
The 38th Canadian Conference on Artificial Intelligence
DOI: 0

On the Semantics of Actual Causality in
Situation Calculus Concurrent Game Structures

MohammadHossein Karimian†, Shakil M. Khan†,*, Yves Lespérance‡
† Department of Computer Science, University of Regina

‡ Department of Electrical Engineering and Computer Science, York University

*shakil.khan@uregina.ca

Abstract
Key to the formalization of rationality is the study of actual causation. Halpern and

Pearl’s pioneering work on causal models is based on structural-equations models, which
assumes an overly simplistic model of action and change. Although much recent work
within action-theoretic frameworks has appeared to deal with this, all of these accounts
share a common and strong limitation, that the scenario or history of actions in these are
assumed to be linear sequences of actions or traces. To deal with this, in this paper we
study causation in a synchronous game-theoretic logic framework that allows concurrent
moves by multiple agents. Our framework is based on situation calculus concurrent game
structures. We show that our formalization has some interesting properties and handles
the issues associated with preemption and over-determination well.
Keywords: Actual cause, Concurrent game structures, Situation calculus, Reasoning
about action.

This article is © 2025 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

Actual causality, also known as token-level causality, is the problem of identifying the
causes of an observed effect from a given history of events or actions (also called, the
scenario) [1]. Based on David Hume’s original proposal, this problem has been studied
extensively both from counterfactual perspectives (e.g., [1–12]) as well as from regularity
approaches (e.g., [13–15]). The former involve studying causes by observing what would
have happened had some of the events in the original scenario not occurred, while the latter
accounts define causation from the observation that causes are regularly followed by their
effects (one interpretation of this, among many, states that a cause is an insufficient but
necessary part of a sufficient condition that is itself unnecessary for bringing about the
observed effect [13]). Others have attempted to combine these two approaches [16, 17].

In recent years researchers have become increasingly interested in studying causation
within more expressive action-theoretic frameworks, in particular in that of the situation
calculus [16, 18–22]. In contrast to the popular structural equations models-based or SEM-
based causal models [23], these are based on a formal theory of action, and thus incorporate
important aspects such as action preconditions, effects, and frame conditions, and temporal
order of action occurrence into the model, allowing one to capture, e.g., non-persistent
change supported by fluents and possible dependencies between events. Moreover, this
allows one to formalize causation from the perspective of individual agents by defining a
notion of epistemic causation [24] and by supporting causal reasoning about conative effects,
which in turn has proven useful for explaining agent behaviour using causal analysis [25]
and has the potential for defining important concepts such as responsibility and blame [26].

A major limitation of these proposals, however, is that they take the scenario to be a
linear sequence of single-agent actions. In multi-agent settings, this means that they are
restricted to turn-taking games. To overcome these limitations, in this paper, we consider
causation in multi-agent synchronous games. Our account is based on Situation Calculus
Synchronous Game Structures (SCSGS) [27], where we have a single action tick whose effects

2

depend on the combination of moves selected by the players. Each agent selects its move
without knowing which move is selected by the other agents. As we will see, in domains with
synchronous concurrency, besides the usual preemption problem,1 we also face the problem
of over-determination, as there may be more than one subset of the moves that are sufficient
to cause the effect. In this paper, we extend previous accounts of actual causation in the
situation calculus [19, 24] to identify minimal subsets of moves by some of the agents that
are causes of the effect, i.e., sufficient to cause it. We also identify causal chains consisting
of such minimal sets of moves, and notice that there may be several of them in the scenario
for a given effect. We show that our notion of causal chains handles the issues associated
with preemption and over-determination well.

In the next section, we start by reviewing the situation calculus (SC) and SCSGS. We also
present our running example. In Section 3, we show how previous work on actual causation
in the SC can be modified to identify causal chains. In Section 4, we consider minimal sets
of agent moves as causes and the associated causal chains. In Section 5, we present some
properties of our formalization. We conclude with some discussion in Section 6.

2. Preliminaries

Situation Calculus (SC). The SC is a well-known second-order language for representing
and reasoning about dynamic worlds [28, 29]. In the SC, all changes are due to named
actions, which are terms in the language. Situations represent a possible world history re-
sulting from performing some actions. The constant S0 is used to denote the initial situation
where no action has been performed yet. The distinguished binary function symbol do(a, s)
denotes the successor situation to s resulting from performing the action a. The expression
do([a1, · · · , an], s) represents the situation resulting from executing actions a1, · · · , an, start-
ing with situation s. As usual, a relational/functional fluent representing a property whose
value may change from situation to situation takes a situation term as its last argument.
There is a special predicate Poss(a, s) used to state that action a is executable in situation
s. Also, the special binary predicate s ⊏ s′ represents that s′ can be reached from situation
s by executing some sequence of actions. s ⊑ s′ is an abbreviation of s ⊏ s′ ∨ s = s′.
s < s′ is an abbreviation of s ⊏ s′ ∧ Executable(s′), where Executable(s) is defined as
∀a′, s′. do(a′, s′) ⊑ s ⊃ Poss(a′, s′), i.e. every action performed in reaching situation s was
possible in the situation in which it occurred. s ≤ s′ is an abbreviation of s < s′ ∨ s = s′.

In the SC, a dynamic domain is specified using a basic action theory (BAT) D that in-
cludes the following sets of axioms: (i) (first-order or FO) initial state axioms DS0 , which
indicate what was true initially; (ii) (FO) action precondition axioms Dap , characteriz-
ing Poss(a, s); (iii) (FO) successor-state axioms Dss , indicating precisely when the fluents
change; (iv) (FO) unique-names axioms Duna for actions, stating that different action terms
represent distinct actions; and (v) (second-order or SO) domain-independent foundational
axioms Σ, describing the structure of situations [30]. Although the SC is SO, Reiter [29]
showed that for certain type of queries ϕ, D |= ϕ iff Duna ∪ DS0 |= R[ϕ], where R is a
syntactic transformation operator called regression and R[ϕ] is a SC formula that compiles
dynamic aspects of the theory D into the query ϕ. Thus reasoning in the SC for a large
class of interesting queries can be restricted to entailment checking w.r.t a FO theory [29].

Synchronous Game Structures (SCSGS). Following [27], we focus on games where
there are n players/agents each of whom chooses a move at every time step. All such moves
are executed synchronously and determine the next state of the game. At each time step,
the state of the game is fully observable by all agents, as are all past moves of every agent.

1Preemption happens when two competing events try to achieve the same effect, and the latter of these fails
to do so, as the earlier one has already achieved the effect.

3

To represent such multi-player synchronous games, we use a special class of BATs, called
situation calculus synchronous game structures (SCSGSs), which are defined as follows.

Agents. A SCSGS D involves a finite set of n agents, and we use a subsort agents of Objects
which includes these finitely many agents Ag1, . . . ,Agn, each denoted by a constant, and for
which unique names Ag i ̸= Agj for i ̸= j and domain closure agent(x) ≡ x = Ag1∨· · ·∨x =
Agn hold.

Moves. We also use a second subsort Moves of Objects, representing the possible moves of
the agents. These come in finitely many types, represented by function symbols Mi(x⃗),
which are parameterized by objects x⃗, with Move(m) ≡

∨
i ∃x⃗.m = Mi(x⃗). Given that the

parameters range over Objects, each agent may have an infinite number of possible moves
at each time step. We have unique name and domain closure axioms (parameterized by
objects) for these functions Mi(x⃗) ̸= Mj(y⃗) for i ̸= j, and Mi(x⃗) = Mi(y⃗) ⊃ x⃗ = y⃗.

Actions. In SCSGSs, there is only one action type, tick(m1, . . . ,mn), which represents the
execution of a joint move by all the agents at a given time step. The action tick has exactly
n parameters, m1, . . . ,mn, one per agent, which are of sort Moves and corresponds to the
simultaneous choice of the move to perform by the n different agents.

Legal moves. The legal moves available to each agent in a given situation are specified
formally using a special predicate LegalM , which is defined by statements of the following
form (one for each agent Ag i and move type Mi): LegalM (Ag i,Mi(x⃗), s)

.
= ΦAgi,Mi(x⃗, s),

i.e., agent Ag i can legally perform move Mi(x⃗) in situation s if and only if ΦAgi,Mi
(x⃗, s)

holds. Technically LegalM is an abbreviation for ΦAgi,Mi
(x⃗, s), which is a uniform formula

(i.e., a formula that only refers to a single situation s).

Precondition axioms. The precondition axiom for the action tick is fixed and specified in
terms of LegalM as follows: Poss(tick(m1, . . . ,mn), s) ≡ ∧i=1,...,nLegalM (Ag i,mi, s). Thus
the joint action by all agents tick(m1, . . . ,mn) is executable if and only if each selected move
mi is a legal move for agent Ag i in situation s. Since we only have one action type tick ,
this is the only precondition axiom in Dposs.

Successor state axioms. We have successor state axioms Dssa, specifying the effects and
frame conditions of the joint moves tick(m1, . . . ,mn) on the fluents. Such axioms, as usual
in basic action theories, are domain specific, and characterize the actual game under consid-
eration. Within such axioms, the agent moves, which occur as parameters of tick , determine
how fluents change as the result of joint moves.2

Initial situation description. Finally, the initial state of the game is axiomatized in the ini-
tial situation description DS0

as usual, in a domain specific way.

Example. We use a variant of the well-known “bottle” example [3], where Suzy and Billy
are throwing stones at a bottle. Suzy’s stones are smaller and thus she requires two throws
to break the bottle while Billy’s stone is large and he needs just one throw to break it. The
available moves of ag ∈ {Suzy ,Billy} can be one of pickag , representing the picking of one
or more stones by agent ag (we assume that Suzy can pick both of her stones in one move),
throwag , i.e. throwing of a stone by ag , and a catchall otherag move, denoting anything
other than picking and throwing. The legality of these moves is specified below.

(a). LegalM (pickag , s)
.
= ¬Holding(ag , s),

(b). LegalM (throwag , s)
.
= Holding(ag , s), (c). LegalM (otherag , s).

2In many cases, moves don’t interfere with each other and the effects are just the union of those of each
move. One can also exploit previous work on axiomatizing parallel actions to generate successor state axioms
[29, 31].

4

Thus, e.g., throwing a stone is a legal move for agent ag in situation s is she is holding one
or more stones in s. For simplicity, we assume that the otherag move is always possible.

There are three fluents in this domain, Holding(ag , s), Broken(s), and SuzyThrown(s),
which means that the agent ag is holding their stones in situation s, the bottle is broken in
s, and Suzy has already thrown once before in s, respectively. The successor-state axioms
of these fluents are as follows.

(d). Holding(ag , do(a, s)) ≡ [ag = Suzy ∧ ∃m. a = tick(pickSuzy ,m)] ∨
[ag = Billy ∧ ∃m. a = tick(m, pickBilly)] ∨
[ag = Suzy ∧Holding(ag , s) ∧ ¬(∃m. a = tick(throwSuzy,m) ∧ SuzyThrown(s))] ∨
[ag = Billy ∧Holding(ag , s) ∧ ¬∃m. a = tick(m, throwBilly)],

(e). Broken(do(a, s)) ≡ [∃m. a = tick(m, throwBilly)] ∨
[∃m. a = tick(throwSuzy ,m) ∧ SuzyThrown(s)],

(f). SuzyThrown(do(a, s)) ≡ ∃m. a = tick(throwSuzy ,m) ∨ SuzyThrown(s).

Thus, e.g., (d) states that an agent ag is holding stones after the action a is performed in
situation s iff ag is Suzy and a is the tick action that involves her move of picking up stones;
or if ag is Billy and a is the tick action that involves his move of picking up a stone; or ag is
Suzy, who was already holding one or more stones in s, and a does not refer to a tick action
that involves her move of throwing the last stone in hand; or ag is Billy, who already was
holding a stone in s, and a is not a tick action involving his move of throwing a stone.

Finally, we assume that initially the agents are not holding any stones and the bottle is
not broken, as specified by the following initial state axioms:

(g). ∀ag . ¬Holding(ag, S0), (h). ¬Broken(S0).

We will use Dbt to refer to this axiomatization.

3. Actual Causation in the SC

Based on Batusov and Soutchanski’s original proposal [19], Khan and Lespérance (KL)
recently defined achievement cause in the SC [24]. Both of these frameworks study achieve-
ment causation, i.e. assume that the effect is false initially and becomes true after the
execution of the actions in the scenario. Also, both assume that the scenario is a linear
sequence of actions, i.e. these do not allow concurrent actions.

To formalize reasoning about effects, KL [24] introduced the notion of dynamic formulae.
An effect φ in their framework is thus a situation-suppressed dynamic formula.3 Given
an effect φ, the actual causes are defined relative to a scenario s. When s is ground, the
tuple ⟨φ, s⟩ is often called a causal setting [19]. Also, it is assumed that s is executable,
and φ was false before the execution of the actions in s, but became true afterwards, i.e.
D |= Executable(s) ∧ ¬φ[S0] ∧ φ[s]. Here φ[s] denotes the formula obtained from φ by
restoring the appropriate situation argument into all fluents in φ (see Def. 2).

Note that since all changes in the SC result from actions, the potential causes of an effect
φ are identified with a set of action terms occurring in s. However, since s might include
multiple occurrences of the same action, we need a way to uniquely identify each action
occurrence in the scenario s. To deal with this, KL required that each situation be associated
with a time-stamp, which can then be used to uniquely identify an action occurrence. A
time-stamp is an integer for their theory. KL assumed that the initial situation starts at
time-stamp 0 and each action increments the time-stamp by one. Thus, their action theory

3While KL also study epistemic causation, we restrict our discussion to objective causality only.

5

includes the following axioms:

timeStamp(S0) = 0, ∀a, s, ts. timeStamp(do(a, s)) = ts ≡ timeStamp(s) = ts− 1.

With this, causes in their framework is a non-empty set of action-time-stamp pairs.
The notion of dynamic formulae is defined as follows:

Definition 1. Let x⃗, θa, and y⃗ respectively range over object terms, action terms, and
object and action variables. The class of dynamic formulae φ is defined inductively using
the following grammar: φ ::= P (x⃗) | Poss(θa) | After(θa, φ) | ¬φ | φ1 ∧ φ2 | ∃y⃗. φ.

That is, a dynamic formula (DF) can be a situation-suppressed fluent, a formula that says
that some action θa is possible, a formula that some DF holds after some action has occurred,
or a formula that can built from other DF using the usual connectives. Note that φ can
have quantification over object and action variables, but must not include quantification
over situations or ordering over situations (i.e. ⊏). We will use φ for DF.

φ[·] is defined as follows:

Definition 2.

φ[s]
.
=



P (x⃗, s) if φ is P (x⃗)

Poss(θa, s) if φ is Poss(θa)

φ′[do(θa, s)] if φ is After(θa, φ
′)

¬(φ′[s]) if φ is (¬φ′)

φ1[s] ∧ φ2[s] if φ is (φ1 ∧ φ2)

∃y⃗. (φ′[s]) if φ is (∃y⃗. φ′)

We will now present a variant of KL’s definition of causes in the SC. The idea behind
how causes are computed is as follows. Given an effect φ and scenario s, if some action of
the action sequence in s triggers the formula φ to change its truth value from false to true
relative to D, and if there are no actions in s after it that change the value of φ back to
false, then this action is a primary or direct actual cause of achieving φ in s.

Definition 3 (Primary Cause [24]).
CausesDirectly(a, ts, φ, s)

.
= ∃sa. timeStamp(sa) = ts ∧ (S0 < do(a, sa) ≤ s)

∧ ¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]).

That is, a executed at time-stamp ts is the primary cause of effect φ in situation s iff a
was executed in a situation with time-stamp ts in scenario s, a caused φ to change its truth
value to true, and no subsequent actions on the way to s falsified φ.

Now, note that a (primary) cause a might have been non-executable initially. Also, a
might have only brought about the effect conditionally and this context condition might have
been false initially. Thus earlier actions in the trace that contributed to the preconditions
and the context conditions of a cause must be considered as causes as well. The following
definition captures this. It is as in [24], but here we extend it to specify the causal chain that
links the cause to the effect. It captures both primary and indirect causes and specifies the
causal chains. It defines CausesByChain(a, ts, cc, φ, s), meaning that action a at timestamp
ts is a cause of an effect φ in scenario s through causal chain cc: 4

4In this, we need to quantify over situation-suppressed DF. Thus we must encode such formulae as terms
and formalize their relationship to the associated SC formulae. This is tedious but can be done essentially
along the lines of [32]. We assume that we have such an encoding and use formulae as terms directly.

6

Definition 4 (Actual Cause Through Causal Chain).
CausesByChain(a, ts, cc, φ, s)

.
= ∀P.[∀a, ts, s, cc, φ.(CausesDirectly(a, ts, φ, s) ⊃ P (a, ts, ((a, ts)), φ, s))

∧ ∀a, ts, cc′, s, φ.(∃a′, ts′, s′.(CausesDirectly(a′, ts′, φ, s)

∧ timeStamp(s′)= ts′ ∧ s′ < s

∧ P (a, ts, cc′, [Poss(a′) ∧After(a′, φ)], s′)

∧ cc = Append(cc′, (a′, ts′))

⊃ P (a, ts, cc, φ, s))

] ⊃ P (a, ts, cc, φ, s).

Thus, CausesByChain is defined to be the least relation P such that if a executed at time-
stamp ts directly causes φ in scenario s then (a, ts, cc, φ, s) is in P , where cc = ((a, ts));
and if a′ executed at ts′ is a direct cause of φ in s, the time-stamp of s′ is ts′, s′ < s, and
(a, ts, cc′, [Poss(a′) ∧ After(a′, φ)], s′) is in P (i.e. a executed at ts is a direct or indirect
cause of [Poss(a′)∧After(a′, φ)] in s′ through causal chain cc′), then (a, ts, cc, φ, s) is in P ,
where cc = Append(cc′, (a′, ts′)). Here the effect [Poss(a′) ∧ After(a′, φ)] requires a′ to be
executable and φ to hold after a′. Also, Append is defined as follows.
Definition 5 (Append).

Append(((a1, ts1), . . . , (an, tsn)), (a, ts))
.
= ((a1, ts1), . . . , (an, tsn), (a, ts)).

Tick Actions as Causes in the SCSGS. The above formalization of actual causation
was formulated for domains specified by BATs in the situation calculus. However, it can be
used directly for SCSGS domains, as long as one focuses on identifying the tick actions in
the scenario that caused the effect, and causal chains consisting of tick actions. This is not
surprising as SCSGS are special kinds of BATs. We illustrate this in the example below.

Example (cont’d). Consider the scenario σ1, where: σ1 = do([tick(pickSuzy , otherBilly),
tick(throwSuzy , pickBilly), tick(otherSuzy , otherBilly), tick(throwSuzy , throwBilly)], S0). We
want to find the actual causes of the effect φ1 = Broken(s). We can show that:5

Proposition 1 (Complete Causal Chain in σ1).

Dbt |= CausesByChain(tick(pickSuzy , otherBilly), 0, cc, φ1, σ1),

where cc = ((tick(pickSuzy , otherBilly), 0), (tick(throwSuzy , pickBilly), 1),

(tick(throwSuzy , throwBilly), 3)).

Explaining backward in cc, the last tick action executed at time-stamp 3 is included in the
causal chain as (either of the moves in) it directly caused the breaking of the bottle. The
second tick action executed at 1 is also included because it is a (secondary/indirect) cause
as it brought about the preconditions of the last tick action (by making Billy’s throw legal),
besides bringing about the context condition (that SuzyThrown) under which Suzy’s second
throw can brake the bottle. Finally, the first tick action is also a cause as it made the second
tick action executable.

While the above formalization provides some insight on what tick actions are causes and
can be used to identify the completely irrelevant tick actions, e.g. the one at time-stamp 2,
observe that some irrelevant moves might still be included in the discovered causes, such as
otherBilly at time-stamp 0 in our example. In other words, our formalization of this does
not specify what moves within the identified tick actions are contributing to the effect. To
deal with this, we next propose a formalization of agent moves as causes.

5Note that since Definition 4 inductively constructs the causal chain, considering some of the causes, e.g.,
the primary cause, will only give us a suffix of the complete causal chain cc; for simplicity, we thus only
show the most indirect cause below, which captures the complete chain cc.

7

4. Agent Moves as Causes in the SCSGS

We now go a step further by pinpointing the moves that actually contributed to the effect
within the tick actions that are identified as causes. Note that, since unlike actions, agent
moves within each tick action are concurrently performed, it is possible that more than one
alternative chain of subsets of moves in the scenario are each by itself sufficient to bring about
the effect. For instance, in our example, either ((pickSuzy , 0), (throwSuzy , 1), (throwSuzy , 3))
or ((pickBilly , 1), (throwBilly , 3)) would have been sufficient to break the bottle. Just as with
causal chains in the SC, we will identify these refined causal chains in two steps. In the first
step, we identify the minimal set of moves in each action that is a direct cause of the effect in
some refined chain (e.g., throwBilly in the last tick of the second refined causal chain above).
We call these sets of direct causes minimal moves primary causes since they are minimal
sets of moves that are causes. However, we must consider that there might be more than
one minimal moves primary cause in one single action. For example in the last tick of our
example, we can consider either only Suzy’s throwing or Billy’s throwing to be a minimal
moves primary cause. In the second step, using refined causes, we define the refined chains
mentioned above, which we call minimal moves causal chains.

In keeping with the formalization of dynamic domains in the SC, we will consider actions
(but not moves) as (refined) causes.6 Thus our formalization of this does not omit the
irrelevant moves in each time-stamp altogether, but rather replaces them with the special
move wait within the tick action to remove their effects. wait has no effects (the domain
modeler must ensure this) and is always legal: ∀ag, s. LegalM (ag,wait , s). Thus, for instance,
in our example, one such refined action that is a cause is tick(pickSuzy ,wait). We collect all
of these for all causal chains in our new definition of causes.

We now define minimal moves primary causes:

Definition 6 (Minimal Moves Primary Cause).
MinMovCausesDir(a, ts, (a′, ts), φ, s)

.
= ∃sa. timeStamp(sa) = ts ∧ (S0 < do(a, sa) ≤ s) ∧

¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]) ∧MinSuffSubset(a′, a, sa, φ, s).

The above definition is exactly as the definition of primary causes (Def. 4), but has an
additional parameter (a′, ts) that returns a tuple consisting of a minimal subset of moves
a′ of the primary cause a that, when executed in sa (i.e., the situation where the primary
cause was executed in the original scenario), is sufficient to cause the effect φ in s (formalized
using MinSuffSubset below), and the timestamp ts of a.

MinSuffSubset(a′, a, s′, φ, s) means that the tick action a′ consists of a sufficient subset
of moves of a in s′ to achieve φ up to s, and it is minimal.

Definition 7.
MinSuffSubset(a′, a, s′, φ, s)

.
= SuffSubset(a′, a, s′, φ, s) ∧ ¬∃a∗.a∗ ̸= a′ ∧ SuffSubset(a∗, a′, s′, φ, s).

a′ is a sufficient subset of moves of a in s′ to achieve φ up to s, i.e. SuffSubset(a′, a, s′,
φ, s), iff a′ is a subset of moves of a, and the execution of this subset a′ in s′ is sufficient
to cause φ in s, i.e. φ becomes true after a′ is executed in s′ and it remains true after the
subsequent actions between do(a, s′) and s are executed starting in do(a′, s′).

Definition 8.
SuffSubset(a′, a, s′, φ, s)

.
= SubsetMovs(a′, a) ∧ ∃s′′. timeStamp(s′′) = timeStamp(s) ∧ s′ < s′′

∧ ∀a1, s1, a
′
1, s

′
1.[(do(a, s

′) < do(a1, s1) ≤ s ∧ do(a′, s′) < do(a′
1, s

′
1) ≤ s′′ ∧

timeStamp(s′1) = timeStamp(s1)) ⊃ (a1 = a′
1)]

∧ (∀s′1.(s′ < s′1 ≤ s′′) ⊃ φ[s′1]).

6Note that the action theory specifies how the situation changes when actions, i.e., joint moves, are per-
formed. This allows interfering or synergic effects to be specified.

8

Here SubsetMovs(a′, a), meaning that the tick action a′ is exactly as a, but with some of
the moves possibly replaced with the wait move, is defined as follows:

Definition 9 (The Moves of a′ Consists of a Subset of the Moves of a).
SubsetMovs(a′, a)

.
= ∃m′

1, · · · ,m′
n,m1, · · · ,mn. a

′ = tick(m′
1, · · · ,m′

n)

∧ a = tick(m1, · · · ,mn) ∧ (∀j. 1 ≤ j ≤ n ⊃ (m′
j = mj ∨m′

j = wait)).

Using minimal moves primary causes, we next formalize minimal moves causal chains.
We do this by defining a variant of CausesByChain that inductively constructs the minimal
moves chain instead.

Definition 10 (Minimal Moves Cause Through Causal Chain).
MinMovesCausesByChain(a, ts, cc, φ, s)

.
=

∀P.[∀a, ts, cc, a′, s, φ.(MinMovCausesDir(a, ts, (a′, ts), φ, s) ⊃ P (a, ts, ((a′, ts)), φ, s))

∧ ∀a, ts, cc′, s, φ.(∃a′′, a′, ts′, s′.(MinMovCausesDir(a′, ts′, (a′′, ts′), φ, s)

∧ timeStamp(s′)= ts′ ∧ s′ < s

∧ P (a, ts, cc′, [Poss(a′′) ∧After(a′′, φ)], s′)

∧ cc = Append(cc′, (a′′, ts′))

⊃ P (a, ts, cc, φ, s))

] ⊃ P (a, ts, cc, φ, s).

Thus MinMovesCausesByChain is the smallest set such that if a tick action a executed at
time-stamp ts directly caused the effect φ in scenario s with the minimal moves primary
cause (a′, ts), then (a, ts, cc, φ, s) is in that set, where cc = ((a′, ts)); and if a′ executed at
ts′ is a direct cause of φ in s with minimal moves primary cause (a′′, ts′), the time-stamp
of s′ is ts′, s′ < s, and (a, ts, cc′, [Poss(a′′) ∧ After(a′′, φ)], s′) is in P (i.e. a executed at
ts is a direct or indirect cause of [Poss(a′′) ∧ After(a′′, φ)] in s′ through minimal moves
causal chain cc′), then (a, ts, cc, φ, s) is in P , where cc = Append(cc′, (a′′, ts′)). This thus
incrementally constructs the refined causal chains using MinMovCausesDir .

Example (cont’d). We can show the following result about refined causal chains.7

Proposition 2 (Complete Refined Causal Chains in σ1).
Dbt |= MinMovesCausesByChain(tick(pickSuzy , otherBilly), 0, cc1, φ1, σ1)

∧MinMovesCausesByChain(tick(throwSuzy , pickBilly), 1, cc2, φ1, σ1), where
cc1 = ((tick(pickSuzy ,wait), 0), (tick(throwSuzy ,wait), 1), (tick(throwSuzy ,wait), 3)),

and cc2 = ((tick(wait , pickBilly), 1), (tick(wait , throwBilly), 3)).

Thus, in our example, we have two distinct causal chains, one that stems from the refined
primary cause involving Suzy’s second throw move and Billy’s wait move at time-stamp 3,
and another originating from Billy’s throw and Suzy’s wait move, again at time-stamp 3.
Importantly, as we will show in the next section, there is no causal chain that involves both
Suzy and Billy’s throw moves at time-stamp 3, avoiding the problem of over-determination
(as each of these moves would have been sufficient for breaking the bottle).

Note that in the above, all the minimal move causes involve a single (non-wait) move.
But this is not always the case. For example, if we replace the effect φ1 by φ∗ = Broken(s)∧
SuzyThrown(s), then a minimal move causal chain is:

((tick(pickSuzy ,wait), 0), (tick(throwSuzy , pickBilly), 1), (tick(wait , throwBilly), 3)).

7Again, as in Proposition 1, we choose the most indirect causes to show the complete refined causal chains.

9

5. Properties

We now show that our formalization of refined causes and refined causal chains have some
interesting properties. We start with the problem of preemption.

Preemption. Preemption occurs when there are more than one competing contributors
(actions) to an effect, but they happen one after another/consecutively. In such cases, only
the first of these should be identified as the actual cause. The (effects of the) latter actions
are said to be preempted by the actual cause. Our definition of refined causes and causal
chains above are based on Khan and Lespérance’s formalization of causes [24], which filter
out the preempted contributors, and thus our formalization also handles the preemption
problem correctly. We illustrate this using the following example.

Example 2. Consider the new scenario σ2, where

σ2 = do([tick(pickSuzy , pickBilly), tick(throwSuzy , otherBilly), tick(throwSuzy , otherBilly),

tick(otherSuzy , throwBilly)], S0).

In this, we can show the following result.

Proposition 3.

Dbt |= ¬∃cc. CausesByChain(tick(otherSuzy , throwBilly), 3, cc, φ1, σ2)

∧ ¬∃cc,m. MinMovesCausesByChain(tick(m, throwBilly), 3, cc, φ1, σ2).

Thus as expected, Billy’s throw is not considered as part of any (refined) causal chain.

Over-determination. Over-determination happens when the effect is contributed by some
events, but a smaller subset of these would have been sufficient for the effect to hold. For
example, in a voting scenario, where 6 out of 10 votes are required for a candidate to win,
if 7 voters voted for candidate A, saying that all of these 7 votes are the cause of candidate
A’s winning the ballot would be over-determination as any 6 of these would suffice. An
acceptable solution to this is to only identify any 6-vote subsets to be an actual cause [23]
(or refined causal chain, in our formalization).

Example (cont’d). Using our first bottle example where the scenario is σ1, we now argue
that our notion of refined causal chains avoids over-determining causes. Note that in this
example, our MinMovesCausesByChain construct avoids over-determination by inductively
specifying all possible sets of refined causal chains that are sufficient to break the bottle. As
discussed above, there are only two refined causal chains; the first one only consists of Billy’s
moves, and the second only consists of Suzy’s. The definition MinMovesCausesByChain en-
sures that only these two chains exist, since if we were to consider the chain that includes
the time-stamp 3 throw moves of both Suzy and Billy, it will not be a minimal one as either
throw would have been sufficient to break the bottle. Hence, we cannot have the moves of
both agents involved in the same refined causal chain. Formally, we can show that:

Proposition 4.

Dbt |= ¬∃a, ts, cc. MinMovesCausesByChain(a, ts,

Append(cc, (tick(throwSuzy , throwBilly), 3)), φ1, σ1).

Thus, tick(throwSuzy , throwBilly) at time-stamp 3 cannot be a part of any causal chain for
any action and timestamp.

In general, since refined causal chains are constructed to be minimal, if we have two
refined chains in the same timestamp, it cannot be the case that one of them is a refined
version of the other (i.e., has a subset of moves of the other).

10

Theorem 5 (No Over-Determination).

D |= ∀a, a1, a2, ts, cc, φ, s.(MinMovesCausesByChain(a, ts,Cons((a1, ts), cc), φ, s) ∧
MinMovesCausesByChain(a, ts,Cons((a2, ts), cc), φ, s)

⊃ (a1 = a2 ∨ (¬SubsetMovs(a1, a2) ∧ ¬SubsetMovs(a2, a1))),

where Cons((a, ts), cc) denotes the sequence where (a, ts) is added to the front of cc.

Proof Sketch: By induction on the length of the minimal moves causal chain using prop-
erties of minimal sufficient subsets of joint moves.

Persistence. Finally, we study the conditions under which (refined) causal chains persist
when the scenario changes.

Theorem 6 (Persistence of the Causal Chain).

D |= ∀s, s′, cc, ts, a, φ. CausesByChain(a, ts, cc, φ, s) ∧ s ≤ s′

∧ ∀s∗, a∗.(s ≤ do(a∗, s∗) ≤ s′ ⊃ φ[s∗])

⊃ CausesByChain(a, ts, cc, φ, s′).

Proof Sketch: By induction on the length of the causal chain.

That is, if a tick action a executed in ts is the cause of an effect φ in scenario s through
causal chain cc, then a in ts remains the cause of φ in all subsequent situations/scenarios
s′ if φ does not change after it was achieved in s. This is because since the situation where
φ was achieved does not change in the extended scenario, neither does the causal chain.

A similar result can be shown for refined causal chains.

Theorem 7 (Persistence of Refined Causal Chains).

D |= ∀s, s′, cc, ts, a, φ. MinMovesCausesByChain(a, ts, cc, φ, s) ∧ s ≤ s′

∧ ∀s∗, a∗.(s ≤ do(a∗, s∗) ≤ s′ ⊃ φ[s∗])

⊃ MinMovesCausesByChain(a, ts, cc, φ, s′).

Proof Sketch: By induction on the length of the minimal moves causal chain using prop-
erties of minimal sufficient subsets of joint moves.

6. Discussion and Conclusion

To support casual reasoning in multiagent domains, in this paper we proposed a formal-
ization of actual causation in SCSGSs. We showed that one can adopt the definition of
achievement causes in the SC to identify the relevant tick actions as causes and the asso-
ciated causal chain in SCSGSs. However, since the chain can now include multiple sets of
causes, each of which are independently sufficient to bring about the effect, to avoid over-
determination we also formalized refinements of the identified causal chains. As shown, our
account properly handles the problems with preemption and over-determination.

Note that, while the popular SEM-based frameworks of actual causation and their deriva-
tives seem to allow actions by multiple agents, these have other major limitations. For in-
stance, often these consider the occurrence of a set of events without specifying their order
of execution or whether they occur concurrently (all events are simply assumed to have hap-
pened). Events are also considered to be independent, which is another strong assumption.
One cannot distinguish between the occurrence of an event and its effect holding. While
recent action-theoretic formalizations of causality are meant to deal with these limitations,
as mentioned earlier, these only handle single-agent or turn-taking multi-agent scenarios.
Indeed to the best of our knowledge, our proposal is the first to accommodate synchronous
concurrent moves by multiple agents while studying actual causes in formal action-theoretic

11

frameworks. We are currently investigating how various notions of responsibility can be
formalized based on this framework.

Acknowledgements

This work is partially supported by the National Science and Engineering Research Coun-
cil of Canada, by the University of Regina, and by York University.

References

[1] J. Y. Halpern. “Axiomatizing Causal Reasoning”. In: Journal of Artificial Intelligence Re-
search 12 (2000), pp. 317–337.

[2] D. Lewis. “Causation”. In: Journal of Philosophy 70.17 (1973), pp. 556–567.
[3] N. Hall. “Two Concepts of Causation”. In: Causation and Counterfactuals. Ed. by J. Collins,

N. Hall, and L. A. Paul. MIT Press, 2004, pp. 225–276.
[4] J. Pearl. On the Definition of Actual Cause. Tech. rep. R-259. University of California Los

Angeles, 1998.
[5] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
[6] C. Hitchcock. “The Intransitivity of Causation Revealed in Equations and Graphs”. In: The

Journal of Philosophy 98.6 (2001), pp. 273–299.
[7] T. Eiter and T. Lukasiewicz. “Complexity Results for Structure-based Causality”. In: Artificial

Intelligence 142.1 (2002), pp. 53–89.
[8] A. Bochman. “A Logic For Causal Reasoning”. In: IJCAI-03, Proceedings of the Eighteenth In-

ternational Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003.
Ed. by G. Gottlob and T. Walsh. Morgan Kaufmann, 2003, pp. 141–146.

[9] M. Hopkins. “The Actual Cause: From Intuition to Automation”. PhD thesis. University of
California Los Angeles, 2005.

[10] M. Hopkins and J. Pearl. “Causality and Counterfactuals in the Situation Calculus”. In:
Journal of Logic and Computation 17.5 (2007), pp. 939–953.

[11] J. Y. Halpern. “A Modification of the Halpern-Pearl Definition of Causality”. In: Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. Ed. by Q. Yang and M. J. Wooldridge. AAAI
Press, 2015, pp. 3022–3033.

[12] M. Gladyshev, N. Alechina, M. Dastani, D. Doder, and B. Logan. “Dynamic Causality”. In:
ECAI 2023 - 26th European Conference on Artificial Intelligence, September 30 - October 4,
2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent
Systems (PAIS 2023). Ed. by K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, and R. Radulescu.
Vol. 372. Frontiers in Artificial Intelligence and Applications. IOS Press, 2023, pp. 867–874.

[13] J. L. Mackie. “Causes and Conditions”. In: American Philosophical Quarterly 2.4 (1965),
pp. 245–264.

[14] R. W. Wright. “Causation in tort law”. In: California Law Review 73.6 (1985), 1735––1828.
[15] A. Bochman. “Actual Causality in a Logical Setting”. In: Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden. Ed. by J. Lang. ijcai.org, 2018, pp. 1730–1736.

[16] S. M. Khan and M. Soutchanski. “Necessary and Sufficient Conditions for Actual Root
Causes”. In: ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-
8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Ed. by G.
De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, and J. Lang. Vol. 325.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2020, pp. 800–808.

[17] S. Beckers and J. Vennekens. “A Principled Approach to Defining Actual Causation”. In:
Synthese 195.2 (2018), pp. 835–862.

12

[18] V. Batusov and M. Soutchanski. “Situation Calculus Semantics for Actual Causality”. In:
Proceedings of the Thirteenth International Symposium on Commonsense Reasoning, COM-
MONSENSE 2017, London, UK, November 6-8, 2017. Ed. by A. S. Gordon, R. Miller, and
G. Turán. Vol. 2052. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[19] V. Batusov and M. Soutchanski. “Situation Calculus Semantics for Actual Causality”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018. Ed. by S. A. McIlraith and K. Q. Weinberger.
AAAI Press, 2018, pp. 1744–1752.

[20] A. Mehmood and S. M. Khan. “Towards a Definition of Primary Cause in Hybrid Dynamic
Domains”. In: Proceedings of the 37th Canadian Conference on Artificial Intelligence (Cana-
dian AI-24), Guelph, Ontario, Canada. 2024.

[21] M. Rostamigiv, S. M. Khan, Y. Lespérance, and M. Yadkoo. “A Logic of Actual Cause for
Non-Deterministic Dynamic Domains”. In: Proceedings of the 21st European Conference on
Multi-Agent Systems (EUMAS-24), August 26-28, Dublin, Ireland. Springer, 2024.

[22] S. M. Khan, Y. Lespérance, and M. Rostamigiv. “Reasoning about Actual Causes in Non-
deterministic Domains”. In: Proceedings of the 39th Annual AAAI Conference on Artificial
Intelligence (AAAI-25), February 25 - March 4, 2025, Philadelphia, Pennsylvania, USA.
AAAI Press, 2025.

[23] J. Y. Halpern. Actual Causality. MIT Press, 2016. isbn: 978-0-262-03502-6.
[24] S. M. Khan and Y. Lespérance. “Knowing Why - On the Dynamics of Knowledge about

Actual Causes in the Situation Calculus”. In: AAMAS ’21: 20th International Conference
on Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7,
2021. Ed. by F. Dignum, A. Lomuscio, U. Endriss, and A. Nowé. ACM, 2021, pp. 701–709.

[25] S. M. Khan and M. Rostamigiv. “On Explaining Agent Behaviour via Root Cause Analysis:
A Formal Account Grounded in Theory of Mind”. In: ECAI 2023 - 26th European Conference
on Artificial Intelligence, September 30 - October 4, 2023, Kraków, Poland. Ed. by K. Gal,
A. Nowé, G. J. Nalepa, R. Fairstein, and R. Radulescu. Vol. 372. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2023, pp. 1239–1247.

[26] V. Yazdanpanah, E. H. Gerding, S. Stein, M. Dastani, C. M. Jonker, T. J. Norman, and
S. D. Ramchurn. “Reasoning about responsibility in autonomous systems: challenges and
opportunities”. In: AI Soc. 38.4 (2023), pp. 1453–1464.

[27] G. De Giacomo, Y. Lespérance, and A. R. Pearce. “Situation Calculus Game Structures and
GDL”. In: ECAI. 2016, pp. 408–416.

[28] J. McCarthy and P. J. Hayes. “Some Philosophical Problems from the Standpoint of Artificial
Intelligence”. In: Machine Intelligence 4 (1969), pp. 463–502.

[29] R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. Cambridge, MA, USA: MIT Press, 2001. isbn: 9780262182188.

[30] H. J. Levesque, F. Pirri, and R. Reiter. “Foundations for the Situation Calculus”. In: Electronic
Transactions on Artificial Intelligence (ETAI) 2 (1998), pp. 159–178.

[31] J. Pinto. “Concurrent Actions and Interacting Effects”. In: KR. 1998, pp. 292–303.
[32] G. De Giacomo, Y. Lespérance, and H. J. Levesque. “ConGolog, A Concurrent Programming

Language based on the Situation Calculus”. In: Artificial Intelligence 121.1-2 (2000), pp. 109–
169.

	1. Introduction
	2. Preliminaries
	3. Actual Causation in the SC
	4. Agent Moves as Causes in the SCSGS
	5. Properties
	6. Discussion and Conclusion
	Acknowledgements
	References
	References

