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Abstract

In vision-based autonomous spacecraft docking multiple
views of scene structure captured with the same camera and
scene geometry is available under different lighting condi-
tions. These “multiple-exposure” images must be processed
to localize visual features to compute the pose of the target
object. This paper describes a robust multi-channel edge
detection algorithm that localizes the structure of the target
object from the local gradient distribution computed over
these multiple-exposure images. This approach reduces the
effect of the illumination variation including the effect of
shadow edges over the use of a single image. Experiments
demonstrate that this approach has a lower false detection
rate than the average response of the Canny edge detector
applied to the individual images separately.

1. Introduction

In the process of vision-based autonomous spacecraft
docking, an essential issue is to accurately estimate the rela-
tive position and orientation (the pose) of the docking target
based on images taken by the chaser vehicle. Multiple im-
ages can be captured in each sampling period to provide
adequate edge information of the structure of the docking
target [4]. These “multiple-exposure” images, which can be
taken to have the same capture geometry (considering the
low relative speed between the chaser and the target during
a sampling period) are captured under different illumina-
tion conditions. The resulting image set can be viewed as
a multi-channel image. Figure 1(a) illustrates the docking
task as the chaser approaches the target. Successful dock-
ing requires an accurate estimate of the pose of the target
relative to the chaser. The target may be equipped with a
special purpose docking fixture that includes a visual dock-
ing target as shown in Figure 1(b), but this is not always the
case. In either case, controllable illumination and a fixed

but adjustable camera are used to obtain multiple-exposure
images of the target. The underlying computation problem
then becomes one of extracting image features from the set
of multiple-exposure images so as to establish the target’s
pose relative to the chaser.

Given the multiple-exposure image set, how should im-
age features be extracted in order to localize the docking
target? Here we describe a novel multi-channel edge de-
tection algorithm to solve the edge detection problem for
multiple-exposure images. The goal of the multi-channel
edge detection algorithm is to seek edges corresponding to
the physical structure of real objects (e.g., the docking tar-
get) from the multiple-exposure images and in the process
to identify and reduce the influence of edges that arise only
due to illumination changes (i.e. shadow edges) and other
random noise. These noise edge signals can disturb the ob-
servation of the edge structure and degrade the estimation
of the pose of the docking target.

It is significantly more difficult to analyze edges in multi-
channel images than in a single image because different
channels may contain only partial or conflicting edge infor-
mation about the structure of the target. When the conflict
is slight, simple logical or mathematical operations (e.g.,
logical OR operation, majority voting, arithmetic average)
can be applied to merge the multiple channels into a single
output. This is a widely used approach in multi-spectral
edge detection [3, 7, 15], color edge detection [12], and
multi-flash edge detection [13]. When the conflict is more
pronounced, a more sophisticated merging approach is re-
quired. Here, we distinguish between the edge structure
and noise edge signals by their gradient distributions. Un-
der a range of illumination conditions, the former should be
more stable than the latter in a statistical sense. Observa-
tion and experimental verification [14] show that the local
gradient orientations in multiple-exposure images around
an edge can be well described by a Gaussian distribution
centered at the orientation of the underlying edge corrupted



(a) Spacecraft docking

(b) Multiple-exposure images of the docking target

Figure 1. Spacecraft docking. (a) shows a simulation of the overall
task. Image courtesy of MDA Space Missions. (b) shows multiple-
exposure images of a mockup of a docking target (a grappling fix-
ture) and their individual edge maps. For each image, the corre-
sponding Canny edge map (σ = 1.0) is shown directly below the
image.

by outlying gradient orientation samples (Figure 2). Figure
2(a) shows a single image of the mockup of a grappling fix-
ture including its visual target. A small test window area is
identified on the bottom-left side of the image. Figure 2(b)
shows 20 views of this test area obtained under different il-
lumination and camera capture settings. A sampling square
window was centered on this test region within which pixel
gradient samples were collected from multiple channels and
grouped together for statistical analysis. Figures 2(c) shows
the probability distribution and weighted probability distri-
butions of the collected multi-channel gradient data. The
prime gradient orientation near 135 degrees is corrupted by
small but significant outliers. These outlying gradients can
corrupt the local gradient estimation (see Figure 2(d)) even
though they may occupy only a small fraction of the entire
gradient sample. The problem is to identify and remove the
outliers while merging the inlying gradient samples.

A common approach to dealing with this type of robust
estimation process (see [11, 1, 8, 10] for applications in
computer vision) is to model the corrupted dataset using a

(a) The test area (the
white rectangle)

(b) Sample clips over a step edge

(c) Probability distribution and magnitude weighted probability dis-
tribution within the sampling window centering in the test region
(window size: 11x11 pixels).

(d) Non-robust estimation: the entire data are modelled by a single
distribution. No special treatment for the outliers. Non-weighted and
magnitude weighted probability distributions are shown.

(e) Robust estimation: the inliers and outliers are modelled sepa-
rately and the estimation is computed from the inlier (main) distribu-
tion only. Non-weighted and weighted probability distributions are
shown.

Figure 2. The use of non-robust and robust approaches to estimate
the probability distributions around an inherent step edge but af-
fected by varying lighting conditions. (b) shows a set of 20 chan-
nels of the same test area (marked out by a white rectangle in
(a)) centered at an object edge (window size: 40x40 pixels). (c)
shows the gradient distribution within a sampling window around
the center of the clips. (d) and (e) show the results obtained using
non-robust and robust estimations.

two-component mixture model in which the inliers and the



outliers are separately modelled by a simple distribution,
e.g. the Gaussian distribution (see Figure 2(e)). We utilize
this decomposition approach here within a multi-channel
edge detection process to separate gradient information as-
sociated with edge structure from unstable shadow edges
and other noise in the image.

2. The approach

Our approach is to extend the single-channel Canny edge
detector [6] to operate on multiple channels (see Figure
3). Input images are first processed in separate process-
ing channels (one image per channel) to obtain individual
gradient maps. Following the single-channel Canny algo-
rithm, the effect of additive high frequency noise in an in-
put image �I is attenuated by convolving the image with a
low-pass two-dimensional symmetric Gaussian filter �Gσ,σ .
The width of the Gaussian filter σ is a user-defined parame-
ter that determines the degree of smoothing and the cut-off
frequency. Let �I ′ = �Gσ,σ ∗ �I represent the result of this
computation. The gradients along the x-axis and y-axis di-
rections of the smoothed image �I ′ are computed as: Dx =
∂
∂x [Gx ∗ �I ′] = ∂Gx

∂x ∗ �I ′ and Dy = ∂
∂y [Gy ∗ �I ′] = ∂Gy

∂y ∗ �I ′

where Gx and Gy are one-dimensional Gaussian filters in x-
axis and y-axis directions. The magnitude w and local ori-
entation φ of the gradient are computed as w2 = D2

x + D2
y

and φ = tan−1 Dy/Dx. These computations are performed
separately for each channel and at each pixel position.

The next stage is to combine the local edge support us-
ing a robust statistical scheme operating within a small sam-
pling window for each pixel in the image �I . At each pixel
position (x, y), the local gradient orientation distribution
within the window is modelled as a two-component Gaus-
sian Mixture Model (GMM) [2] in which the inliers (the
normal gradient samples corresponding to the local edge
structure) are modelled by the main Gaussian distribution
and the outliers (gradients corresponding to shadow edges
and other random noise) are modelled by a background
Gaussian distribution. The Expectation Maximization (EM)
algorithm [2] is used to decompose the mixture model, and
to identify and separate the outliers from the inliers.

The gradient data from the channels are binned based on
their orientation so that the gradient orientation probability
distribution can be inferred from the bin frequencies. Sup-
pose we have collected N gradient samples (N = W ∗W ∗
nc where W is the width of the square sampling window
and nc is the number of channels) and represent sample j as
(φj , wj) where φj and wj are the orientation and magnitude
of sample j respectively. Let the total number of orientation
bins be K and represent bin i as (θi,Mi) where θi and Mi

are the center orientation and magnitude of bin i respec-
tively. samplej ∈ bini ⇔ θi − Wθ/2 < φj ≤ θi + Wθ/2
where Wθ is the width of the bin. We define Mi as the sum

of magnitudes of the samples falling into the same bin i, i.e.
Mi =

∑
samplej∈bini

wj .
Given mij the membership function of sample j with re-

spect to bin i (i.e. mij = 1 if samplej ∈ bini; otherwise
mij = 0), the magnitude-weighted frequency of any bin i

can be written as fi = Mi =
∑N

j=1 wimij . Magnitude-
weighted frequencies are used instead of normal frequen-
cies in our analysis of the gradient orientation distribution.
This is based on the intuition that a gradient sample with a
larger magnitude provides stronger evidence of the edge’s
true orientation than a gradient sample with a smaller mag-
nitude. Note that the gradient orientation bins of shadow
edges are weighted less than those of object edges since
shadow edges are less stable and normally have fewer sam-
ples (channels) falling into the same bin. This operation
enlarges the differences between the distributions of these
two kinds of gradients and makes it easier to distinguish be-
tween them.

The EM algorithm is used to estimate the most-likely
gradient value at the pixel position (x, y) using the
weighted frequencies. The two-component GMM for this
pixel position is given by [2]:

f(θ) =
2∑

m=1

αmpm(θ | µm, σm) (1)

where αm and pm are the mixing coefficient and probabil-
ity distribution function of the m’th component Gaussian
distribution. pm is assumed to be a Gaussian:

pm(θ | µm, σm) =
1√

2πσm

e
− d2

2σ2
m (2)

where µm and σm are the mean and standard deviation of
the m’th distribution. These two parameters and the mixing
coefficient αm are estimated by the EM algorithm. Note
that because θ (in degrees) represents the gradient orien-
tation which is an angular variable, the circular distance
d = min(|θ − µm|, 360 − |θ − µm|) is used instead of the
normal distance |θ − µm| in equation (2).

The estimation of the parameters in the mixture model
is refined in iterations following the EM algorithm update
functions:

pi(m | θi,Θ(t)) =
α

(t)
m pm(θi | µ

(t)
m , σ

(t)
m )

∑2
l=1 α

(t)
l pl(θi | µ

(t)
l , σ

(t)
l )

(3)

α(t+1)
m =

K∑

i=1

fi∑K
l=1 fl

· pi(m | θi,Θ(t)) (4)

µ(t+1)
m =

180
π

·
∑K

i=1 fipi(m | θi,Θ(t)) cos θi∑K
i=1 fipi(m | θi,Θ(t)) sin θi

(5)



Figure 3. Outline of the multi-channel edge detection algorithm.

σ(t+1)
m =

∑K
i=1 fipi(m | θi,Θ(t))d2

im
(t)

∑K
i=1 fipi(m | θi,Θ(t))

(6)

where m ∈ {1, 2} whose value represents the m’th com-
ponent distribution; K is the number of gradient orientation
bins and θi and fi are the central orientation and magnitude-
weighted frequency of bin i; Θ(t) = {α(t)

m , µ
(t)
m , σ

(t)
m } is the

estimated parameter set at iteration t and α
(t)
m , µ

(t)
m and σ

(t)
m

are the mixing coefficient, mean and standard deviation of
the m’th component distribution; dim is the circular dis-
tance from θi to µ

(t)
m . The magnitude weighted frequencies

fi are used as weights in the computation of Θ(t).
The (non-robust) weighted mean and standard deviation

of the gradient bins are used to initialize the EM algorithm
(with distribution 1 set at the location of the non-robust
mean and distribution 2 set 180 degrees away from distri-
bution 1). After the EM algorithm terminates, the gradient
of the local edge structure is estimated from the distribution
of the inliers. Suppose α1 > α2, then the estimated gradient
orientation is the mean of the main Gaussian distribution µ1.
The corresponding magnitude is composed as α1

∑K
i=1 Mi,

which represents the proportion of all the sample magni-
tudes that are generated by the main distribution.

The result of the EM process is a composite gradient
(µ1, α1

∑K
i=1 Mi) for each pixel position. A composite

gradient map corresponding to the underlying edge struc-
ture is then computed by combining the local gradient esti-
mates at all of the pixel positions. Based on this composite

gradient map an edge map is finally obtained using the post-
processing techniques of the Canny edge detector [6].

3. Experimental evaluation

We have evaluated our algorithm using images of both
simple structured objects and mockups of space hardware.
As with any complex algorithm, a group of parameters must
be specified:

σ - the width of the Gaussian smoothing filter [6];
τh - the higher threshold on the gradient magnitudes for

hysteresis thresholding [6];
τl - the lower threshold on the gradient magnitudes for

hysteresis thresholding [6];
nc - the number of channels, i.e. the size of the image

set;
W - the width of the local sampling window (assuming

a square window is used);
Wθ - the width of the orientation bins;
tmax - the maximum number of iterations (i.e. conver-

gence threshold) in the EM algorithm [2];
τL - the threshold on the increment of the log-likelihood

in the EM algorithm [2].
σ, τh and τl are parameters of the Canny edge detector.
In our experiments, multi-channel edge detection results

were evaluated with images pre-processed with the same σ
values in order to avoid differences introduced by different
smoothing levels. However, τh and τl varied for individ-
ual images in order to obtain optimal single-channel edge
maps (optimal by inspection). nc, W and Wθ are the spe-



(a) 1-4-7 (b) 3-3-7 (c) 4-4-3 (d) 5-2-5

(e) 5-5-5 (f) 6-3-7 (g) 6-6-6 (h) 7-1-7

(i) 7-3-3 (j) 7-4-1

Figure 4. A set of ten multiple-exposure images of an experimental
cube. The numbers under an image indicates the intensity levels
of lights from the upper-left, upper-middle and upper-right direc-
tions. The higher a number the stronger the light intensity.

cific parameters of the multi-channel algorithm. nc varied
as different image sets were used, while W = 1 (i.e. pixel-
wise) and Wθ = 1 for the experiments demonstrated here.
tmax and τL affect the termination of the EM algorithm.
They were set to 30 and 10−6 respectively based on prior
experience (see [14] for details).

Simple structured objects are especially useful for quan-
titative evaluations because their ground-truth edge maps
can be measured relatively easily. A set of ten multiple-
exposure images (nc = 10) of an experimental cube is given
in Figure 4. Figure 5 shows the results of applying the
single-channel Canny edge detector to each of the images
and of applying the multi-channel edge detection algorithm
to the entire image set. Table 1 and Table 2 list the false pos-
itive detection rate (FPR) and false negative detection rate
(FNR) of edgels in the edge maps shown in Figure 5. τd is
a pre-defined distance threshold for judging whether a de-
tection is correct: Only when the distance from a detected
edgel e to the closest model edge d(e) is below τd, is edgel
e regarded as a correct detection.

Table 1 shows that the multi-channel algorithm always
has a lower FPR than the single-channel Canny edge detec-
tor. This means that the multi-channel algorithm is more ro-
bust to illumination changes and thus its edge map contains
fewer relatively unstable edges that lead to misdetections.
Table 2 shows that although the Canny edge detector occa-
sionally has a lower FNR than the multi-channel algorithm
for certain illumination conditions, the multi-channel algo-
rithm consistently outperforms the average response of the

(a) 1-4-7 (b) 3-3-7 (c) 4-4-3 (d) 5-2-5

(e) 5-5-5 (f) 6-3-7 (g) 6-6-6 (h) 7-1-7

(i) 7-3-3 (j) 7-4-1 (k) Multi-
channel

(l) Ground-truth

Figure 5. The edge maps computed using the single-channel
Canny edge detector, the edge map generated by the multi-channel
edge detection algorithm and the hand measured ground truth edge
map (σ = 2.0).

τd = 0.5 τd = 1.0 τd = 2.0
(a) 1-4-7 0.7163 0.5168 0.3610
(b) 3-3-7 0.7008 0.5065 0.3714
(c) 4-4-3 0.6437 0.3978 0.2333
(d) 5-2-5 0.6626 0.4396 0.2918
(e) 5-5-5 0.6639 0.4517 0.3129
(f) 6-3-7 0.6871 0.4975 0.3718
(g) 6-6-6 0.6579 0.4434 0.3154
(h) 7-1-7 0.6662 0.4756 0.3655
(i) 7-3-3 0.7391 0.5688 0.4505
(j) 7-4-1 0.7615 0.5898 0.4578
average 0.6899 0.4886 0.3531

multi-channel 0.5825 0.3354 0.1753

Table 1. False positive detection rates (FPR’s) of the cube images
with different distance thresholds (τd’s, in pixels).

Canny edge detector over the entire range of the provided
illumination conditions.

Figure 7 illustrates the ability of the multi-channel algo-
rithm to reduce the effect of shadow edges on a mockup
of a docking fixture. A set of 20 multiple-exposure im-
ages (nc = 20) of the mockup of the docking fixture were
used (see Figure 6). The edge map generated by the multi-
channel algorithm was computed with nc = 20, W = 1,
σ = 1.0, τh = 20 and τl = 10. Note that in the image
“2-7-5” (Figure 7(a)) the area near the bottom-left corner is
covered by shadows cast from the upper-right. The under-



τd = 0.5 τd = 1.0 τd = 2.0
(a) 1-4-7 0.4738 0.2575 0.1655
(b) 3-3-7 0.4774 0.2827 0.2167
(c) 4-4-3 0.5142 0.3551 0.2715
(d) 5-2-5 0.4494 0.2899 0.1831
(e) 5-5-5 0.3862 0.2091 0.1032
(f) 6-3-7 0.4114 0.2671 0.1283
(g) 6-6-6 0.3790 0.2035 0.1116
(h) 7-1-7 0.4062 0.2859 0.1735
(i) 7-3-3 0.4698 0.3099 0.1691
(j) 7-4-1 0.5086 0.3095 0.1731
average 0.4476 0.2770 0.1696

multi-channel 0.3758 0.2079 0.1096

Table 2. False negative detection rates (FNR’s) of the cube images
with different distance thresholds (τd’s, in pixels).

lying edge structure should be straight and nearly vertical
in this region, but some edges are seriously distorted by the
shadows (see the same location in the corresponding edge
map). This distortion is rectified in the edge map generated
by the multi-channel algorithm (Figure 7(c)). The multi-
channel algorithm also removed the shadow edges over the
area a little below the top-right corner of the image “7-3-3”
(Figure 7(b)).

Based also on the grappling fixture image set, Figure 8
provides a comparison between the logical combinations
of the individual edge maps computed by the Canny edge
detector and the edge map computed by the multi-channel
algorithm directly. The left three images are the com-
bined edge maps obtained by merging all of the individ-
ual edge maps using simple logical operations (AND, OR
and majority-voting). The logical AND and OR operations
are very vulnerable to illumination changes. There is al-
most no edge structure in the combined edge map using the
AND operation, while the results of using the OR opera-
tion are extremely fuzzy. The majority-voting scheme [9]
is more robust and works better than either the AND or
the OR operation, but its mechanism of distinguishing out-
liers is succeptable to failure. Many edges are disconnected
(especially the long edges) and even disappear in the com-
bined edge map. These problems do not exist in the edge
map computed by the multi-channel algorithm (the right-
most image).

If all space targets were pre-positioned, then special pur-
pose target tracking software could be developed to track
exactly those targets. (And the targets themselves would be
specially designed in order to simplify the task.) Indeed this
is the case for the docking latch target, which was specifi-
cally designed to permit algorithms to compute the relative
pose of the target. Unfortunately not all targets fall into
this category. Figure 9 shows a set of 20 multiple-exposure
images of a mockup of a latch from the Hubble Space Tele-

Figure 6. Image set of the mockup of the grappling fixture. The
original image size is 336x584 pixels.

(a) Image ”2-7-5” and its
Canny edge map

(b) Image ”7-3-3” and its
Canny edge map

(c) Multi-
channel edge
map

Figure 7. Comparison between single edge maps and the multi-
channel edge map (σ = 1.0).

scope. On-orbit servicing of the Hubble Space Telescope
requires accurate docking with these latches. The latches
are not painted in a manner to simplify this task, and the
latch itself has a complex 3D structure.

Considering the high level of image noise present in
the latch images, the performance of the multi-channel ap-
proach was evaluated at different noise suppression levels
(i.e. with different σ values). Figure 10 and Figure 11 pro-
vide a comparison between the logical combinations of the
individual edge maps computed by the Canny edge detector
and the edge map computed by the multi-channel algorithm
with σ = 1.0 and σ = 2.0 respectively. As in previous ex-



(a) AND (b) OR (c) Majority Vot-
ing

(d) Multi-
channel

Figure 8. Logical combinations of individual edge maps of the
grappling fixture and the edge map computed by the multi-channel
approach.

Figure 9. Image set of the mockup of the Hubble Space Telescope
latch. The original image size is 300x920 pixels.

amples, the left three images show the logical combinations
of the individual edge maps, and the rightmost map shows
the edge map obtained using the multi-channel algorithm.
With the noise suppression level increased from σ = 1.0 to
σ = 2.0, the performance of both the single-channel Canny
edge detector and the multi-channel approach are improved,
especially the single-channel Canny edge detector. How-
ever, at neither suppression level does the logical combi-
nations of individual Canny edge maps capture the detail
obtained with the multi-channel algorithm. The large per-
formance improvement of the single-channel Canny edge

(a) AND (b) OR (c) Majority Vot-
ing

(d) Multi-
channel

Figure 10. Logical combinations of individual edge maps of the
Hubble Space Telescope latch and the edge map computed by the
multi-channel approach (with nc = 20, W = 1, σ = 1.0, τh =
20 and τl = 15).

(a) AND (b) OR (c) Majority Vot-
ing

(d) Multi-
channel

Figure 11. Logical combinations of individual edge maps of the
Hubble Space Telescope latch and the edge map computed by the
multi-channel approach (with nc = 20, W = 1, σ = 2.0, τh =
25 and τl = 5).

detector due to the increase of the noise suppression rate
demonstrates its sensitivity to parameter changes. Its ro-
bustness to noise depends greatly on correctly setting the
parameter corresponding to the noise suppression rate. In
contrast, the robustness of the multi-channel approach orig-
inates from its internal robust combination and outlier re-
moval scheme.

4. Discussion and Conclusions

The composite gradient map computed by the multi-
channel edge detection algorithm that we have proposed re-



tains those parts of the image gradient that are statistically
consistent over the illumination changes associated with the
input images, and discards unstable parts. An edge map
computed from this gradient map better indicates the under-
lying structure of the scene, since the influence of shadow
edges and random noise, which are generally less stable un-
der illumination changes, is reduced. This special charac-
teristic of multi-channel edge detection is crucial to appli-
cations that operate under varying illumination conditions,
including spacecraft docking, underground mining, under-
water mapping, and some medical applications.

Experiments show that for a set of multiple-exposure im-
ages that corresponds to a range of illumination conditions,
the multi-channel approach outperforms both the average
response of the Canny edge detector applied to the indi-
vidual images separately and the logical combinations of
the individual responses. However, as a robust statistical
method, the multi-channel approach has its limitations. It
requires that the outliers only occupy a small part of the
whole gradient samples. It may fail under particular or
extreme illumination conditions, e.g. over-exposure and
under-exposure, since the number of outliers increases dra-
matically in such cases.

The proposed multi-channel edge detection algorithm
has been used to build a complete prototype pose estima-
tion system [5]. Currently, the algorithm can process an im-
age set composed of six 336x584 pixels size images (of the
grappling fixture) in 10 seconds and a set of twenty images
of the same size in one minute (both using a pixelwise sam-
pling window), running on a Linux server (Intel Xeon CPU
3.06 GHz x 4, 3.7G memory and Linux 2.4.29 SMP). How-
ever, in spacecraft docking very high-resolution images are
frequently used (e.g. 2560x1920 pixels). The speed of the
algorithm will need to be improved for space deployment.
Parallelization and a hardware implementation of the algo-
rithm may be needed.
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