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Abstract. This paper describes an agent-oriented requirements engineering ap-
proach that combines informal i* models with formal specifications in the mul-
tiagent system specification formalism CASL. This allows the requirements 
engineer to exploit the complementary features of the frameworks. i* can be 
used to model social dependencies between agents and how process design 
choices affect the agents’ goals. CASL can be used to model complex processes 
formally. We introduce an intermediate notation to support the mapping be-
tween i* models and CASL specifications. In the combined i*-CASL frame-
work, agents’ goals and knowledge are represented as their mental states, which 
allows for the formal analysis and verification of, among other things, complex 
agent interactions and incomplete knowledge. Our models can also serve as 
high-level specifications for multiagent systems. 

1   Introduction 

Modern software systems are becoming increasingly complex, with lots of intricate 
interactions. The recent popularity of electronic commerce, web services, supply 
chain management and other inter-organizational systems, digital libraries, etc. con-
firms the need for software engineering methods for constructing applications that are 
open, distributed, and adaptable to change. This is why many researchers and practi-
tioners are looking at agent technology as a basis for distributed applications. 

Agents are active, social, and adaptable software system entities situated in some 
environment and capable of autonomous execution of actions in order to achieve their 
set objectives [20]. Furthermore, most problems are too complex to be solved by just 
one agent — one must create a multiagent system (MAS) with several agents having 
to work together to achieve their objectives and ultimately deliver the desired applica-
tion. Therefore, adopting the agent-oriented approach to software engineering means 
that the problem is decomposed into multiple, autonomous, interacting agents, each 
with a particular objective (goal). Agents in MAS frequently represent individuals, 
companies, etc. This means that there is an underlying organizational context in 
MAS. Like humans, agents need to coordinate their activities, cooperate, request help 



from others, etc., often through negotiation. Unlike in object-oriented or component-
based systems, interactions in multiagent systems occur through high-level agent 
communication languages, so these interactions are mostly viewed not at the syntactic 
level, but at the knowledge level, in terms of goal delegation, etc. [20].  

In requirements engineering (RE), goal-oriented approaches (e.g, KAOS [3]) have 
become prominent. In Goal-Oriented Requirements Engineering (GORE), high-level 
stakeholder objectives are identified as goals and then refined into fine-grained re-
quirements assignable to agents/components in the system-to-be or in its environ-
ment. Their reliance on goals makes GORE methods and agent-oriented software 
engineering a great match. Moreover, agent-oriented analysis is central to require-
ments engineering since the assignment of responsibilities for goals and constraints to 
components in the system-to-be and agents in its environment is the main result of the 
RE process. Therefore, it is natural to use a goal-oriented requirements engineering 
approach when developing MAS. With GORE, it is easy to make the transition from 
the requirements to the high-level MAS specifications. For example, strategic rela-
tionships among agents will become high-level patterns of inter-agent communica-
tion. Thus, it would be desirable to devise an agent-oriented RE approach with a 
formal component that supports rigorous formal analysis, including reasoning about 
agents’ goals and knowledge.  

In the above context, while it is possible to informally analyze small systems, for-
mal analysis is needed for any realistically-sized system to determine whether such 
distributed requirements imposed on each agent in a MAS are correctly decomposed 
from the stakeholder goals, consistent and, if properly met, achieve the system’s 
overall objectives. Therefore, the aim of this work is to devise an agent-oriented re-
quirements engineering approach with a formal component that supports reasoning 
about agents’ goals (and knowledge), thereby allowing for formal analysis of the 
requirements expressed as the objectives of the agents in a MAS. 

In our approach we integrate the i* modeling framework [21] with CASL [14], a 
formal agent-oriented programming language supporting the modeling of agent men-
tal states. This gives the modeler the flexibility and intuitiveness of the i* notation as 
well as the powerful formal analysis capability of CASL. To bridge the gap between 
informal i* diagrams and formal CASL specifications we propose an intermediate 
notation that can be easily obtained from i* models and then mapped into CASL. 
With our i*-CASL-based approach, a CASL model can be used both as a require-
ments analysis tool and as a formal high-level specification for a multiagent system 
that satisfies the requirements. This model can be formally analyzed using the 
CASLve [15] tool or other tools and the results can be fed back into the requirements 
model.  

One of the main features of this approach is that goals (and knowledge) are as-
signed to particular agents thus becoming their subjective attributes as opposed to 
being objective system properties as in many other approaches (e.g., Tropos [1] and 
KAOS [3]). This allows for the modeling of conflicting goals, agent negotiation, 
information exchange, complex agent interaction protocols, etc. 

The rest of the paper is organized as follows: Section 2 briefly describes the con-
cepts of i* and CASL; Section 3 discusses our approach in detail and Section 4 con-
cludes the paper. 



2   Background 

2.1   The i* Framework  

i* [21] is an agent-oriented modeling framework that can be used for requirements 
engineering, business process reengineering, etc. i* centers on the notion of inten-
tional actor and intentional dependency. Actors are described in their organizational 
setting and have attributes such as goals, abilities, beliefs, and commitments. In i*, an 
actor can use opportunities to depend on other actors in achieving its objectives, at 
the same time becoming vulnerable if those actors do not deliver. i* actors are strate-
gic in the sense that they are concerned with the achievement of their goals and strive 
to find a balance between their opportunities and vulnerabilities. Similarly, depend-
encies in i* are intentional since they appear as a result of actors pursuing their goals.  

In this paper, we use a variant of the meeting scheduling problem, which has be-
come a popular exemplar in Requirements Engineering (e.g., [17]). In the context of 
the i* modeling framework the process was first analyzed in [21]. We introduce a 
number of modifications to the meeting scheduling process to make our models easier 
to understand. For instance, we take the length of meetings to be the whole day. We 
also assume that in the environment of the system-to-be there is a legacy software 
system called the Meeting Room Booking System (MRBS) that handles the booking 
of meeting rooms. The complete case study is presented in [7]. 

 

 
Fig. 1. The Meeting Scheduler in its environment 

The i* framework has two main components: the Strategic Dependency (SD) 
model and the Strategic Rationale (SR) model. The former describes the external 
relationships among actors, while the latter focuses on exploring the rationale behind 
the processes in organizations from the point of view of participating actors. SD 
models are networks of actors (which can be agents, positions, and roles) and de-
pendencies. Depending actors are called dependers and depended-upon actors are 
called dependees. There can be four types of dependencies based on what is being 
delegated – a goal, a task, a resource, or a softgoal. Softgoals are related to the notion 
of non-functional requirements [2] and model quality concerns of agents.  

Fig. 1 is an SD diagram showing the computerized Meeting Scheduler (MS) agent 
in its environment. Here, the role Meeting Initiator (MI) depends on the MS for 
scheduling meetings and for being informed about the meeting details. The MS, in 



turn, depends on the Meeting Participant role for attending meetings and for provid-
ing his/her available dates to it. The MS uses the booking system to book rooms for 
meetings. The Disruptor actor represents outside actors that cause changes in partici-
pants’ schedules, thus modeling the environment dynamics. 
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Fig. 2. SR model for the meeting initiator 

SR models enable the analyst to assess possible alternatives in the definition of ac-
tor processes to better address their concerns. Four types of nodes are used in SR 
models – goals, tasks, softgoals, and resources – and three types of links – means-
ends links, task decompositions links, and softgoal contribution links. Means-ends 
links specify alternative ways to achieve goals; task decomposition links connect 
tasks with components needed for their execution. For example, Fig. 2 is a simple SR 
models showing some details of the MI process. To schedule meetings, the MI can 
either do it manually, or delegate it to the scheduler. Softgoal contribution links spec-
ify how process alternatives affect quality requirements (softgoals), and so softgoals 
such as MinimizeEffort in Fig. 2 are used to evaluate these alternatives. 

2.2   The Formal Foundations: CASL 

The Cognitive Agents Specification Language (CASL) [13][14] is a formal specifica-
tion language that combines theories of action [10][11] and mental states [12] ex-
pressed in situation calculus [9] with ConGolog [4], a concurrent, non-deterministic 
agent-oriented programming language with a formal semantics. In CASL, agents’ 
goals and knowledge are modeled formally; communication actions are provided to 
update these mental states and ConGolog is then employed to specify the behaviour 
of agents. This combination produces a very expressive language that supports high-
level reasoning about the agents’ mental states. The logical foundations of CASL 
allow it to be used to specify and analyze a wide variety of MAS including non-
deterministic systems and systems with incompletely specified initial state. 

CASL specifications consist of two parts: the model of the domain and its dynam-
ics (the declarative part) and the specification of the agents’ behaviour (the proce-
dural part). The domain is modeled in terms of the following entities: 1) primitive 
actions – all changes in the domain are due to primitive actions being executed by 
agents; 2) situations, which are states of the domain that result from the execution of 



sequences of actions (there is a set of initial situations, with no predecessor, corre-
sponding to the ways agents think the world might be like initially); 3) fluents, which 
are predicates and functions that may change from situation to situation. The fluent 
Room(meetingID,date,room,s), where s is a situation parameter, models the fact 
that a room has been booked on some day for some meeting in a situation s.  

To specify the dynamics of an application domain, we use the following types of 
axioms: 1) action precondition axioms that describe under what conditions actions 
can be performed; 2) successor state axioms (SSA), which were introduced in [10] as 
a solution to the frame problem and specify how primitive actions affect fluents; 3) 
initial state axioms, which describe the initial state of the domain and the initial men-
tal states of the agents; 4) other axioms that include unique name axioms for actions 
and domain independent foundational axioms. 

Agents’ behaviour is specified using a rich high-level programming language with 
recursive procedure declarations, loops, conditionals, non-determinism, concurrency, 
and interrupts [4]. A special predicate Do(Program,s,s′) holds if there is a successful 
execution of Program that ends in situation s′ after starting in s. 

CASL supports formal modeling of agents’ goals and knowledge. The formal rep-
resentation for both is based on a possible worlds semantics incorporated into the 
situation calculus, where situations are viewed as possible worlds [12]. CASL uses 
accessibility relations K and W to model what an agent knows and what it wants re-
spectively. K(agt,s′,s) holds if the situation s′ is compatible with what the agent agt 
knows in situation s, i.e., in situation s, the agent thinks that it might be in the situa-
tion s′. In this case, the situation s′ is called K-accessible. When an agent does not 
know the value of some formula φ, it considers possible (formally, K-accessible) 
some situations where φ is true and some where it is false. An agent knows some 
formula φ if φ is true in all its K-accessible situations: Know(agt,φ,s)=∀s′(K(agt,s,s′) 
⊃ φ[s′]). Constraints on the K relation ensure that agents have positive and negative 
introspection (i.e., agents know whether they know/don’t know something) and guar-
antee that what is known is true. Communication actions such as inform are used for 
exchanging information among agents. The precondition for the inform action en-
sures that no false information is transmitted. The changes to agents’ knowledge due 
to communication and other actions are specified by the SSA for the K relation. The 
axiom ensures that agents are aware of the execution of all actions. This formal 
framework is quite simple and idealized. More complex versions of the SSA can be 
specified, for example, to handle encrypted messages [14] or to provide belief revi-
sion [16]. 

The accessibility relation W(agt,s′,s) holds if in situation s an agent considers that 
everything that it wants to be true actually holds in s′, which is called W-accessible. 
We use the formula Goal(agt,ψ,s) to indicate that in situation s the agent agt has the 
goal that ψ holds. The definition of Goal says that ψ must be true in all W-accessible 
situations that have K-accessible situation in their past. This ensures that, while agents 
may want something they know is impossible to obtain, the goals of agents must be 
consistent with what they currently know. In our approach, we mostly use achieve-
ment goals that specify the desired states of the world. We use the formula 
Goal(agt,Eventually(ψ),s) to state that agt has the goal that ψ is eventually true. The 
request and cancelRequest actions are used by agents to request services from 



other agents and cancel their requests respectively. Requests are used to establish 
intentional dependencies among actors and lead to changes in goals of the requestee 
agent. The dynamics of the W relation are specified, as usual, by an SSA. There are 
constraints on W and K relations, which ensure that agents’ goals are consistent and 
that that agents introspect their goals.  

3   The i*-CASL Notation and Process 

3.1   A Motivating Example 

 
Fig. 3. A motivating example 

Suppose that we are employing an approach like Tropos [1], a requirements-driven 
agent-oriented software development methodology that uses the i* modeling notation, 
to model a simple goal delegation involving two agents. Fig. 3 shows a goal depend-
ency where the Meeting Scheduler depends on the Meeting Participant for attending a 
meeting. We would like to be able to analyze this interaction and predict how it will 
affect the goals and the knowledge of these agents. Using the approach proposed in 
this paper, one can develop a formal model based on the SD diagram in Fig. 3 and the 
corresponding SR-level models (as will be shown later), analyze it, and conclude that, 
for example, before the goal delegation, the MS has the goal AtMeeting(MP) and 
knows about this fact. After the delegation (and provided that the MP did not have a 
conflicting goal), the MS knows that the MP has acquired the goal, that the MP 
knows that it has the goal, that the MP knows that the MS has the same goal, etc. For 
the Participant agent in Fig. 3, we cannot say what its mental state was before the goal 
delegation. But, after the request from the MS we know that it has the goal AtMeet-
ing(MP) and knows about it, etc. The MP also knows how it has acquired the goal 
and thus will be able to trace its intention to achieve AtMeeting(MP) to the Meeting 
Scheduler’s request.  

Note that the change in mental state of the requestee agent is the core of goal dele-
gation. Also, in our approach, goals and knowledge are attributes of particular agents. 
This allows for better models of agent conflicts, interaction, negotiation, etc. 



3.2   Increasing Precision with iASR Models 

Our aim in this approach is to tightly associate SR models with formal specifications 
in CASL. The standard SR diagrams are geared to informal analysis and can be very 
ambiguous. For instance, they lack the details on whether the subtasks in task decom-
positions are supposed to be executed sequentially, concurrently, under certain condi-
tions, etc. CASL, on the other hand, is a precise language. To handle this precision 
mismatch we use Intentional Annotated SR (iASR) models that help in bridging the 
gap between SR models and CASL specifications. Our goal is to make iASR models 
precise graphical representation for the procedural component of CASL specifications 
while helping with the identification of axioms and definitions in the declarative one. 

The starting point for developing an iASR diagram for an actor is the regular SR 
diagram for that actor (e.g., see Fig. 2). It can then be appropriately transformed to 
become an iASR model every element of which can easily be mapped into CASL. 
The steps for producing iASR models from SR ones include the addition of model 
annotations and the details of agent interactions, the removal of softgoals, the deide-
alization of goals [17], etc. 

Annotations. The main tool that we use for disambiguating SR models is annota-
tions. Annotations allow analysts to model the domain more precisely and to capture 
data/control dependencies among goals and other details. Annotations, proposed in 
[19] for use with SR models and ConGolog, are textual constraints on iASR models 
and can be of three types: composition, link, and applicability conditions. Composi-
tion annotations (specified by σ in Fig. 4) are applied to task and means-ends decom-
positions and specify how the subtasks/subgoals are to be combined to execute the 
supertask and achieve the goal respectively. Four types of composition are allowed: 
sequence (“;”), which is default for task decompositions, concurrency (“||”), priori-
tized concurrency (“»”), and alternative (“|”), which is the default for means-ends 
decompositions. These annotations are applied to subtasks/subgoals from left to right. 
E.g., in Fig. 4, if the ”»” annotation is applied, n1 has the highest priority, while nk 
has the lowest. The choice of composition annotations is based on the ways actions 
and procedures can be composed together in CASL.  

 

 

 
Fig. 4. Composition and link annotations 

Link annotations (γi in Fig. 4) are applied to subtasks/subgoals (ni) and specify 
how/under what conditions they are supposed to be achieved/executed. There are six 
types of link annotations (corresponding to CASL operators): while loop, for loop, the 
if condition, the pick, the interrupt, and the guard. The pick annotation 
(π(variableList,condition)) non-deterministically picks values for variables in 
the subtask that satisfy the condition. The interrupt (whenever(variableList, 
condition,cancelCondition)) fires whenever there is a binding for the variables 



that satisfies the condition unless the cancellation condition becomes true. Guards 
(guard(condition)) block the subtask’s execution until the condition becomes 
true. The absence of a link annotation on a particular decomposition link indicates the 
absence of any conditions on the subgoal/subtask.  

The third annotation type is the applicability condition (ac(condition)). It ap-
plies to means-ends links used with goal achievement alternatives and specifies when 
the corresponding alternatives are applicable (see below for an example).  

Softgoals. Softgoals (quality requirements) are imprecise and thus are difficult to 
handle in a formal specifications language. Therefore, we use softgoals to help in 
choosing the best process alternatives (e.g., by selecting the ones with the best overall 
contribution to all the softgoals in the model) and then remove them before iASR 
models are produced. Alternatively, softgoals can be operationalized or metricized, 
thus becoming hard goals. Also, applicability conditions in iASR models can be used 
to capture the fitness of the remaining alternatives w.r.t. softgoals, which is normally 
encoded by softgoal contributions in SR diagrams. For example, one can specify that 
phoning participants to notify them of the meeting details is applicable only in cases 
with few participants (see Fig. 8), while the email option is applicable for any number 
of participants. This may be due to the softgoal “Minimize Effort”. 
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Fig. 5. Synchronizing procedural and declarative components of CASL specifications 

Agent Goals in iASR Models. A CASL agent has a procedural and a declarative 
components. iASR diagrams only model agent processes and therefore can only be 
used to represent the procedural component of CASL agents. The presence of a goal 
node in an iASR diagram indicates that the agent knows that the goal is in its mental 
state and is prepared to deliberate about whether and how to achieve it. For the agent 
to modify its behaviour in response to the changes to its mental state, it must detect 
that change and synchronize its procedural and declarative components (see Fig. 5A). 
Agent mental states are specified declaratively and usually change as a result of 
communication acts that realize goal delegation and information exchange. Thus, the 
procedural component of the agent must monitor for these changes. To do this we use 
interrupts or guards with their conditions being the presence of certain goals or 
knowledge in the mental state of the agent (Fig. 5B). Procedurally a goal node is 
interpreted as invoking the means to achieve it. 

In CASL, as described in [14], only communication actions have effects on the 
mental state of the agents. We, on the other hand, would like to let agents change 
their mental state on their own by executing the action commit(agent,φ), where φ 
is a formula that the agent/modeler wants to hold. Thus, in iASR diagrams all agent 
goals must be acquired either from intentional dependencies or by using the commit 
action.  



By introducing goals into the models of agent processes, the modeler captures the 
fact that multiple alternatives exist in these processes. Moreover, the presence of goal 
nodes suggests that the designer envisions new possibilities for achieving these goals. 
By making the agent acquire the goals, the modeler makes sure that the agent’s men-
tal state reflects the above intention. In this way the agents would be able to reason 
about various alternatives available to them or come up with new ways to achieve 
their goals at runtime. Self-acquired goals add flexibility to system models by pre-
serving within the corresponding formal specifications the variability in the way goals 
can be achieved and by avoiding early operationalization of goals. Self-acquired 
goals can be used to “load” goal refinements and AND/OR goal decompositions, 
which are abundant in GORE and AI, into the mental state of the agent if reasoning 
about these refinements is required. This is unlike the approach in [19] where agent 
goals had to be operationalized before being formally analyzed.  

Another way of increasing the precision of the iASR model is the addition of pa-
rameters to iASR models. For example, in Fig. 6B, all of the nodes in the model have 
the parameter mid (short for “meeting ID”), a unique meeting identifier. Quite fre-
quently, we replace the conditions in annotations and other model elements (they tend 
to be long) with suitably named abbreviations, e.g., RequestedDateRange(mid). 

 
Fig. 6. Adding iASR-level agent interaction details 

Providing agent interaction details. i* usually abstracts from modeling any de-
tails of agent interactions. CASL, on the other hand, models high-level aspects of 
inter-agent communication: requests for services or information, the selection of the 
course of action upon the receipt of the information, etc. Because of the importance 
of agent interactions in MAS, in order to formally verify multiagent system specifica-
tions in CASL, all high-level aspects of these interactions must be provided in the 
corresponding iASR models. This includes the tasks that request services or informa-
tion from agents in the system, the tasks that supply the information or inform about 
success or failure in providing the service, etc. We assume that the communication 
links are reliable.  

For example, the SR model with the goal dependency RoomBooked (see Fig. 1) in 
Fig. 6A is refined into the iASR model in Fig. 6B showing the details of the requests, 
the interrupts with their trigger conditions referring to mental states of the agent, etc.  



3.3   Mapping iASR Diagrams into CASL 

Once all the necessary details have been introduced into an iASR diagram, it can be 
mapped into the corresponding CASL model, thus making the iASR model amenable 
to formal analysis. 

The modeler defines a mapping m that maps every element (except for intentional 
dependencies) of an iASR model into CASL. This mapping associates iASR model 
elements with CASL procedures, primitive actions, and formulas so that a CASL 
program can be generated from an iASR model. Specifically, agents are mapped into 
constants that serve as their names as well as into CASL procedures that specify their 
behaviour; roles and positions are mapped into similar procedures with an agent pa-
rameter so that they can be instantiated by individual agents; leaf-level task nodes are 
mapped into CASL procedures or primitive actions; composition and link annotations 
are mapped into the corresponding CASL operators, while the annotation conditions 
map into CASL formulas.  

 
Fig. 7. Example iASR task decomposition 

Mapping Task Nodes. A task decomposition is automatically mapped into a 
CASL procedure that reflects the structure of the decomposition and all the annota-
tions. While the possibility of mapping leaf-level tasks into CASL procedures may 
reduce model size and increase the level of abstraction, restricting the mapping of 
these tasks to similarly named primitive actions allows the CASL procedures to be 
automatically constructed from these actions based on iASR annotations.  

Fig. 7 shows how a portion of the Meeting Scheduler’s task for scheduling meet-
ings can be decomposed. This task will be mapped into a CASL procedure with the 
following body (it contains portions still to be (recursively) mapped into CASL; they 
are the parameters of the mapping m): 

proc ScheduleMeetingProc(mid) 
 m(GetDateRangeFromMI(mid)); 
 guard m(KnowDates(mid)) do m(RemoveWeekendDates(mid)) 
   endGuard; 
 for p: m(Ptcp(mid)) do m(GetSchedule(p)) endFor; 
 guard m(KnowSchedules(mid)) do m(FindCompatibleDates(mid)) 
   endGuard; 
 for d: m(CompatibleDate(d,mid)) do m(TryDate(d,mid)) endFor; 
… 
endProc 

Note how the body of the procedure associated with the ScheduleMeeting task 
is composed of the results of the mapping of its subtasks with the annotations provid-



ing the composition details. This procedure can be mechanically generated given the 
mapping for leaf-level tasks and conditions. 

Mapping Goal Nodes. In our approach, an iASR goal node is mapped into a 
CASL formula, which is the formal definition for the goal, and an achievement pro-
cedure, which encodes how the goal can be achieved and is based on the means-ends 
decomposition for the goal in the iASR diagram. For example, a formal definition for 
MeetingScheduled(mid,s) could be: ∃d[AgreeableDate(mid,date,s) ∧ 
AllAccepted(mid,date,s) ∧ RoomBooked(mid,date,s)]. This says that 
there must be a date agreeable for everybody on which a room is booked and all par-
ticipants have accepted to meet. This seems correct, but initial formal goal definitions 
are often too ideal for the goal that cannot always be achieved. Such goals must be 
deidealized [17]. In order to weaken the goal appropriately, one needs to know under 
what circumstances the goal cannot be achieved. Modeling an achievement process 
for a goal using an iASR diagram allows us to understand how that goal can fail and 
thus iASR models can be used to come up with a correct formal definition for the 
goal. For example, it is not always possible to schedule a meeting. Here is one way to 
deidealize the goal MeetingScheduled based on our iASR model analysis: 

MeetingScheduledIfPossible(mid,s)=  
//1. The meeting has been successfully scheduled 
SuccessfullyScheduled(mid,s) ∨ 
//2. No agreeable (suitable for everybody) dates 
∀d[IsDate(d) ⊃ ¬AgreeableDate(mid,d,s)] ∨ 
//3. For every agreeable date at least one participant declined 
∀d[AgreeableDate(mid,d,s)⊃ SomeoneDeclined(mid,d,s)] ∨ 
//4. No rooms available 
∀d[SuggestedDate(mid,d,s) ∧ AllAccepted(mid,d,s) ⊃  
   ¬RoomBookingFailed(mid,date,s)] 

CASL’s support for reasoning about agent goals presented us with an interesting 
possibility. In the case study, we decided not to maintain schedules for meeting par-
ticipants explicitly. Instead, we relied on the presence of goals AtMeet-
ing(participant,mid,date,s) in their mental states as indications of the par-
ticipants’ intention to attend certain meetings on certain dates (the absence of meeting 
commitments indicates an available time slot). Then, we made the participants know 
that they can only attend one meeting per time slot (a day in our case) with the fol-
lowing initial state axiom (this can be shown to persist in all situations): 

∀agt[Know(agt,∀p,mid1,mid2,date[AtMeeting(p,mid1,date,now) ∧  
    AtMeeting(p,mid2,date,now) ⊃ mid1=mid2],S0)] 

Thus, the consistency of participants’ schedules is automatically maintained since 
meeting requests conflicting with already adopted AtMeeting goals are rejected.  

The achievement procedures for goals are automatically constructed based on the 
modeled means for achieving them and the associated annotations including the ap-
plicability conditions (see Fig. 8). By default, the alternative composition annotation is 
used, which means that some applicable alternative will be non-deterministically 
selected. Other approaches are also possible, e.g., one can try all appropriate alterna-



tives concurrently or in sequence. Note that the applicability condition (ac) maps into 
a guard operator to prevent the execution of unwanted alternatives. 

Fig. 8. Generating achievement procedures 

Modeling Dependencies. Intentional dependencies are not mapped into CASL per 
se – they are established by the associated agent interactions. iASR tasks requesting 
help from agents will generally be mapped into actions of the type re-
quest(FromAgt,ToAgt,Eventually(φ)) for achievement goals φ. We add a 
special abbreviation DoAL(δ,s,s′) (Do At Least) to be used when establishing task 
dependencies. It stands for Do(δ||(πa.a)*,s,s′), which means that the program δ 
must be executed, but that any other action may occur. Thus, to ask an agent to exe-
cute a certain known procedure, the depender must request it with: re-
quest(FromAgt, ToAgt,DoAL(SomeProcedure)). 

In order for an intentional dependency to be established we also need a commit-
ment from a dependee agent to act on the request from the depender. Thus, the de-
pendee must monitor its mental state for newly acquired goals. For example, here is 
an interrupt that is used by the Meeting Participant to check for a request for the list 
of its available dates: 

<mid:Goal(mp,DoAL(InformAvailableDates(mid,MS),now,then) ∧   
  Know(mp,¬∃s,s′(s ≤ s′ ≤ now ∧  
          DoAL(InformAvailDates(mid,MS),s,s′))) → 
  InformAvailDates(mid,MS) 
until SystemTerminated> 

Here, if the MP has the goal to execute the procedure InformAvailDates and 
knows that it has not yet executed it, the agent sends the available dates. The cancel-
lation condition SystemTerminated indicates that the MP always monitors for this 
goal. Requesting agents use similar interrupt/guard mechanism to monitor for re-
quested information or confirmations. When modeling agent interaction protocols in 
this approach, for every incoming message an agent will have an interrupt monitoring 
for it with its body specifying the appropriate response to the message. Since the 
interrupts fire when changes in the mental state are detected, agents can execute the 
protocols flexibly by, for example, self-acquiring the goal of buying some urgently 
required product from a vendor and thus skipping the lengthy price negotiation part 
of the protocol. Also, cancellation conditions in interrupts allow the agents to monitor 
for certain requests/informs only in particular contexts (e.g., while some interaction 



protocol is being enacted). A CASL specification for a simple interaction protocol is 
described in [7]. 

3.4   Formal Verification 

Once an iASR model is mapped into the procedural component of the CASL specifi-
cation and after its declarative component (e.g., precondition axioms, SSAs, etc.) has 
been specified, it is ready to be formally analyzed. One tool that can be used is 
CASLve [15], a theorem prover-based verification environment for CASL. CASLve 
provides a library of theories for representing CASL specifications and lemmas that 
facilitate various types of verification proofs. [13] shows a proof that there is a termi-
nating run for a simplified meeting scheduler system as well as example proofs of a 
safety property and consistency of specifications. In addition to physical executability 
of agent programs, one can also check for the epistemic feasibility [8] of agent plans, 
i.e., whether agents have enough knowledge to successfully execute their processes. 

Other approaches could be used as well, for instance, simulation or model check-
ing. However, tools based on these techniques work with much less expressive lan-
guages than CASL. Therefore, CASL specifications must be simplified before these 
methods can be used on them. For example, most simulation tools cannot handle 
mental state specifications; these would then have to be operationalized before simu-
lation is performed. The ConGolog interpreter can be used to directly execute such 
simplified specifications, as in [19]. Model checking methods (e.g. [5]) are restricted 
to finite state specifications, and work has only begun on applying these methods to 
theories involving mental states (e.g., [18]).  

If expected properties of the system are not entailed by the CASL model, it means 
that the model is incorrect and needs to be fixed. The source of an error found during 
verification can usually be traced to a portion of the CASL code and to a part of the 
corresponding iASR model since our systematic mapping supports traceability. 

3.5   Discussion and Future Work 

In the approach presented in this paper and in [7], we produce CASL specifica-
tions from i* models for formal analysis and verification. The approach is related to 
the Tropos framework in that it is agent-oriented and is rooted in the RE concepts. 
Our method is not the first attempt to provide formal semantics for i* models. For 
example, Formal Tropos (FT) [5], supports formal verification of i* models through 
model checking. Also, in the i*-ConGolog approach [19], on which our method is 
based, SR models are associated with formal ConGolog programs for simulation and 
verification. Additionally, the Trust-Confidence-Distrust approach [6] combined i* 
and ConGolog to model and analyze trust in social networks. The problem with all 
these methods is that goals of the agents are abstracted out and made into objective 
properties of the system in the formal specifications. This is done due to the fact that 
the formal components of these approaches (the model checker input language for FT 
and ConGolog for the other) do not support reasoning about agent goals (and knowl-
edge). However, most of the interactions among agents involve knowledge exchange 



and goal delegation since multiagent systems are developed as social structures. Thus, 
complementing informal modeling techniques such as i* with formal analysis of 
agent goals and knowledge is very important in the design of multiagent systems.  

We use a version of CASL where the precondition for the inform action requires 
that the information being sent by an agent be known to it (we assume that what is 
known must be true). This prevents agents from transmitting false information. The 
removal of this restriction allows the modeling of systems where agents are not al-
ways truthful. This can be useful when dealing with security and privacy require-
ments. However, dealing with false information may require belief revision, which 
complicates the model somewhat (see [16]). Similarly, the precondition for request 
makes sure that the sender does not itself have goals that conflict with the request. 
Relaxing this constraint also allows for the possibility of modeling malicious agents.  

Other extensions to CASL to accommodate various characteristics of application 
domains are possible. For example, in many domains one needs to specify whom an 
agent trusts and to whom it is helpful. In [7] we proposed a simple way to handle trust 
and helpfulness in CASL. Fine-grained modeling of trust and helpfulness among 
agents in our approach is future work.  

We also point out that CASL assumes that all agents are aware of all actions being 
executed in the system. Often, it is useful to lift this restriction, but dealing with the 
resulting lack of knowledge about agents’ mental states can be challenging. In future 
work, we plan to address these issues. We would also like to accommodate reasoning 
about softgoals in our framework as well as to test the method on more realistic case 
studies. Additionally, we are developing a toolkit to support requirements engineering 
using our approach. 

While the procedural component of a CASL specification accurately reflects the 
corresponding iASR model, the model only hints on what has to be in the declarative 
component of the specification (e.g., the axioms for actions, the definitions of annota-
tion conditions, etc.) We expect that our RE toolkit will be able to significantly sim-
plify the specification of the declarative component of CASL models. 

4   Conclusion 

In this paper, we have proposed a framework for agent-oriented requirements en-
gineering incorporating both graphical and formal notations. The graphical notation 
allows for comprehensive modeling of system requirements as well as of its organiza-
tional setting including stakeholder goals and goal delegation. These models are then 
gradually made more precise so that they can be mapped into formal agent specifica-
tions where goals are not removed, but are modeled formally and can be updated 
following requests. This allows agents to reason about their objectives. Information 
exchanges among agents are also formalized as changes in their knowledge state. In 
our approach, goals and knowledge are not system-wide properties, but belong to 
concrete agents. This supports the modeling of conflicting goals, agent negotiation, 
information exchange, complex agent interaction protocols, etc. The generated formal 
model can be used both as a requirements analysis tool and as a formal high-level 
specification for the multiagent system. 
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