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Abstract 
Docking craft in space and guiding mining machines are 
areas that often use remote video cameras equipped with 
one or more controllable light sources. In these applica-
tions, the problem of parameter selection arises: how to 
choose the best parameters for the camera and lights? 
Another problem is that a single image often cannot cap-
ture the whole scene properly and a composite image 
needs to be rendered. In this paper, we report on our 
progress with the CITO Lights and Camera project that 
addresses the parameter selection and merging problems 
for such systems. The prototype knowledge-based control-
ler adjusts lighting to iteratively acquire a collection of 
images of a target. At every stage, an entropy-based 
merging module combines these images to produce a 
composite. The result is a final composite image that is 
optimized for further image processing tasks, such as 
pose estimation or tracking. 
 
 
1. Introduction 
 

Remote video cameras have found a wide range of ap-
plications. They are used to guide semi-autonomous min-
ing machines and vehicles, dock craft in outer space, 
control endoscopes in medicine, etc. To overcome the 
poor lighting conditions common to such application 
areas, the remote camera is often associated with one or 
more (typically fixed) light sources that can be controlled. 
The task may be performed directly by a human operator, 
such as in the case of guiding an endoscope, or it may be 
performed by a software agent with or without human 
intervention. In either case, the operator manipulates the 
light conditions and camera parameters to appropriately 
illuminate and capture portions of the image that are 
critical to the task at hand. 

Choosing an appropriate illumination is an extremely 
complex problem. Maximizing one illuminant may place 
portions of the scene in high relief, while at the same time 
casting shadows over other portions of the image that 

must be viewed in order to solve the required task. Inter-
actions between the illuminants and gain control within 
the camera itself complicate the task even further. Per-
haps the most common version of this problem is the 
lighting problem portrait photographers encounter. How 
should the scene be lit and the camera controlled in order 
for the camera to best capture the subject?  What we 
mean by "best" depends significantly on the specific task 
at hand. 

In the machine vision domain, the task becomes even 
more complex. To adequately capture the whole scene in 
one acquisition is often impossible.  If one assumes that 
the scene is static, a solution is to obtain images taken 
under different illumination or camera conditions and 
then to combine them into a single composite image. (For 
instance, during space docking, spacecraft often “freezes” 
to make the scene static and thus localize a target pre-
cisely. To improve the performance of a vision algorithm 
or a human operator, a sequence of images may be taken 
and combined into a high-quality composite before fur-
ther processing). Not only must the different illumination 
conditions be chosen in some intelligent manner, but 
some process is also required to render the combination. 
Choosing appropriate lights and camera parameters as 
well as presenting the resulting set of images as a com-
posite to a user or further system component, are the two 
problems that we address within the Lights and Camera 
(L&C) project.  

The primary problem we address here is the control 
problem: given an appropriate evaluation function that 
estimates how well or appropriately regions of the scene 
are illuminated in one or a collection of images, how 
should the various parameters of the lights and camera 
system should be controlled in order to capture all por-
tions of the scene ‘sufficiently well’? A second issue is a 
rendering problem. Given the collection of images ob-
tained under different illumination conditions, how 
should the images be combined in order to produce a 
single image that can be presented to a user or further 
system component for later processing? 



To address the high-level decision tasks of capture 
control and rendering, we have developed a prototype 
knowledge-based controller, programmed in the Indi-
Golog (IG) agent programming language[8]. The control-
ler maintains high-level knowledge of how to interpret 
numerical image evaluation results, how to improve the 
image capture, and how to determine whether enough 
different lighting conditions have been captured. For 
combining images obtained under varying lighting condi-
tions as well as for evaluating the amount of detail of the 
image, we have adopted an entropy-based approach (see 
[6] for details of the approach and [9] for a more general 
introduction to entropy-based image merging.) 

The Lights and Camera project is a collaboration be-
tween researchers at York University and with our indus-
trial partner, MD Robotics (MDA Space Missions). The 
docking latch target (Figure 8) and the fastener from the 
Hubble telescope service box (Figure 1) that we use in 
our experiments were contributed by MD Robotics. 

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss related work on image acquisition and 
merging as well as knowledge-based control for robotics 
and vision. Section 3 gives an overview of the IndiGolog 
agent programming language and its applicability to the 
problem of adaptive control for image acquisition. The 
Lights and Camera testbed is described in Section 4. The 
next two sections zero in on the main components of the 
testbed, namely, Section 5 discusses the implementation 
of our entropy-based merging module while Section 6 
elaborates on the strategies adopted in the L&C intelligent 
controller. We then proceed with a discussion of the re-
sults obtained so far (Section 6), and conclude the paper 
with a summary (Section 7) and an outline of future re-
search directions (Section 8). 
 
2. Previous Work 
 

There has been very little work done on the develop-
ment of strategies for the controlled illumination of 
scenes prior to image capture. Perhaps the most advanced 
systems are based on Panasonic’s Super Dynamic II tech-
nology. These systems combine two views from a single 
static camera (without controllable illumination) to over-
come low and variable light conditions. The technology is 
quite impressive for it can be implemented within the 
camera itself or as part of larger system. Nevertheless, it 
does not address issues related to actually controlling the 
illuminants (it only deals with the existing illumination), 
nor does it propose particularly sophisticated mechanisms 
for combining imagery taken under different illumination 
conditions (it only deals with combining parts of the 
image captured under different capture parameters). 

Software based systems have been proposed where 
multiple views of the same scene are acquired using dif-
ferent camera settings and integrated into one high dy-
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Figure 1. Space Component Illuminated with a 

Controllable Light 
mic range (HDR) image [4]. The most popular ap-
oaches to HDR imaging are temporal exposure change 
] (when the camera and the scene are static) and gener-
ized mosaicing [1] (when the imaging system rotates, 
t the scene remains constant). All these systems operate 
ing a "brute force" approach where images are acquired 
der all possible settings. Although these methods re-
ce dependency on the level of external lighting, they 

ill assume adequate external illumination and do not 
dress the problem of illumination control. To combine 
quired images into a composite, several hardware and 
ftware-based methods have been developed, among 
em recovering camera’s response function [4], the con-
ast-compression method [18], and entropy maximization 
], [6] (also see [6] for a detailed discussion of image 
erging techniques). 
There has been significant research concerning the use 

 AI/knowledge-based techniques for vision and robotics 
ntrol. Several mobile robot platforms equipped with 
ites of sensors have been endowed with AI/reasoning 
pabilities and demonstrate these by conducting mu-
um/lab tours, mail delivery, etc. AI systems have also 
en deployed in space. Deep Space-1 (DS-1), launched 
 1998, was the first spacecraft to use AI software to 
ordinate all the hardware and software activities of 
fferent parts of the spacecraft [12]. The executive “AI 
rnel” was written in Lisp and in addition to DS-1, is 
ing used for satellite telecommunication and space-
sed interferometers. The agent programming language 
olog was used in a very successful museum guide robot 
veloped in Germany [1]. Several approaches to adap-

ve and knowledge driven operation of vision systems 
ve been proposed. For example, Shekah et al. [16] 
ckaged basic image processing algorithms into multi-
yer “smart” modules that encapsulate knowledge of 
w to run the associated algorithm, evaluate its results, 
d tune its parameters. First, vision tasks are decom-
sed into a hierarchical plan. Then rules expressing 
ssible approaches, constraints, adjustment and failure 
ndling are used to complete the plan. Automatic solv-
g of a specific problem entails the selection and order-
g of modules, running them, and tuning parameters on 
aining images. Robertson [15] uses the concept of pro-
dural reflection to allow monitoring and modification 
 the computational state of an image processing filter. 



The adaptive operation of the vision system, incorporat-
ing the adaptable filters, is comparable to the control of a 
closed-loop system. 

To address the Lights and Camera control problem, we 
build on the results of a previous project on High-Level 
Control of Vision Sensing Systems. In the previous pro-
ject, we developed a testbed for studying high-level con-
trol of vision systems, and designed two prototype high-
level controllers for vision systems involving multiple 
vision processing modules with adjustable parameters 
(one for the testbed and one for a vision system belonging 
to MD Robotics). The testbed controller was built using 
IndiGolog and a small library of high-level control com-
ponents was developed.  
 
3. IndiGolog 
 

Our approach to the development of high-level con-
trollers for vision systems is based on the use of the high-
level model-based agent programming language Indi-
Golog [1], a successor of Golog [10] and ConGolog [16]. 

In these languages, the programmer provides a de-
clarative specification of the domain − actions and their 
preconditions and effects on fluents, i.e. the dynamic 
aspects of the state − and develops complex control pro-
grams in terms of these.  Programs can also generate new 
plans by searching for a sequence of actions that will 
achieve certain goals. ConGolog adds concurrency, pri-
orities, and interrupts to Golog, which makes it easier to 
write reactive controllers. IndiGolog extends ConGolog 
to support the inclusion of planning/search components 
within an overall deterministic program that is to be exe-
cuted incrementally in conjunction with sensing of the 
environment. The IndiGolog planning/search mechanism 
automatically monitors the execution of the generated 
plan and re-plans when the current plan is no longer ap-
propriate due to sensed changes in the environment.  The 
mechanism also supports a simple form of contingent 
planning where the dynamic environment is modeled as a 
simple deterministic reactive program [4]. An agent pro-
gramming language such as IndiGolog is an ideal basis 
for developing high-level controllers for vision systems. 
Unlike expert-system shells, it is intended for dealing 
with dynamic situations.  It supports both planning and 
high-level reactivity, in contrast to classical planners on 
the one hand and purely reactive architectures on the 
other. The York IndiGolog interpreter that we use in the 
project is implemented in Quintus Prolog and SWI 
Prolog. 
 
4. Lights and Camera Testbed 
 

The L&C testbed consists of a controllable camera and 
three controllable lights that are used to iteratively acquire 

a collection of images of a visual target. The adjustable 
parameters are: 

• intensities for the 3 lights, ranging from 0 to 7 
(8 values each), 

• shutter speed for the camera (15 values). 
So how many different combinations of images can be 

constructed of a single static scene using this relatively 
simple and limited imaging platform? Taking into ac-
count the fact that we consider image combinations rather 
than single images, the search space size for the task is 

.10822 2311768015888 ⋅>=⋅⋅⋅  
That is, there are more than 75 billion possible image 

combinations even with as few as three images in a given 
set. Clearly, it is not possible to try every possible set of 
images. There is a need for heuristic parameter selection 
that adapts to already acquired images and lighting condi-
tions inferred from them.  

The software architecture of the Lights and Camera 
system consists of the Image Server, the Merging Mod-
ule(s) and the high-level Intelligent Controller (see Fig-
ure 2). Communication between different modules occurs 
by message passing via TCP/IP sockets. Each message is 
encoded as an ASCII string which consists of words sepa-
rated by empty space characters. For example, in order to 
change the value of an adjustable parameter, such as the 
intensity of the first light, the Controller sends a “set” 
message which contains the new value of the parameter 
that should be used by the Merging Module; whenever a 
module receives a “set” message, it sends back an “ok” 
message to notify the sender. 

 
 

Figure 2. Lights and Camera System Architecture 
 

The Image Server, implemented in C, operates a digi-
tal camera and 3 lights, changing values for parameters 
such as light intensities, camera aperture, shutter, and 
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focal length. It acquires images from the camera and 
stores them along with the description of conditions under 
which they were taken. Stored images can also be used in 
simulation mode, when no actual acquisition takes place, 
but previously stored images are made available to other 
modules. This helps separate the acquisition and merging 
stages to facilitate experimentation. 

The Merging Module implements an image merging 
algorithm and an evaluation measure of image goodness. 
Following a request from the Controller as to what the 
next light and camera parameters are, it queries the Image 
Server for the corresponding image. It adds the new im-
age to the existing collection of images taken under dif-
ferent operating conditions, renders a composite, and 
estimates the amount of detail in the composite in terms 
of entropy. The result is then sent to the Controller, clos-
ing the feedback loop. According to the decision taken by 
the Controller module, the current image is either kept in 
or discarded from the composite. 

The task of the L&C Intelligent Controller is to opti-
mize the final composite image for further image process-
ing tasks, such as pose estimation or tracking. The control 
task (see Figure 3) is done by selecting a parameter con-
figuration, getting a new image, adding it to the image 
set, evaluating the updated composite,  and deciding 
whether its quality improved compared to the previous 
step - if not, the last image is marked as discarded and is 
replaced at the next iteration.  This is repeated until the 
desired quality or maximum number of iterations is 
reached. 
 

 
Figure 3. Image acquisition and rendering 

 
5. Image Merging 
 

Merging a set of images taken under varying lighting 
conditions and camera parameters into a single image, 
requires the development of a system through which the 
“best” elements in each source image can be accurately 
identified. These elements must then be merged and 
blended into a final image that is a “best” (under some 
metric) representation of the collection of images. 

Currently we use entropy to measure the amount of de-
tail provided by each picture [9]. The entropy is defined 
as the number of bits necessary to represent a given input 
given the probability of that input appearing in a stream. 
High entropy indicates large variance in the given pixels, 
while low entropy indicates that the pixels are fairly uni-
form, and hence little detail can be derived from them. 
Therefore, when applied to groups of pixels within the 
source images, entropy provides a way to compare the 
same element from the different source images and decide 
which provides the most detail. 

A set of images is merged into a single image using a 
local entropy-weighting method [6]. This approach allows 
a collection of images to be collapsed into a single image 
in an efficient manner. The entropy of the resulting 
merged image is used as an estimate of its quality. 

The entropy-based evaluation and merging method is 
implemented in our system as a separate module. It is 
used by the L&C controller to combine sets of images and 
evaluate resulting composites. For a detailed discussion of 
our approach to image merging, see [6]. 
 
6. Intelligent Controller 
 

Given the current conditions of the environment, such 
as natural lighting or lack thereof, the task of the intelli-
gent controller is to acquire and merge a collection of 
images under such system conditions that their composite 
is optimized for further image processing. The task is 
complicated by the size of the search space as well as the 
complexity of the effects that changes in the system pa-
rameters produce on the image content. 

To develop good heuristics for parameter selection, we 
conducted experiments where we merged pairs and triples 
of images and compared the entropy of the individual 
images with that of the corresponding composite. The 
experiments showed that combining images with similar 
lighting does not generally lead to substantial increases in 
entropy. However, merging sets of images taken under 
somewhat different light conditions yields composites 
that exhibit adequate entropy gains. The intuition is that 
varying lighting conditions usually bring up new features 
that were not previously noticeable in the image, thus 
contributing to the overall level of detail. At the present 
stage of the project, we only use one shutter speed for all 
images. 

Based on these empirical results, we designed a simple 
model to estimate the similarity of images in terms of the 
common information that they might share (see Figure 4). 
The idea is to divide the hyperspace of light settings into 
subspaces in such a way that images from one given 
group carry approximately the same information. By 
reasoning about the similarity of the information in im-
ages we reduce the dimensionality and size of the search 
space. 
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Figure 4. Definition of image similarity (Prolog) 
 
As seen in Figure 4, we based the categorization on over-
all brightness (low, medium, high) and directionality (left, 
right, middle, even, sides) of the light. Specifically, an 
image has even directionality of light if the intensities of 
all three lights are the same, etc. We give the highest 
similarity value of 1.0 to a pair of images if they have the 
same directionality and brightness of light. If the images 
share only the same directionality or the same brightness, 
we assign a medium level of similarity to the pair. Fi-
nally, if the images do not fall under the same category 
for either brightness or directionality, we say they are not 
similar and use the value of 0.0. 

We distinguish lighting distributed evenly and that 
coming mostly from the middle light. While the benefits 
of such a categorization may not be evident for planar 
targets facing the camera, the distinction becomes espe-
cially important for more complex, three-dimensional 
targets, such as a docking latch, for which the three lights 
may influence the visibility of disjoint sets of features. 

The degree of similarity of a new image to the existing 
set of images is calculated by averaging similarity values 
for the new image and each of the images in the existing 
set. The new image is said to be not similar to the set if 
the calculated degree of similarity is below a specified 
threshold. In an analogous fashion, we calculate how 
similar the new image is to the set of already discarded 
images. We maintain separate thresholds for similarity to 
the composite image set and similarity to the set of dis-
carded images, though in the current controller we use the 
same value for both thresholds. 

The controller keeps track of the images that were 
added to or discarded from the composite by storing the 
corresponding parameters and entropy evaluation in IG 
fluents (dynamic predicates). For example, the value of 
the imgsetPara(entropy,k,light1) fluent is the 
intensity of the first light that was used to acquire the k-th 
image for the composite in the entropy-based merging 
module. To be able to use fluents, one should declare and 
initialize them. When the control program is running, the 
values of fluents can be changed by actions which be-
come possible under certain conditions. For example, the 
values for imgsetPara and imgsetResult fluents 
are only updated when the Merging Module has con-
firmed the addition of a new image and calculated the 
new entropy of the composite. In addition, a fluent can be 
used to specify the effects of actions or to form defini-
tions of complex conditions. 

The high-level control procedure for image acquisition 
and rendering is given on Figure 5. 

 
Figure 5. Main Control Procedure (IndiGolog) 

 
At the first step of the algorithm, the settings for the ini-
tial image are picked at random. The agent then itera-
tively chooses light settings for the next image acquisi-
tion, looking for images that would contribute sufficient 
additional information with respect to the existing image 
set (see Figure 6). 

 
Figure 6. One Iteration of the Feedback Loop 

 
If the entropy of the composite did not increase suffi-

ciently due to the newly added image, the image is 



marked as discarded, parameters under which it was taken 
are marked as unfavourable, and the search for a new 
addition to the set is initiated. 

When searching for the best additional image, the 
controller restricts its choice to the images that are not 
similar to the set of images added to the current 
composite as well as to the set of images discarded at 
earlier steps. The main part of the 
add_image(imgset, not_similar) procedure is 
the search for new light settings  that would produce such 
an image (see Figure 7). First, the controller picks some 
settings at random and sets them as current. Then, it 
computes the degree of similarity of this image to each of 
the image sets. Finally, it decides whether the image is 
similar to either of the image sets by evaluating the 
complex conditions is_not_similar(Set, 
current_img). If the current image does not satisfy 
the condition of non-similarity, the procedure is repeated 
until an acceptable image is found. 

 
Figure 7. Search for Images that are not_similar 

 
In evaluations of whether a complex condition holds, 

the controller refers to the current values of fluents 
specified in the declaration of the condition. For example, 
in order to evaluate the is_similar(Set, 
current_img) complex condition, the controller 
checks if the value of the similarity(Set, 
current_img) fluent is less than or equal to the 
low_similarity(Set) threshold for a given set. 

Augmenting the composite in the main control loop 
continues until a maximum number of images has been 
added to the image set or the entropy of the current com-
posite reaches a predetermined level. 

As the project progresses, we intend to vary the value 
of shutter speed in addition to controlling light intensity 
levels. This poses the question of how to adjust shutter 
speed in an optimal way from acquisition to acquisition. 

Presumably, the agent would still be able to base its rea-
soning upon the categorization of images described ear-
lier. For example, it may notice that most of the images 
that significantly contributed to the composite were cap-
tured under highly bright light. The agent may conclude 
that the bright light revealed object features otherwise 
invisible under the current camera settings. In this case, it 
may decide to use lower shutter speed for later image 
acquisitions.  The resulting images may enhance these 
object features in the composite and even introduce new 
ones. Experimentation with image acquisition and merg-
ing across a range of shutter speed values will give 
grounds for the final design of parameter searching 
scheme. 
 
7. Preliminary Results 
 

The average running time for the control algorithm for 
image acquisition and merging varied between 4 and 6 
minutes (in simulation mode, using pre-acquired images). 
In general, the higher we set the values for sufficient 
composite entropy, for minimum required entropy gain 
for each step, or for image similarity threshold, the longer 
it took the controller to run. 

Below we illustrate a sample run of the control algo-
rithm, aiming at the entropy of 13.8 and using the similar-
ity threshold values of 0.5 and minimum entropy gain of 
0.2. 

First, the initial light settings are picked at random and 
the first image is acquired (see Figure 8). Then the con-
troller searches for an image that would be sufficiently 
different from the already existing one. It finds the new 
settings “5, 1, 6” (intensity of left, middle, right lights) 
and acquires a corresponding image (Figure 9), which has 
the degree of similarity of 0.5 (it shares the same bright-
ness level as the initial image, but not the directionality of 
light) and is, therefore, acceptable. After the two images 
are merged, the evaluation of the composite shows an 
adequate entropy gain. Therefore, the second image is 
kept in the set (see Figure 9). 

In the next step, the controller performs yet another 
search for an image that could potentially improve the 
entropy of the existing set. Its choice appears on (Fig-
ure 10). When this third image is added, the entropy of 
the composite actually goes down (which in this particu-
lar case can be expected based on mere visual inspection). 
Therefore, the new image is discarded. The same happens 
for the next choice of an image “1, 3, 8” which has with 
medium intensity and right directionality of light, and it is 
also discarded. 

However, the next image with light settings “3, 6, 2”, 
when added to the image set, indeed improves the com-
posite entropy compared to its previous level (see Fig-
ure 11). In fact, the entropy of the composite reaches the 



required level of 14.0. Hence, the control algorithm does 
not look for further improvements. 

 
 

Figure 8. Initial image is captured. Lights: 5, 4, 1, 
directionality: left, brightness: high. 

 

 
 

Figure 9. Next image (on the left) is added. 
Lights: 5, 1, 6, directionality: right, brightness: 
high. The new composite (on the right) has higher 
entropy than the original. 

 

 
 
Figure 10. The third Image (on the left) is added. 
Lights: 0, 2, 0, directionality: middle, brightness: 
low. Corresponding composite (on the right) has 
not improved. Image is marked as discarded. 
 

 
 
Figure 11. The last image (on the left) replaces the 
discarded one. Lights: 3, 6, 2, directionality: mid-
dle, brightness: high. Entropy of the final compos-
ite (on the right) has reached the desired level. 

We have been performing tests to study the control-
ler’s performance and find ways to improve it. When 
running the experiments, we also paid attention to how 
well entropy performed as a measure of image quality. It 
appears that, for image processing tasks such as edge-
based model-matching, the entropy of a composite image 
may not always be the best evaluation measure. For ex-
ample, it would assign higher scores to composites on 
which a shadow was present simply because that enriched 
the information content of the images. 
 
8. Conclusion 
 

Developing techniques that provide robotic vision sys-
tems with autonomy is very important for many applica-
tions, for instance for space robotics. In this paper, we 
have described a specific problem where intelligent con-
trol can be used: acquiring multiple images of a target 
under different lights and camera parameters so that a 
high-quality composite image can be rendered. We have 
proposed an approach to solving the problem based on 
characterizing the information in regions of images in 
terms of entropy. We have described an overall architec-
ture for a system that performs this task. One key compo-
nent of our system is an intelligent controller imple-
mented in the agent programming language IndiGolog. 
We have described the main features of this controller as 
well as given examples of the knowledge that it uses in 
making decisions. We have also described some of the 
early system test results. 

Clearly, having a methodology and tools that support 
the design of such intelligent autonomous controllers is a 
very important objective for robot vision. We need tech-
niques that allow important domain knowledge to be 
represented in a perspicuous and easily extended way, so 
that it can be reasoned with, and exploited in making 
control decisions. Our work on the Lights and Camera 
control system is part of an effort at developing an Indi-
Golog-based toolkit for designing intelligent vision appli-
cation. This toolkit will include a library of vision algo-
rithms, search methods, and control frameworks that will 
speed up development. We believe that such techniques 
and tools would be an important contribution to the field. 
 
9. Future Work 
 

One of the directions for future work is to explore 
various control strategies for parameter selection. This 
will include designing a more complex model to estimate 
the amount of shared information in two images. 

Another direction for future research is the search for a 
better evaluation measure of an image. In fact, we are 
already developing an edge-based model-matching mod-



ule to estimate the pose of a docking latch given the cur-
rent composite. We intend to use the certainty of match 
returned by the module as a new evaluation measure. We 
will also look at using a combined entropy/match quality 
measure. 

In the case of a highly autonomous vision system, it 
may be beneficial to adjust the definition of concepts in 
the knowledge base of a controller. Specifically, the con-
troller could use a reinforcement learning framework, 
such as in [17], to automatically correct definitions of 
brightness or directionality as well as entropy threshold 
values in order to adapt to varying environment condi-
tions or a different target. 

It is unlikely that a single control algorithm will be ap-
propriate for all possible camera and light situations, so 
we are also working on a set of tools for the development 
of high-level controllers for the application. 
 
Acknowledgements 
 

We would like to acknowledge Wei Xu, Mark 
Obsniuk, and Arjun Chopra for helping to create and 
maintain the experimental testbed as well as for their 
ongoing work on the project, Andrew German for his 
work on image merging, and Nava David for creating the 
experimental image database. The financial support of 
OCE/CITO, NSERC Canada, and MDA Space Missions 
is gratefully acknowledged. 
 
References 
 

[1] Aggarwal, M.; Ahuja, N., “High dynamic range pano-
ramic imaging”, Proceedings of the Eighth IEEE Interna-
tional Conference on Computer Vision, Volume 1, pp. 2-
9, July 2001. 

 
[2] Brajovic, V., “Brightness Perception, Dynamic Range 

and Noise: A Unifying Model for Adaptive Image Sen-
sors”, CVPR04 (II), pp. 189-196, 2004. 

 
[3] Burgard, W., Cremers, A. B., Fox, D., Hahnel D., Lake-

meyer, G., Schultz, D., Steiner W., and Thrun, S., “The 
Interactive Museum Tour-Guide Robot”, Proceedings of 
AAAI-98, pp. 11-18, 1998. 

 
[4] Debevec, P. E. and Malik, J., “Recovering High Dynamic 

Range Radiance Maps from Photographs”, Proceedings 
of SIGGRAPH 1997, ACM Press / ACM SIGGRAPH, 
pp. 369-378, 1997. 

 
[5] Frieden, B. R., “Restoring with Maximum Likelihood 

and Maximum Entropy”, J. Optical Society America, vol. 
62, pp. 511–518, 1972. 

 
[6] German, A., Jenkin, M., Lespérance, Y., “Entropy-based 

image merging”. Proceedings of the Second Canadian 

Conference on Computer and Robot Vision, Victoria, 
BC, May 2005. 

 
[7] De Giacomo, G., Lespérance, Y., and Levesque, H.J., 

“ConGolog, a concurrent programming language based 
on the situation calculus”,  Artificial Intelligence, 121, 
109-169, 2000. 

 
[8] De Giacomo, G., and Levesque, H. “An incremental in-

terpreter for high-level programs with sensing”, in 
Levesque, H. J., and Pirri, F., eds., Logical Foundations 
for Cognitive Agents: Contributions in Honour of Ray 
Reiter, Berlin: Springer, pp. 86-102, 1999. 

 
[9] Goshtasby, A. A., “High Dynamic Range Reduction via 

Maximization of Image Information”, 
http://www.cs.wright.edu/~agoshtas/hdr.html, 2003. 

 
[10] Jasiobedzki P, Anders C, "Computer Vision for Space 

Robotics, Applications, Role, and Performance", SPRO 
'98 I IFAC Workshop on Space Robotics, Canadian 
Space Agency, pp. 96-103, 1998. 

 
[11] Levesque, H. J., Reiter, R., Lespérance,Y.,  Lin, F., and 

Scherl, R. B., “GOLOG: A Logic Programming Lan-
guage for Dynamic Domains, Journal of Logic Pro-
gramming”, 31, 59-84, 1997. 

 
[12] Nayar, S. K., Branzoi, V., “Adaptive Dynamic Range 

Imaging: Optical Control of Pixel Exposures over Space 
and Time”, ICCV03, pp. 1168-1175, 2003. 

 
[13] Pal, C., Szeliski, R., Uyttendaele, M., Jojic, N., “Prob-

ability models for high dynamic range imaging”, 
CVPR04 (II), pp. 173-180, 2004. 

 
[14] Pell, B., Bernard, D.E., Chien, S.A., Gat, E., Muscet-

tola, N., Nayak, P.P., Wagner, M.D. and Williams, B.C., 
“An Autonomous Spacecraft Agent Prototype”, Autono-
mous Robots, 5(1), March, 1998. 

 
[15] Robertson, P, Brady, M., “Adaptive Image Analysis for 

Aerial Surveillance”, IEEE Intelligent Systems, pp.30-36, 
May/June 1999. 

 
[16] Shekhar, C., Moisan, S., Vincent, R., Burlina, P., and 

Chellapa, R., “Knowledge-based control of vision sys-
tems”, IVC 17, pp. 667-683, 1999. 

 
[17] Taylor, G. W., “A Reinforcement Learning Framework 

for Parameter Control in Computer Vision Applications”, 
Proceedings of the First Canadian Conference on Com-
puter and Robot Vision, London, ON, May 2004. 

 
[18] Tumblin, J. and Turk, G., “LCIS: A Boundary Hierarchy 

for Detail-Preserving Contrast Reduction,” Proceedings 
of SIGGRAPH, ACM Press / ACM SIGGRAPH, 83-90, 
1999. 


