cB) ∧ ¬BW(P, cA) ∧ ¬BW(P, cB), s). We can show
that P and Q each prefers at least two strategies whose com-
binations do not always work (i.e. there is lack of coordina-
tion). Let σ1

p be a strategy for P that prescribes sensing the
combination of lock A and pushing its correct button as P ’s
first and second (non-nil) actions (represented by [sA; pA]).
Also, let σ2

p be a strategy for P that always prescribes per-
forming sA whenever it is P ’s turn (represented by [sA; sA]).
Similarly, let σ1

q be a strategy for Q that says to sense the
combination of lock B and then to push its correct button as
Q’s first and second non-nil actions (represented by [sB; pB]).
Finally, let σ2

q be a strategy for Q that prescribes pushing the
correct button of lock A and B as Q’s first and second non-nil
actions (represented by [pA; pB]). Note that since Q knows
both combinations, σ2

q is in fact a valid strategy. Clearly, we
have M,µ |= MBel(Works(σ1

p, σ1
q , φ) ∧ Works(σ2

p, σ2
q , φ) ∧

¬Works(σ1
p, σ2

q , φ) ∧ ¬Works(σ2
p, σ1

q , φ), s), see Fig. 1. To
show that the agents are not able to open the safe, it remains
to show that P and Q never eliminate these strategies:

Lemma 3 P prefers σ1
p and σ2

p. Q prefers σ1
q and σ2

q :

• M,µ |= ∀i. Keep(P, i, σ1
p, φ, s) ∧ Keep(P, i, σ2

p, φ, s).
• M,µ |= ∀i. Keep(Q, i, σ1

q , φ, s) ∧ Keep(Q, i, σ2
q , φ, s).

We sketch the proof for the 1st elimination round (i = 1),
the generalization to all i’s is done using simple induc-
tion. Assume to the contrary M,µ |= ¬Keep(P, 1, σ1

p, φ, s).
Then there must exist a better strategy σp for P such that
GTE(P, 0, σp, σ

1
p, φ, s) and ¬GTE(P, 0, σ1

p, σp, φ, s). Hence,
since M,µ |= MBel(Works(σ1

p, σ1
q , φ), s), we must have

M,µ |= Bel(P, Works(σp, σ
1
q , φ), s). However, any strategy

for P that works with σ1
q in all P ’s accessible initial situa-

tions must prescribe doing sA and then pA as P ’s first two
non-nil actions, respectively.5 Hence, the first two actions of
σp and σ1

p are the same, which contradicts the assumption of
σp being better than σ1

p. Therefore, P keeps σ1
p at level 1.

Similarly, we can show that if there were strategy σp better

5P does not know the combination of lock A, so there exist two
accessible initial situations that differ on cA. Any strategy that pre-
scribes first doing pA0 (or pA1) activates the alarm in one of them.



than σ2
p then M,µ |= Bel(P, Works(σp, σ

2
q , φ), s). However,

any strategy σp that works with σ2
q in all P ’s accessible ini-

tial situations must prescribe doing nothing but sensing as P ’s
first and second (non-nil) actions. It can then be shown that
M,µ |= GTE(P, 0, σ2

p, σp, φ, s) which contradicts σp being
better than σ2

p. So, σ2
p is also kept at level 1. Finally, there are

analogous arguments for Q keeping σ1
q and σ2

q at level 1.

5 Discussion and Future Work
In this paper, we extended Ghaderi et al. [2007]’s account of
joint ability to domains with sensing actions, actions that al-
low agents to acquire new information as they proceed. We
proposed ways of modeling the effects of such sensing ac-
tions on the agents’ knowledge in the account. In such set-
tings, strategies branch on sensing outcomes (as well as on
observed actions by others), and the number of strategies typ-
ically grows extremely large. We showed that the symbolic
proof techniques proposed in [Ghaderi et al., 2007] could be
generalized to establish joint ability or lack of joint ability
in domains with sensing actions, even with very incomplete
specifications of the agents’ knowledge.

Our account of ability generalizes previous work on single
agent ability [Moore, 1985; Davis, 1994; Lespérance et al.,
2000]. We go beyond these single agent accounts by model-
ing how the knowledge of all the agents changes as they act
and by ensuring that the team remains coordinated — all of
the agents’ preferred strategies must work together.

Also related is work on logics of games [Pauly, 2002;
van der Hoek and Wooldridge, 2003]. As mentioned earlier,
these frameworks are propositional, and thus less expressive
than ours. Moreover, they ignore the need for coordination
inside a coalition, which is only reasonable if the agents can
communicate arbitrarily to agree on a joint strategy.

Our approach goes beyond classical game theory [Osborne
and Rubinstein, 1999] in that we can reason about joint abil-
ity even in the presence of incomplete specifications of the
structure of the game including the beliefs of the agents.
See [Ghaderi et al., 2007] for more discussion of the rela-
tionship between the two accounts.

In this paper, for simplicity, we used Ghaderi et al.’s for-
malization of joint ability restricted to teams of two agents;
see [Ghaderi et al., 2007] for the general multiagent version.
Their paper also discusses how agents that are outside of the
team can be handled, i.e. by ensuring that the team’s strate-
gies achieve the goal for all of the outside agents’ strategies.

As mentioned earlier, our approach can also handle inform-
ing communication actions where the truth value of a propo-
sition or the value of a fluent is communicated by an agent to
one or several other agents. It is straightforward to reformu-
late the examples considered in this paper to involve commu-
nication actions; instead of simply sensing a lock combina-
tion, an agent asks another “informer” agent for its value.

An issue for future work is examining how different ways
of comparing strategies (the GTE order) affect the notion of
joint ability. With the current GTE order, each agent com-
pares her strategies by examining how they work when paired
with the strategies of the other agent in each accessible situa-
tion separately. Another possibility is that, for example, each

agent performs the comparison based on whether she believes
her strategies work with those of the other agent (i.e. Bel is
distributed over the implication in the GTE definition). Both
definitions give the right results for our examples and others.

Also, in future work, we would like to generalize
Legal/Poss to be situation dependent, and devise ways of
handling conventions, i.e. mutually believed rules that allow
agents to stay coordinated. It would also be good to explore
how the framework can be used in automated verification and
in multiagent planning.
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