A Model of Rational Agency for Communicating
Agents

Shakil M. Khan and Yves Lespérance

Dept. of Computer Science, York University, Toronto, ON, Canada M3J 1P3
{skhan, lesperan}Qcs.yorku.ca

Abstract. The Cognitive Agent Specification Language (CASL) is a
framework for specifying and verifying complex communicating multia-
gent systems. In this paper, we extend CASL to incorporate a formal
model of means-end reasoning suitable for a multiagent context. In par-
ticular, we define a simple model of cooperative ability, give a definition
of rational plans, and show how an agent’s intentions play a role in de-
termining her next actions. This bridges the gap between intentions to
achieve a goal and intentions to act. We also define a notion of subjec-
tive plan execution and show that in the absence of interference, an agent
that is able to achieve a goal, intends to do so, and is acting rationally
and subjectively executing plans, will eventually achieve it.

1 Introduction

Most agent theories [1, 19] suffer from a similar problem: they axiomatize the
relation between the different mental attitudes of the agents and the physical
states of the world; but they do not account for how the agents will achieve
their goals, how they plan and commit to plans. Ideally, an agent’s intention
to achieve a state of affairs in a situation should drive the agent to intend to
execute a plan that she thinks is rational in that situation. In other words, an
agent’s future directed intentions should lead her to adopt rational plans and
eventually achieve her intentions.

Another recent thread in agent theory introduces a procedural component
to the framework in an attempt to close the gap between agents’ intentions to
achieve a state of affairs and their intentional actions, as well as to support the
modeling of complex multiagent systems. One example of this is the Cognitive
Agent Specification Language (CASL) [26], which is a framework for specify-
ing and verifying complex communicating multiagent systems. However, it is
somewhat restricted in the sense that it requires the modeler to specify agent
behavior explicitly, and the program that controls the agent’s actions need not
be consistent with the agent’s intentions, or do anything to achieve them.

In this paper, we propose a solution to this problem by extending CASL.
In particular, we define rational plans and ability in a multiagent context, and
use these notions to link future and present directed intentions. We introduce a
special action, the commit action, that makes the agent commit to a plan, and
define a meta-controller BehaveRationallyUntil that has the agent act rationally

to achieve a specific goal by choosing and committing to a rational plan, and
carrying it out. We also define a notion of subjective execution of plans where
the agent must have the required knowledge to execute the plan. Then we show
that given that an agent has an intention, she will act to achieve it provided
that she is able to do so.

The paper is organized as follows: in the next section, we outline previous
work on CASL. In Section 3, we develop a simple formalization of cooperative
ability for agents working in a multiagent setting. In Section 4, we define rational
plans, relate future and present directed intentions, and discuss what it means
for an agent to be behaving rationally and executing plans subjectively. We also
state a theorem that links an agent’s intentions and abilities to the eventual
achievement of her intentions.

2 CASL

In CASL [26], agents are viewed as entities with mental states, i.e., knowledge
and goals, and the specifier can define the behavior of the agents in terms of these
mental states. CASL combines a declarative action theory defined in the situa-
tion calculus with a rich programming/process language, ConGolog [4]. Domain
dynamics and agents’ mental states are specified declaratively in the theory,
while system behavior is specified procedurally in ConGolog.

In CASL, a dynamic domain is represented using an action theory [21] for-
mulated in the situation calculus [16], a second order language for representing
dynamically changing worlds in which all changes are the result of named ac-
tions. CASL uses a theory that includes the following set of axioms:

— domain-independent foundational axioms describing the structure of situa-
tions [9],

— action precondition axioms, one per action,

— successor state axioms (SSA), one per fluent, that encode both effect and
frame axioms and specify exactly when the fluent changes [20],

— initial state axioms describing what is true initially including the mental
states of the agents,

— axioms identifying the agent of each action, and,

— unique name axioms for actions.

Within CASL, the behavior of agents is specified using the notation of the
logic programming language ConGolog [4], the concurrent version of Golog [14].
A typical ConGolog program is composed of a sequence of procedure declara-
tions, followed by a complex action. Complex actions can be composed using
constructs that include the ones given in Table 1.! These constructs are mostly
self-explanatory. Intuitively, 7z.0 nondeterministically picks a binding for the

1 Since we have predicates that take programs as arguments, we need to encode pro-
grams as first-order terms as in [4]. For notational simplicity, we suppress this en-
coding and use formulae as terms directly. Also, here ¢ is used to denote a formula
whose fluents may contain a placeholder now instead of a situation argument. The

Table 1. Examples of ConGolog Constructs

a, primitive action
P7, wait for a condition
(61;02), sequence
(61 | 02), nondeterministic choice
Tx.0, nondet. choice of argument
If ¢ Then 61 Else d2 EndlIf, conditional
While ¢ Do ¢ EndWhile, while loop
B(P), procedure call.

variable z and performs the program ¢§ for this binding of x. ConGolog also
supports nondeterministic iteration, concurrent execution with and without pri-
orities, and interrupts. To deal with multiagent processes, primitive actions in
CASL take the agent of the action as argument.

The semantics of the ConGolog process description language is defined in
terms of transitions, in the style of structural operational semantics [18]. Two
special predicates Final and Trans are introduced, and are characterized by
defining axioms for each of the above constructs, where Final(d, s) means that
program ¢ may legally terminate in situation s, and where Trans(d,s,d’,s’)
means that program ¢ in situation s may legally execute one step, ending in
situation s’ with program ¢’ remaining. The overall semantics of a ConGolog
program is specified by the Do relation:

Do(6,s,8") =38 - (Trans*(,s,8',8") A Final(d',s")).

Do(d,s,s") holds if and only if s’ can be reached by performing a sequence of
transitions starting with program ¢ in s, and the remaining program 4’ may
legally terminate in s’. Here, Trans* is the reflexive transitive closure of the
transition relation Trans.

CASL allows the specifier to model the agents in terms of their mental states
by including operators to specify agents’ information (i.e., their knowledge),
and motivation (i.e., their goals or intentions). Following [17, 24], CASL models
knowledge using a possible worlds account adapted to the situation calculus.
K(agt, s', s) is used to denote that in situation s, agt thinks that she could be in
situation s'. ' is called a K-alternative situation for agt in s. Using K, the knowl-
edge or belief of an agent, Know(agt, ¢, s), is defined as Vs' (K (agt, s', s) D ¢(s')).
Two useful abbreviations are also defined: KWhether (agt, ¢, s) = Know(agt, ¢, s)
V Know(agt, =@, s), i.e., agt knows whether ¢ holds in s, and KRef(agt, 0, s) =
Jt.Know(agt,t = 0, s), i.e., agt knows who/what € is. In CASL, K is constrained
to be reflexive, transitive and euclidean in the initial situation to capture the

placeholder gets replaced by a situation by an outer construct. ¢(s) is the formula
that results from replacing now with s. Where the intended meaning is clear, we
suppress the placeholder.

fact that agents’ knowledge is true, and that agents have positive and negative
introspection. As shown in [24], these constraints then continue to hold after any
sequence of actions since they are preserved by the successor state axiom for K.

Scherl and Levesque [24] showed how to capture the changes in beliefs of
agents that result from actions in the successor state axiom for K. These include
knowledge-producing actions that can be either binary sensing actions or non-
binary sensing actions. Following [13], the information provided by a binary
sensing action is specified using the predicate SF(a, s), which holds if the action
a returns the binary sensing result 1 in situation s. Similarly for non-binary
sensing actions, the term sf f(a, s) is used to denote the sensing value returned
by the action.

Lespérance [12] extends the SSA of K in [24] to support two variants of
the inform communicative action, namely inform Whether and informRef. Here,
inform(inf, agt, §), informW hether(inf, agt,v), and informRef (inf, agt, 0)
mean that inf informs agt that ¢ currently holds, inf informs agt about the
current truth value of ¢, and inf informs agt of who/what 6 is, respectively. The
preconditions of these three actions are as follows:?

Poss(inform(inf,agt, ¢),s) =
Know(inf, ¢, s) A =“Know(inf, KWhether(agt, ¢, now), s),
Poss(informW hether(inf, agt,), s) =
KWhether(inf, 1, s) A =Know(in f, KWhether(agt, 1, now), s),
Poss(informRef(inf,agt,0),s) =
KRef(inf, 0, s) A =Know(inf, KRef(agt, 8, now), s).
In other words, the agent inf can inform agt that ¢, iff inf knows that ¢ currently

holds, and does not believe that agt currently knows the truth value of ¢, and
similarly for inform Whether and informRef. The SSA for K is defined as follows:

K(agt, s*,do(a,s)) = 3s". [K(agt,s',s) A s* = do(a,s") \ Poss(a,s") A
((BinarySensingAction(a) A Agent(a) = agt) D (SF(a,s") = SF(a,s))) A
((NonBinarySensingAction(a) A Agent(a) = agt) D

(sff(a,s") = sff(a,s))) A
Vinf,¢. (a = inform(inf,agt,¢) D ¢(s")) A
Vinf, . (a = informW hether(inf, agt, 1) D (¥(s') = ¥(s))) A
Vinf,0. (a = informRef(inf,agt,0) D (6(s') = 0(s)))].
This says that after an action happens, every agent learns that it has happened.
Moreover, if the action is a sensing action, the agent performing it acquires

knowledge of the associated proposition or term. Furthermore, if the action in-
volves someone informing agt that ¢ holds, then agt knows this afterwards, and

2 We modified the preconditions given in CASL by adding the second clause on the
right side. Also, the SSA for K presented below is a bit different from that of CASL,
and similar to the one given by Lespérance [12].

similarly for inform Whether and informRef. Note that since all agents are aware
of all actions, with inform(inf, agt, $), every agent learns that ¢ is true. How-
ever, with informW hether(inf,agt,) and informRef(inf, agt,), only the
addressee learns the truth value/value of 1/6. So with the latter, there is some
private communication. Also note that this axiom only handles knowledge ex-
pansion, not revision.

CASL extends the framework described in [10] to incorporate goal expansion
and a limited form of goal contraction. Goals or intentions are modeled using
an accessibility relation W over possible worlds (situations, in this case). The
W -accessible worlds for an agent are the ones where she thinks that all her goals
are satisfied. W-accessible worlds may include worlds that the agent thinks are
impossible, unlike Cohen and Levesque’s [1] G-accessible worlds. But intentions
are defined in terms of the more primitive W and K relations so that the inten-
tion accessible situations are W-accessible situations that are also compatible
with what the agent knows, in the sense that there is a K-accessible situation in
their history. This guarantees that agents’ intentions are realistic, that is, agents
can only intend things that they believe are possible. Thus we have:

Int(agt, 1, s) =
Vnow, then.[W (agt, then, s) A K (agt, now, s) A now < then] D ¥ (now, then).

This means that the intentions of an agent in s are those formulas that are true
for all intervals between situations now and then where the situations then are
W -accessible from s and have a K-accessible situation in their history, namely
now. Intentions are future oriented, and any goal formula will be evaluated with
respect to a finite path defined by a pair of situations, a begining situation now
and an ending situation then. This formalization of goals can deal with both
achievement goals and maintenance goals. An achievement goal v is said to be
eventually satisfied if) holds in some situation s’ over the interval between now
and then.® Eventually (1, now, then) is defined as 3s.(now < s’ < then A(s')).
n [25], Shapiro showed that positive and negative introspection of intentions
can be modeled by placing some constraints on K and W. To make sure that
agents’ wishes and intentions are consistent, W is also constrained to be serial.

The SSA for W which handles intention change in CASL, has the same struc-
ture as a SSA for a domain dependant fluent. In the following, W (agt, a, s', s)
(W~ (agt,a, s, s), respectively) denotes the conditions under which s’ is added
to (dropped from, respectively) W as a result of the action a:

W(agt, s',do(a, s)) = [W*(agt, a,s',s) vV (W(agt, s, s) A=W~ (agt,a,s', 5))].

An agent’s intentions are expanded when it is requested something by another
agent. After the request(req,agt,\) action, agt adopts the goal that 1, unless she
has a conflicting goal or is not willing to serve req for . Therefore, this action

3 Once again, now and then are not actual situations, but placeholders for situations
that are bound in the definition.

should cause agt to drop any paths in W where 1 does not hold. This is handled
in W=
W~ (agt,a, s, s) = IncompRequest(agt,a, s, s),
IncompRequest(agt,a,s’,s) = [Ireq, . a = request(req, agt,)
A Serves(agt, req,v¥) A —Int(agt, b, s)
A Jnow. K (agt, now, s) Anow < s’ A —p(do(a, now), s')].

Here, the request action is considered a primitive action. The preconditions of
request are:
Poss(request(req, agt, ¢), s) = Int(req, ¢, s).

A limited form of intention contraction is also handled in CASL. Suppose that
the agent req requests agt that ¢) and later decides it no longer wants this. The
requester req can perform the action cancelRequest(req,agt,ip). This action causes
agt to drop the goal that 1. cancelRequest actions are handled by determining
what the W relation would have been if the corresponding request action had
never happened. This type of goal contraction is handled in W, which can be
defined as follows:

W (agt,a,s',s) = 3s1. W(agt,s',s1) AJay. do(a1, s1) < s A Cancels(a, ar)
A (Va*,s*. do(ay,s1) < do(a*,s*) < s D -W~ (agt,a*,s',s")).

Suppose a cancelRequest action occurs in situation s. The W relation is first
restored to the way it was before the corresponding request action occured, i.e.,
in s1. Then starting just after the request, all the actions a* that occured in the
history of s (say in situation s*) are considered, and any situation s’ in W that
satisfies W~ (agt, a*, s', s*) is removed from W. Cancels(a, a1) can be defined
as follows:

Cancels(a,a’) =

[Freq, . a’ = request(req, agt,) A a = cancel Request(req, agt,)].

A cancelRequest action can only be executed if a corresponding request action
has occured in the past:

Poss(cancel Request(req, agt, ¢), s) = 3s’. do(request(req, agt, ¢),s’) < s.

3 Simple Cooperative Ability

An agent cannot be expected to eventually achieve an intention just because she
has that intention, and she is acting rationally. We also need to make sure that
the agent is capable of achieving the goal in the current situation [11]. In a single
agent domain, an agent’s ability can roughly be defined as her knowledge of a
plan that is physically and epistimically executable and whose execution achieves
the goal. However, modeling multiagent ability is a more complex problem, since

in this case we need to consider the agents’ knowledge about each other’s knowl-
edge and intentions as well as how they choose actions, behave rationally, etc.
In this section, we develop a simple model of cooperative ability of agents suit-
able for a limited multiagent context in the absence of exogenous actions, i.e.,
actions whose performance is not intended by the planning agent. In an open
multiagent framework, agents’ actions may interfere with each other, possibly
perturbing their plans. In some cases, there are multiple strategies to achieve
a common goal, and the agents may fail unless they coordinate their choice of
strategy by reasoning about each other’s knowledge, ability, and rational choice.
Moreover, agents may have conflicting goals or intentions. To simplify, we restrict
our framework by only allowing plans where the actions that the other agents
must do are fully specified, i.e., action delegation is possible, but (sub)goal del-
egation is not. The primary agent, who is doing the planning, is constrained to
know the whole plan in advance. Thus, the primary agent is allowed to get help
from others, but she can only ask other agents to perform specific actions. As
a consequence, we do not need to model the fact that the other agents behave
rationally.

When dealing with ability, it is not enough to say that the agent is able to
achieve a goal iff she has a physically executable plan, and any execution of this
plan starting in the current situation achieves the goal. We should also take into
account the epistemic and intentional feasibility of the plan. This is necessary
as physical executability does not guarantee that the executor will not get stuck
in a situation where it knows that some transition can be performed, but does
not know which. For example, consider the plan (a;If ¢ Then b Else ¢ EndlIf) |
d, where actions a, b, ¢ and d are always possible, but where the agent does
not know whether ¢ holds after a. If the agent follows the branch where the
first action is a, she will get stuck due to incomplete knowledge. Hence, the
result of deliberation should be a kind of plan where the executor will know
what to do next at every step, a plan that does not itself require deliberation
to interpret. To deal with this, De Giacomo et al. [3] defined the notion of
Epistemically Feasible Deterministic Programs (EFDPs) for single agent plans
and characterized deliberation in terms of it. Note that EFDPs are deterministic,
since they are the result of deliberation and their execution should not require
making further choices or deliberation.

Since we are dealing with cooperative multiagent ability, we also need to make
sure that the cooperating agents intend to perform the requested actions when it
is their turn to act. In our framework, we extend the notion of EFDP to handle
simple multiagent plans. A program is called an Epistemically and Intentionally
Feasible Deterministic Program (EIFDP) in situation s for agent agt, if at each
step of the program starting at s, agt always has enough infomation to execute
the next action in the program, or knows that the executor of the next action is
another agent, and that this agent has enough information to execute this action
and intends to do it. Put formally:

EIFDP(agt,d,s) =V¢§,s'. Trans*(8,s,8',s') D LEIFDP(agt, ¥, s'),
LEIFDP(agt,d,s) = Know(agt, Final(§, now), s) V

3¢0’. Know(agt, UTrans(d, now, 8, now), s) V
30’, a. Know(agt, Agent(a) = agt A UTrans(d, now,d’, do(a, now)), s) V
36, agt’. Know(agt, Ja. UTrans(5, now,d’, do(a, now))

A Agent(a) = agt’ # agt

AlInt(agt’,3s’. 8" < then A Do(a,now, s"), now), s).

Thus to be an EIFDP, a program must be such that all configurations reach-
able from the initial program and situation, involve a Locally Epistimically and
Intentionally Feasible Deterministic Program (LEIFDP). A program is called
LEIFDP in a situation with respect to an agent, if the agent believes that the
program is currently in its Final configuration, or believes that she is the agent
of the next action and knows what unique transition (with or without an ac-
tion) it can perform next, or believes that someone else agt’ is the agent of the
next action, that agt’ knows what the action is and intends to do it next, and
knows what unique transition the program can perform next with this action.
Here, UTrans(d,s,d’,s) means that the program ¢ in s can perform a unique
transition, which takes the agent to s’ with the remaining program ¢'.
Using EIFDP, the ability of an agent can be defined as follows:*

Can(agt, ¥ (now, then), s) = 36. Know(agt, EIF DP(agt, §, now)
A 3s'. Do(8, now, s") AVs'. (Do(8, now, s") D (now, s")), s).

Thus, an agent can achieve a goal in situation s, iff she knows of a plan ¢ that
is an EIFDP, is executable starting at s, and any possible execution of the plan
starting in the current situation brings about the goal.

We use the following as our running example (adapted from [17]) throughout
the paper. Consider a world in which there is a safe with a combination lock. If
the safe is locked and the correct combination is dialed, then the safe becomes
unlocked. However, dialing the incorrect combination will cause the safe to ex-
plode. The agent can only dial a combination if the safe is intact, and it is not
possible to change the combination of the safe. Initially, the agent Agt; has the
intention to open the safe, but does not know the combination. However, she
knows that Agts knows it. She also knows that Agt, is willing to serve her, and
that Agts does not have the intention of not informing her of the combination
of the safe. Here are some of the axioms that we use to model this domain:

sf1) Poss(a, s) D [Exploded(do(a, s)) =
de, agt. (a = dial(agt, c) A Comb(s) # ¢) V Exploded(s)].
sf2) Poss(dial(agt,c),s) = —FExploded(s).
sf3) Agent(dial(agt,c)) = agt.
sfa) ~Exploded(Sy).
sfs) W(Agt1, s, So) = —Locked(s).
4 Note that this definition of Can handles non-achievement goals, as there are two

situation placeholdes in 9, i.e., now and then. However, an achievement goal 1 (now)
can be placed inside an Eventually block to provide both now and then.

The first axiom, a successor state axiom, states that the safe has exploded after
doing action a iff a denotes the action of dialing the wrong combination, or if
the safe has already exploded. The second axiom, a precondition axiom, states
that it is possible to dial a combination for the safe in situation s iff the safe
is intact in s. The third axiom is an agent axiom and defines the agent of the
dial action. The last two axioms are initial situation axioms, and state that the
safe is initially intact, and that Agt; initially only intends to open the safe,
respectively. From now on, we will use Dyqf. to denote the set of axioms that
we use to model this safe domain (see [8] for the complete axiomatization).
Now, consider the follwing plan:®

Osafe = requestAct(Agty, Agte, informRef(Agta, Agti, Comb(s)));
informRef(Agta, Agt1, Comb(s)); dial(Agt1, Comb(s)).

So, the plan is that Agt; will request Agto to inform her of the combination of
the safe, Agty will inform Agt; of the combination of the safe, and finally, Agt;
will dial the combination to open the safe. We claim that o, f. is an EIFDP in
the initial situation for Agt;, and that Agt; is able to achieve her intention of
opening the safe in the initial situation:

Theorem 1.

a. Dso5e E EIFDP(Agty, 0safes So)-
b. Dsoge = Can(Agti, ~Locked(now), Sp).

(a) holds as all configurations reached by os,se starting in Sy are LEIFDP. (b)
holds as Agt1 knows of a plan (i.e., 0sqfe), which she knows is an EIFDP and
is executable, and knows that any execution of this plan ends up in a situation
where the safe is unlocked.

4 From Intentions That to Intentions to Act

In this section, we define rational plans and extend CASL to model the role of
intention and rationality in determining an agent’s actions. This bridges the gap
between future directed intentions and present directed ones. We also discuss a
notion of subjective plan execution and present a theorem that relates intention
and ability to the eventual achievement of intended goals.

Before going further, let us discuss the communication actions that we will
use in our framework. Like in CASL, we use three primitive informative com-
munication actions, namely, inform, informWhether, and informRef. However,
unlike in CASL, we provide two intention transfer communication actions, re-
quest and requestAct, and these are defined in terms of inform.5 The request

5 requestAct is an abbreviation introduced in the next section; it denotes a special kind
of request, namely, the request to perform an action.

6 A similar account of request was presented by Herzig and Longin [5], where it is de-
fined as inform about intentions, and the requested goals are adopted via cooperation
principles.

action can be used by an agent to request another agent to achieve some state
of affairs, whereas requestAct involves an agent’s request to another agent to
perform some particular complex action starting in the next situation. Formally,

request(req, agt, @) = inform(req, agt, Int(req, ¢, now)).
requestAct(req, agt,§) = request(req, agt,3s’, a. Do(6, do(a, now), s")
Anow < s < then A Agent(8) = agt).

Here Agent(§)=agt means that the agent of all actions in § is agt. In our specifi-
cation, we only allow sincere requests. That is, an agent can perform a request
if the request is not contradictory to her current intentions. So defining requests
as informing of intentions is reasonable. However, since requests are modeled in
terms of inform, and since we are using true belief, the usual preconditions of
the inform action are relaxed:

Poss(inform(inf,agt, ¢),s) =
Know(inf, ¢, s) A ~Know(inf, KWhether(agt, ¢’, now), s),

where, ¢’ is ¢ with all Int(inf, ¢”, now) are replaced by —Int(inf, ~¢", now).
This axiom says that the agent inf can inform agt that ¢, iff inf knows that ¢’
currently holds, and does not believe that agt currently knows the truth value of
@', where ¢’ is defined as above. Note that, if we use ¢ instead of ¢ in the above
axiom, the account would be overly strict. For instance, in the safe domain, o, ¢
is a rational plan for Agt; in the initial situation. However, initially, Agt; does
not have the intention that Agts informs her the combination of the safe. So if
we use ¢ instead of ¢’ in the axiom, we can not show that o4, is rational, since
it requires Agt; to know that she has the intention before she can inform about
it. So we relax the requirements so that the agent only needs to know that she
does not have the opposite intention.

To facilitate the cancellation of requests, we also provide two actions, namely,
cancelRequest, and cancelReqAct. Unlike CASL where cancelRequest is primitive,
we define it using inform. These two actions are defined as follows:

cancel Request(req, agt, V) = inform(req, agt, —Int(regq, ¥, now)),
cancel ReqAct(req, agt, §) =
cancel Request(req, agt, 3s*, s*, prev. prev = do(request Act(req, agt,d), sT)
A sT < mnow < s* < then A Do(6, prev, s*) A Agent(§) = agt).
Now let us look at what plans are rational for an agent. To keep the theory

simple, we only consider conditional plans. An agent that is acting rationally,
should prefer some plans to others. To this end, we define an ordering on plans.

= (agt, d1,02,5) =Vs'. K(agt,s',s) A3s". Do(d2,5',8") AW (agt,s", s)
D [3s”. Do(61,5",8") AW (agt,s", s)].

That is, a plan d; is as good as another plan d2 in situation s for an agent agt iff for
all W-accessible situations that can be reached by following > from a situation

that is K-accessible from s (say s’), there exists a W-accessible situation that
can be reached from s’ by following 4. In other words, d; is at least as good as
0o if it achieves the agent’s goals in all the possible situations where d5 does.

Using EIFDP and the > relation, we next define rational plans. A plan ¢ is
said to be rational in situation s for an agent agt if the following holds:

Rational(agt, d,s) =V§'. = (agt,d',d,s) D= (agt,d,d,s)
AN EIFDP(agt,d,s)
AVS". (SubPlan(8",8) A 8" # & D —Rational(agt, ", s)).

Thus, a rational plan in a situation s, is a plan that is as good as any other plan
in s, is an EIFDP in s, and is minimal, i.e., no sub-plan of the plan is rational.
The latter guarantees that no unnecessary actions are included in the plan (see
[8] for the definition of SubPlan).

For example, consider the plan o044 .. We claim that o4,y is as good as any
other plan available to Agt; in the initial situation, and that o, s, is rational in
the initial situation.

Theorem 2.

a. Dsafe |=Vo. = (Agti, 0safe, 0, S0).
b. Dsofe = Rational (Agti, osafe, So)-

Since this plan achieves Agt,’s intention of opening the safe starting in any
situation that is K-accessible to Sy, (a) holds. (b) follows from the fact that
Osafe 1S as good as any other plan in S, is an EIFDP in Sy, and no subplan of
Osafe is Tational in Sp.

In most cases, there are many rational plans (i.e., ways of achieving as many
goals as possible). The decision of which plan the agent commits to is made
based on pragmatic/non-logical grounds. We do not model this here. Instead,
we introduce a commit(agt,d) action that will model the agent’s commiting to
a particular plan J, more specifically, commiting to executing ¢ next. The action
precondition axiom for the commit action is as follows:

Poss(commit(agt,d), s) = —Int(agt, 73s*. s < s* < then A Do(d, now, s*), s).

That is, the agent agt can commit to a plan 0 is situation s, iff the agent currently
does not have the intention that the actions in the plan do not happen next.

Next, we extend the SSA for W to handle intention revision as a result of
the agent’s commitment to a rational plan, and also as a result of other agents’
requestAct and cancelReqAct actions. This axiom has a similar structure to that
of CASL; however, we modify W~ as follows:

W~ (agt,a,s', s) = IncompRequest(agt,a,s’,s) V IncompCommit(agt,a,s’,s).

Here, IncompCommit handles the expansion of the agent’s intentions that occur
when a commit action occurs. We define IncompCommit as follows:

IncompCommit(agt,a,s’,s) = [36. a = commit(agt,d) A Rational(agt,§, s)
A3Ts*. " < ' A K(agt,s*, s)
A —3s**. (8% < 8™ < §' A Do(6,do(a, s*),s™))].

So, after the performance of a commit action in s, a W-accessible situation s’
in s will be dropped from agt’s new set of W-accessible situations if the plan to
which agt is commiting is rational, and the committed action does not happen
between the interval defined by the pair of situations, a K-accessible situation
accessible from the current situation, and the W-accessible situation s’.

The definition of W remains unchanged. Note that if exogenous actions
are allowed, agents need to revise their commitments when an exogenous action
occurs by uncommiting from the currently committed plan, and committing to
a new rational plan. We return to this issue in Section 5.

We now show that our formalization of intentions has some desirable prop-
erties:

Theorem 3.

a. = —Int(agt, =, s) A Serves(agt,req,) D

Int(agt, ¢, do(request(req, agt, @), s)).
b. E —Int(agt, =3s’. Do(d, now, s") Anow < s < then,s) D
Int(agt, 3s’. Do(d, now, s') Anow < s < then, do(commit(agt,?), s)).

(a) says that if an agent agt does not have the intention that not ¢ in s, then
she will have the intention that ¢ in the situation resulting from another agent
req’s request to agt that ¢ in s, provided that she is willing to serve req on ¢ .
(b) states that if an agent agt does not have the intention of not performing a
complex action § in s, then she will have the intention of performing it after she
commits to it.

Commit provides a way to link future directed intentions and present directed
ones. We next specify a generic meta-controller for an agent that arbitrarily
chooses a rational plan, commits to it, and executes it. Then we can prove
a theorem about the relationship between intention, ability, and the eventual
achievement of an intended goal. This theorem serves as a proof of soundness of
our agent theory.

The following meta-controller allows us to refer to the future histories of
actions that may occur for an agent who is behaving rationally until i) holds.
Rational behavior until ¢ can be defined as follows (we assume that there are
no exogenous actions):

BehaveRationallyUntil(agt, ¥ (now), s) =
7d. Rational(agt, §, now)?; commit(agt, §);
While - (now) Do

If Ja. Int(agt, do(a, now) < then,now) A Agent(a) = agt) Then
[ra. (Int(agt, do(a, now) < then,now) A Agent(a) = agt)?; a
Else
[Ja. [Int(agt, do(a, now) < then,now) A Agent(a) # agt = agt']?;
(ma’. Int(agt’, do(a’, now) < then,now)?;a’))
EndIf
EndWhile.

That is, rational behavior until ¢ can be defined as arbritarily choosing a rational
plan, committing to it, and then executing it as long as 1 does not hold. A
rational plan can have actions by the planning agent as well as actions by other
agents. When it is the planning agent’s turn to act, she should perform the action
she intends to perform next; otherwise, she should wait for the other agent to
act. Note that, when it is the other agent’s turn, it will always perform the action
that it is supposed to perform because rational plans are EIFDP. Also note that
we only deal with achievement goals here.

One problem with CASL is that the execution of plans is viewed from the sys-
tem’s perspective rather than from the agent’s perspective. So, although CASL
includes operators that model agents’ knowledge and goals, the system behavior
is simply specified as a set of concurrent processes. These processes may refere
to the agents’ mental states, but they don’t have to. To deal with this problem,
Lespérance [12] proposed an account of subjective plan execution in CASL that
ensures that the plan can be executed by the agent based on its knowledge state.
Here we extend this to deal with multiagent plans and to consider other agents’
intentions. We define the subjective execution construct Subj(agt, d) as follows:

Trans(Subj(agt, §), s,7,s") = 35 (v = Subj(agt,d’) A
[Know(agt, Trans(d, now,d’,now),s) As =s" Vv
Ja. (Know(agt, Trans(d, now, ', do(a, now)) A Agent(a) = agt, s)
A s =do(a,s))V
Jagt’. (Know(agt, Ja. Trans(d, now,d’, do(a, now)) A Agent(a) = agt’
AInt(agt’,Is*. s* < then A Do(a, now, s*), now), s)
A s =do(a,s))]),
Final(Subj(agt, d), s) = Know(agt, Final(§, now), s).

This means that when a program is executed subjectively by an agent agt, the
system can make a transition only if agt knows that it can make this transition,
and if the transition involves a primitive action by another agent, then the
transition is possible provided that agt also knows that the other agent will
intend to perform the action. A subjective execution may legally terminate only

if the agent knows that it may. Next, we present our “success theorem”:”

" The construct AllDo is a strict version of Do that requires that all possible executions
of a program terminate successfully.

Theorem 4 (From Commitment and Ability to Eventuality).

E [OInt(agt, Eventually(y, now, then), s)
A Can(agt, Eventually(y, now, then), s)
A Int(agt, Eventually(, now, then), s)] D
AllDo(Subj(agt, Behave RationallyUntil(agt, 1, s)), s).

Intuitively, if in some situation, an agent intends to achieve some goal and is
able to achieve it, then the agent will eventually achieve the goal in all rational
future histories subjectively executed from that situation. Olnt(agt, 1, s) means
that ¢ is all the intentions that agt has in s. This construct is useful as we have
to assume that the agent is able to achieve all her intentions. If this is not the
case, the BehaveRationallyUntil operator does not guarantee that a specific goal
(i.e., ¥) will be achieved. If there are exogenous actions, then a more generic
meta-controller can be defined. We discuss this in the next section.
We also have the following corrolary for the safe domain:

Theorem 5.
Dgote = AllDo(Subj(Agti1, BehaveRationallyUntil(Agti, ~Locked, So)), So).

We have shown in Theorem 1(b) that Agt; can achieve her intention of opening
the safe in the initial situation. Moreover, by sf5, the only intention of Agt; is
to open the safe. It follows from Theorem 4 that Agt; will eventually open the
safe if she behaves rationally starting in Sp.

5 Discussion and Future Work

In this paper, we presented a formal theory of agency that deals with simple
multiagent cooperation and shows how future directed intentions and present
directed ones can be related. An agent’s current rational plans depend on her
current intentions. The commit action models how the agent’s intentions can
be updated to include a commitment to a rational plan. Using this, we have
formulated a planning framework for multiple cooperating and communicating
agents in CASL. We specified how an agent’s future directed intentions will lead
the agent to adopt a rational plan and then carry it out using the meta-controller
BehaveRationally Until.

To relate agents’ intentions with their actions, Cohen and Levesque [1, 2]
required that the agents not procrastinate with respect to their intentions (AKA
the no infinite deferral assumption). However, this assumption is unintuitive
as it should follow from other axioms of the theory, rather than be imposed
separatly. A similar account was presented by Rao and Georgeff [19]. A more
intuitive account was presented in [28], where Singh showed that rather than
having it as an assumption, the no infinite deferral principle can be derived
from the theory. However, he does not explicitly address the interaction between
knowledge and actions and its relationship with ability. Another account was

presented by Sadek [22], where he incorporated a backward chaining planning
mechanism in his framework. However, his account is limited in the sense that
it uses hardcoded perlocutionary or rational effects of actions rather than actual
effects. Although independently motivated, our account closely resembles the one
in [15], where a similar notion of commitment to actions was introduced to relate
intentions and actions. However, that framework does not model rationality and
provide a success theorem. There has also been related works that extend agent
programming languages to support declarative goals [7, 23].

The theory presented here is a part of our ongoing research on the semantics
of speech acts and communication in the situation calculus. In [8], we present an
extended version of our framework where we allow exogenous actions. To deal
with these unintended actions, an agent needs to revise the plan it is committed
to whenever an exogenous action occurs. In other words, she needs to un-commit
from the previously committed plan, consider the new set of rational plans, and
commit to one of them. We handle the un-commiting part in the SSA for W.
The agents’ commitment to a new rational plan is handled using a more general
meta-controller. This controller iterates the BehaveRationallyUntil program as
long as the goal remains un-achieved and there is a plan that is rational in the
current situation. In [8], we also define a notion of conditional commitment, and
model some simple communication protocols using it.

Our current agent theory is overly simplistic in many ways. One strict con-
straint that we have is that we do not allow cooperating agents to choose how
they will achieve the goals delegated to them by assuming that the planning
agent knows the whole plan in advance. Only one agent is assumed to do plan-
ning. In future work, we will try to relax this restriction and to model some
interaction protocols that involve multiple planning agents.

References

1. Cohen, P., Levesque, H.: Intention is Choice with Commitment. In: Artificial Intel-
ligence, 42:(2-3), (1990) 213-361

2. Cohen, P., Levesque, H.: Rational Interaction as the Basis for Communication. In:
Cohen P., Morgan, J., Pollack, M. (eds.): Intentions in Communication. Cambridge,
MA, MIT Press (1990) 221-255

3. De Giacomo, G., Lespérance, Y., Levesque, H., Sardina, S.: On the Semantics of De-
liberation in IndiGolog — from Theory to Implementation. In: Fensel, D., Giunchiglia,
F., McGuiness, D., Williams, M. (Eds.): Principles of Knowledge Representation and
Reasoning KR 02 (2002) 603614

4. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Program-
ming Language Based on the Situation Calculus. Artificial Intelligence, 121 (2000)

5. Herzig, A., Longin, D.: A Logic of Intention with Cooperation Principles and with
Assertive Speech Acts as Communication Primitives. In: Proc. of AAMAS 02 (2002)

6. Hoare, C.: Communicating Sequential Processes. Prentice Hall Int. (1985)

7. van der Hoek, W., Hindriks, K., de Boer, F., Meyer, J.-J.Ch.: Agent Programming
with Declarative Goals. In: Castelfranchi, C., Lespérance, Y. (eds.): Intelligent Agents
VII, Proc. of ATAL 00, LNAI 1986 (2000)

8. Khan, S.: M.Sc Thesis. In preparation (2004)

9. Lakemeyer, G., Levesque, H.: AOL: A Logic of Acting, Sensing, Knowing, and Only-
Knowing. In: Proc. of KR 98 (1998) 316-327

10. Lespérance, Y., Levesque, H. J., Lin, F., Marcu, D., Reiter, R., Scherl, R.: Foun-
dations of a Logical Approach to Agent Programming. In: Wooldridge, M., Muller,
J., Tambe, M. (eds.): Intelligent Agents Vol. II - Proc. of ATAL 95 (1996) 331-346

11. Lespérance, Y., Levesque, H., Lin, F., Scherl, R.: Ability and Knowing How in the
Situation Calculus. Studia Logica 66(1) (2000) 165-186

12. Lespérance, Y.: On the Epistemic Feasibility of Plans in Multiagent Systems Spec-
ifications. In: Meyer, J.-J.Ch., Tambe M. (Eds.): Intelligent Agents VIII, Proc. of
ATAL 01, Seattle, WA, USA (2001)

13. Levesque, H.: What is planning in the presence of sensing? In: Proc. of the Thir-
teenth National Conference on Artificial Intelligence, Portland, OR (1996) 1139-1146

14. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic
Programming Language for Dynamic Domains. J. of Logic Programming, 31 (1997)

15. van Linder, B., van der Hoek, W., Meyer, J.-J. Ch.: Formalising Motivational
Attitudes of Agents : On Preferences, Goals, and Commitments. In: Wooldridge, M.,
Muller, J., Tambe, M. (eds.): Intelligent agents II LNAI 1037 (1996) 17-32

16. McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4 (1969) 463-502

17. Moore, R.: A Formal Theory of Knowledge and Action. In: Hobbs J., Moore, R.
(eds.): Formal Theories of the Commonsense World. Ablex (1985) 319-358

18. Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark (1981)

19. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-architecture. In:
Fikes, R., Sandewall, E. (eds.): Proc. of KR&R 91 (1991) 473-484

20. Reiter, R.: The Frame Problem in the Situation Calculus: A Simple Solution (Some-
times) and a Completeness Result for Goal Regression. In: Lifschitz, V. (ed.): Artifi-
cial Intelligence and Mathematical Theory of Computation: Papers in the Honor of
John McCarthy. San Diego, CA, Academic Press (1991)

21. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

22. Sadek, M.: Communication Theory = Rationality Principles + Communicative Act
Models. In: Proc. of AAAT 94 Workshop on Planning for Interagent Comm. (1994)
23. Sardina, S., Shapiro, S.: Rational Action in Agent Programs with Prioritized Goals.

In: Proc. of AAMAS 03 (2003) 417-424

24. Scherl, R., Levesque, H.: The Frame Problem and Knowledge-Producing Actions.
In: Proc. of the Eleventh National Conference on Artificial Intelligence. Washington,
DC, AAAI Press/The MIT Press (1993) 689-695

25. Shapiro, S.: PhD Thesis. In preparation (2004)

26. Shapiro, S., Lespérance, Y.: Modeling Multiagent Systems with the Cognitive
Agents Specification Language - A Feature Interaction Resolution Application. In:
Castelfranchi, C., Lespérance, Y. (eds.): Intelligent Agents Vol. VII - Proc. of ATAL
00, LNAT 1986 (2001) 244-259

27. Shapiro, S., Lespérance, Y., Levesque, H.: Specifying Communicative Multi-Agent
Systems with ConGolog. In: AAAI Fall 1997 Symp. on Comm. Act. in Humans and
Machines (1997) 75-82

28. Singh, M.: Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. LNAT 799 (1994)

This article was processed using the IXTEX macro package with LLNCS style

